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1

Prologue: generality as a component 
of an epistemological culture

KARINE CHEMLA, RENAUD CHORLAY, AND DAVID RABOUIN

Generic, general, universal.

Uniform, unified.

“For almost all,” “except for a set of measure zero,” particular, special, excep-
tional, pathologic.

Principle, law, general method, ad hoc solution.

Model, example, case, paradigm, prototype.

All these adjectives, terms, and expressions have been used, and sometimes shaped, 
by actors in the context of scientific activity. However, they do not occur uniformly, 
independently of the setting. This statement holds true diachronically. It also holds true 
synchronically: at the same time period, different mathematical milieus, for instance, show 
collective use of different terms related to the general.1

This simple remark takes us to the core issue of this book. It aims to show how, in 
given contexts, actors have valued generality and how they worked with specific types 
of “general” entities, procedures, and arguments. Actors, we claim, have shaped these 
various types of generality. Depending on factors in the context in which they are or were 
operating to be elucidated, actors have introduced specific terminologies to distinguish 

1 This book is the outcome of a collective work that took place between 2004 and 2009 in the context of 
the research group of CNRS and University Paris Diderot at the time called REHSEIS. In the meantime, 
REHSEIS has merged with another research group to constitute a larger entity, newly named SPHERE. 
The collective work developed in a seminar that was organized by Karine Chemla, Renaud Chorlay, David 
Rabouin, and Anne Robadey. It allowed us to explore multiple facets of generality. We are happy to thank 
all the participants and contributors for the insights they gave us, as well as Rebekah Arana, who helped us 
with the polishing of some of the articles. Karine Chemla was able to benefit from the generous hospitality of 
Professor Lorraine Daston and the Max Planck Institut für Wissenschaftsgeschichte as well as the unflinch-
ing support of the librarians in Berlin during summer 2014 to work on the completion of the book, and in 
particular its prologue. Our thanks extend to Richard Kennedy for his contribution to the preparation of the 
final version of this prologue.
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between different levels or forms of generality, and have designed means to work with 
them, or to work in relation to them. Actors have in some cases discussed which virtues 
they attached to the general, why it was essential to their project, and in relation to which 
other values they prized it.2

This book aims to inquire into this diversity.3 It intends to highlight how “the general” 
does not assume any a priori meaning, which would be valid across contexts, at a given 
time, or even in a single discipline. Nor, in our view, would a history of scientific progress 
as reflected by the achievement of an ever higher level of generality be faithful to our 
sources. On the contrary, the goal of this book is to reveal how actors worked out what 
the meaningful types of generality were for them, in relation to their project, and the issues 
they chose to deal with. If such a view holds true, as we claim, it implies that evidence 
exists of different ways of understanding the general in different contexts. Accordingly, 
it suggests a nonlinear pattern for a history of generality. The book does not claim to 
offer such a history. However, it intends to open a space for such a historical approach 
to generality to become possible.

The claim we make about the various ways of working out and practicing generality is 
a facet of a more general thesis, which draws on the assumption that the scientific cultures 
in the context of which actors have operated do not fall ready- made from the skies. The 
thesis holds that actors have shaped these cultures, and reshaped them constantly, in 
relation to the scientific work they have carried out.4 These cultures bring into play types 

2 Philosophers, especially those in a pragmatist tradition like Hilary Putnam, have insisted on the importance 
of taking values into account when dealing with scientific practice. See, for instance, Putnam (2002: 30ff  ).   
In philosophy of science, in the last decades, “epistemic values” have been at the center of a certain attention. 
See, for instance, Kuhn (1977), Laudan (1984), and Carrier (2012). In conclusion, we will situate our pro-
ject with respect to this developing field of study. Let us simply note for now that simplicity, beauty and other 
values have often been mentioned as examples in this context. However, it seems to us that generality has not 
often been discussed as a value, except, as we suggest in conclusion, indirectly. This is one of the main claims 
of the book: that it should be addressed as an epistemic value.

3 Hagner and Laubichler (2006) is the outcome of a similar project. Outlining some differences between 
the two projects enables us to be more precise on the specificity of our own project, and also on how the two 
endeavors complement each other. The book edited by Hagner and Laubichler addresses the issue of general-
ity essentially as a concern that gained momentum, for instance in the second half of the nineteenth century 
in Germany, in view of the increasing specialization of scientific activity, and the related emphasis placed on 
detail and accuracy. Here, the main antonyms of the “general” are the “special” or the “partial.” Was it pos-
sible, some actors worried, to maintain a global approach within a discipline? At an even higher level, they 
asked: Could one maintain a global and reflexive outlook on science? Was there a discipline able to represent 
the general level for all other disciplines? How, more generally, could one act in favor of the unity of science 
despite ever finer disciplinary differentiations? Typical in this respect are the congresses of the Gesellschaft 
Deutscher Naturforscher und Ärtzte around 1900, described by Ziche (2006), whose actual organization 
institutionalized the concern by opposing “general” lectures— in a sense of general that Ziche discussed— and 
specialized sections. Correlatively, the approach to generality most represented in Hagner and Laubichler 
(2006), which focuses mainly on the nineteenth century and the first half of the twentieth century, is at the 
level of disciplines or beyond. By contrast, in our book, we place ourselves at the micro- level of scientific activ-
ity, in settings much smaller than those of disciplines. As a rule we also examine generality closer to scientific 
practice, aiming to uncover variety behind what has often been assumed to take a rather obvious and uniform 
meaning. Accordingly, we pay close attention to differences between the constellations of terms linked to 
generality that vary across settings and reflect the categories of the specific actors. In addition, Hagner and 
Laubichler (2006) consider disciplines ranging from physics to history and philosophy, whereas we focus on 
mathematics, physics, and the life sciences.

4 This is one of the main theses put forward and discussed in Chemla and Fox Keller (2016).
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of texts and inscriptions, instruments, and other material entities. They also bear on ways 
of engaging with these entities. Further, they include shaping of the social organization of 
scientific activity as well as epistemological factors.5 This book focuses in the first place 
on one such epistemological factor: generality. We do not want only to understand how it 
was conceived and implemented in different contexts, but we are also interested in how 
actors related this facet of their activity to other facets. It is our hope that our project can 
inspire similar efforts that will allow us to better understand how epistemological factors 
are key components of scientific cultures.

The book could have included case studies ranging from antiquity to the modern times, 
and occurring in any part of the planet.6 To understand diversity in a more restricted 
environment, and thus be able to perceive relationships between contexts with respect 
to generality, we have instead chosen to concentrate on mainly, even if not exclusively, 
early modern and modern Europe. However, we have found it useful, for the sake of our 
reflection, to explore our set of issues in the context of various disciplines. The reader will 
thus find chapters in this volume devoted to mathematics, physics, and the life sciences.

1.1  Actors’ historiography of generality and their 
meditations upon its value

Some actors have shown interest in the history of generality, and some have developed 
a reflection on it. They sometimes manifested their awareness of differences in how 
generality had been handled and practiced in the past. As Frédéric Brechenmacher high-
lights, in a chapter devoted to a controversy on generality to which we return below, for 
some actors like Leopold Kronecker (1823– 1891), in line with a certain way of thinking 
about history in the nineteenth century, progress in mathematics meant, in particular, 
progress in the achievement of ever higher levels of generality. This points to one way 
of perceiving differences in the past. Actors also regularly manifested their awareness 
that other practitioners at their time did not approach generality in the same way as they 
did— they sometimes added “in the right way.” This is one facet of Kronecker’s dispute 
with Camille Jordan (1838– 1922). Kronecker interprets his disagreement with Jordan in 
this respect as the result of a history of progress in the forms of reasoning. In his outline 

5 Different concepts of “scientific cultures” that could be useful for historians, philosophers, or anthro-
pologists of science were put forward in the last decades. Knorr- Cetina (1999) introduces the concept of 
“epistemic cultures” based on ethnographic case studies carried out in laboratories working on high- energy 
physics and molecular biology in the twentieth century. Fox Keller (2002) develops her ideas about “episte-
mological cultures” through case studies related to the history of biological development. In that publication, 
she highlights in particular the epistemological factors that differ across scientific cultures and account for 
the problems that sometimes occur in interdisciplinary exchanges. In particular, she analyzes how in work 
on the same biological problems, physicists and biologists differ on what counts as an “explanation.” See also 
Chapter 17 by Fox Keller in this book. Chemla (2009) outlines a concept of “mathematical culture,” inspired 
by these previous publications. The introduction to Chemla et al. (2016) discusses the relationship between 
these concepts and others.

6 Indeed, one of the editors has intensively published on the valuing of generality attested in mathematical 
writings from ancient China (see, for instance, Chemla, 2003, 2005).
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of the history of general reasoning, Kronecker attributes to mathematicians of the past 
(and to Jordan) a practice of reasoning that was flawed— Hawkins (1977: 122) referred 
to this practice as “generic reasoning.” In Kronecker’s eyes, the Berlin mathematician 
Karl Weierstrass (1815– 1897) had shaped a new practice, from which essential epistemic 
benefits derived. Kronecker’s views on generality and its history, Brechenmacher argues, 
have left their imprint on the historiography of mathematics, which embraced them. An 
interpretation of the history of generality as a linear unfolding thus has roots in the past 
that can be uncovered. As a result of observers adopting actors’ historical accounts in 
this respect, views like Kronecker’s have overshadowed the different conceptions of other 
actors at the time. Historiography, Brechenmacher adds, has perhaps failed to recognize 
diversity in this respect.

The same conclusion derives from Olivier Darrigol’s description of James Clerk 
Maxwell’s (1831– 1879) practice of generality. Historiography, Darrigol emphasizes, has 
adopted Pierre Duhem’s (1861– 1916) assessment of this practice, which was formulated 
from the viewpoint of another conception of how generality should be achieved. As 
a result, Darrigol suggests, we lack an account of how Maxwell fulfilled the ideal of 
generality he set himself.

These remarks highlight two benefits that derive from our approach. Gaining a bet-
ter understanding of the diversity of practices of generality promises to yield tools for 
revisiting, in a critical way, parts of the historiography of science. Historiography has 
in some way made the past appear uniform, in relation to some actors’ representations 
of generality and its history. The book will help restore some diversity and yield source 
material for thinking about generality in a broader perspective. Moreover, the episode on 
which Brechenmacher concentrates shows that the different types of general reasoning 
practitioners brought into play are correlated with different types of general mathemati-
cal features on which they concentrated: invariants, for Weierstrass and Kronecker, and 
the reduction into simpler elements, for Jordan. In addition to a history of the modes of 
general reasoning, we thus see the emergence of a history of the various ways of shaping 
generality in the subject matter itself.

1.1.1   What are the issues at stake in generality? 
Epistemic and epistemological values

The case studies evoked above already suggest our sources testify to motley practices of 
generality. Accordingly, actors have offered dissonant historical accounts of generality. 
These different historiographies naturally constitute an important resource for us and 
this is in fact where our book begins its inquiry.

Its second chapter is devoted to Michel Chasles’s (1793– 1880) Aperçu historique 
sur l’origine et le développement des méthodes en géométrie,7 completed in 1837. The book 

7 The full title is: Aperçu historique sur l’origine et le développement des méthodes en géométrie, particulièrement 
de celles qui se rapportent à la géométrie moderne, suivi d’un mémoire de géométrie sur deux principes généraux de la 
science : la dualité et l’homographie.
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appeared in a specific context. Chasles was researching on geometry in the framework 
of a mathematical culture that took shape in France at the end of the eighteenth century 
and the first half of the nineteenth century in engineering schools, and more specifically 
in relation to the Ecole Polytechnique. These geometers, who collectively shaped projec-
tive geometry, were all obsessed by the question of the relationship between analytic 
and “purely geometrical” approaches to geometry. In particular, they acknowledged the 
immense power of analytical approaches in solving geometrical problems, but could 
not understand why pure geometry was comparatively so weak when dealing with the 
same questions. For them, generality appeared to be one of the main assets of analytical 
approaches. Our geometers thus collectively began a reflection on the sources of generality 
in analysis, and the means to be developed to equip pure geometry with forms of generality 
able to compete with those of the rival approach. Their reflection did not develop only 
from within their mathematical practice, but they also approached the question from a 
historical perspective. Following predecessors and colleagues like Carnot and Poncelet, 
Chasles conducted a mathematical and historical reflection on the history of geometry 
from the viewpoint of generality.

In Chapter 2, Chemla relies on Chasles’s reflection to capture an actor’s perspective on 
the various facets of generality in geometry. Indeed, his book provides an amazing source 
of material for the examination of how a geometer perceives generality in his field, how 
he understands the shaping of means to achieve generality throughout history, and how 
he contributes to shaping further means of introducing new forms of generality. In his 
reflections, generality appears to be multi- faceted. What is essential for us is that it takes 
different forms from those we see in the context of the Kronecker– Jordan controversy.

In line with his project, Chasles surveys historical transformations of generality in 
geometry in two historical traditions (the analytic and the geometric approaches), his 
intention being to deploy another type of generality. For Chasles, ancient Greek geometry 
seriously lacked generality in many senses of the term. Chasles identifies a turn in this 
respect in about the sixteenth century.

His historical account, Chemla shows, first identifies a history of geometrical objects, 
which shapes objects with increasing generality. Chasles attributes to Girard Desargues 
(1591– 1661) a key role in this regard. Further, in Chasles’s view, the change in geometrical 
objects Desargues brought about was correlated with the development of means to transfer 
properties between objects formerly perceived as unrelated, or to put these properties 
in relation with each other. For Chasles, these operations represent another facet of 
generality. More generally, he underlines the introduction, in the seventeenth century, 
of methods, which established connections between objects and also between properties.

Chasles likewise emphasizes the emergence of uniformity in the treatment of prob-
lems dealing with different objects, as one important aspect of the shaping of generality 
in geometry, associating it in particular with René Descartes (1596– 1650). From the 
perspective of generality, Chasles thus also sketches a history of the changing means of 
proving in geometry. He offers in particular a history of reflections on the actual scope 
of the conclusions that could be derived from a proof.

Like Kronecker’s, Chasles’s history is a history of progress, but it is not linear. He 
appreciates how in the context of different approaches, different groups of actors 
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operating at the same time shaped different means of achieving different types of general-
ity. Generality was explored in different directions, and each of these lines of inquiry, he 
shows, contributed to the history of the shaping of generality in geometry.

Chemla further highlights how specific features of Chasles’s treatment of the history 
of geometry can be correlated in various ways with his own contributions to geometry. 
Let us outline only one of these facets, which will prove important for the argument of 
the book. Chasles’s meditations on general objects in geometry, the uniformity of their 
treatment and the possible scope of the conclusion of a proof, Chemla suggests, inspired 
his reformulation of a principle, made explicit by Poncelet in 1822, under the name of 
“the principle of continuity.”

Poncelet’s principle had the aim of enabling practitioners to claim a conclusion for 
a general geometrical object, after having completed a proof of the proposition on a 
narrower set of objects. First, the principle derived from a reflection on what general 
objects were in geometry. It was based on a new conception, for which objects were no 
longer figures, but configurations of geometrical elements (lines, curves, planes, etc.) 
that could present different ranges of general states. Secondly, Poncelet considered that 
a conclusion, obtained through reasoning based on one general configuration, could 
be asserted about any other general configuration, as long as the latter configuration 
derived from the original through continuous deformation (hence the name given to the 
principle). In particular, when some relations between elements of the configuration had 
become “ideal,” the conclusion, Poncelet suggested, still applied. The principle clearly 
contributed to the shaping of a form of generality in geometry. It stated how conclusions 
about general objects could be derived from a proof, despite the fact that it was not valid 
for all their states. For Poncelet, the principle simply accommodated in geometry an 
assumption that was implicitly used in analytical reasoning about geometrical figures and 
from which this type of reasoning derived its generality. We return to this formulation of 
the principle below.

The principle embodies but one facet of generality in this context. On a higher level, 
the reflection on generality that developed within projective geometry is characterized 
by the emergence of similar “principles,” and also by the amount of work carried out in 
discussing and reformulating them. Chasles ponders this fact more widely. In this specific 
case, his reflections will precisely lead him to offer a new analysis for the “principle of 
continuity,” and a new formulation, which he will then call “the principle of contingent 
relationships.”

His analysis suggests another conception of a general object in geometry. His key 
concept in this respect is that of “figures,” for which one can distinguish between dif-
ferent “general circumstances of construction.” For such objects, Chasles distinguishes 
between permanent and contingent features, and his principle suggests another way of 
determining, or interpreting, the generality of the conclusion deriving from a given proof. 
In his view, the conclusion of a proof that has been carried out on one set of “general 
circumstances of construction” of a figure can be stated for the figure in any other “general 
circumstances of construction.” Chasles further suggests, on this basis, a new practice 
of proof: he invites geometers to develop proofs using only permanent properties, which 
will apply uniformly to the figure in any set of “general circumstances of construction.”
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Accounting for this reflection on, and reformulation of, principles belongs to a history 
of projective geometry that does not only deal with results and theories, but also includes 
how actors produced, and discussed, the means of achieving types of generality in their 
practice. In this case, it is particularly important to highlight the history of the principle, 
since, as we show below, the related reflection on generality, and the concepts the reflec-
tion produced, actually inspired similar developments in other mathematical domains.8 
Focusing on generality and actors’ reflections on it thus opens a new page in the history 
of science, by showing that not only concepts, methods, and results circulate, but also 
actors’ reflections on generality.

Chasles’s historical considerations are an opportunity for him to discuss the virtues 
he attaches to the most general statements. In his view, they are also the most simple to 
formulate, the easiest to prove, the most widely true, as well as being the most fruitful. 
By the latter term, he means these statements yield, through almost no proof at all, the 
other true statements in the theory to which they belong. It comes as no surprise that 
the identification of these statements— the “source” of all the others, whose existence he 
assumes for all theories— is the goal he sets for his practice. Chemla suggests this goal 
also echoes the aim pursued in the analytical organization of knowledge at the time.9

To approach the issues at stake here in more abstract terms, we suggest the introduction 
of a distinction, whose usefulness will be further illustrated in what follows. For Chasles, 
like for Kronecker, we claim generality is an “epistemic value,” in that its pursuit, like that, 
say, of “coherence” in scientific practice, would be conducive to truth. Indeed for actors 
like Kronecker, as we show in greater detail below, the types of general statement and 
uniform approach he advocated guide us to true knowledge.10 But for Chasles, generality 
is not merely an “epistemic value.” It is also, we emphasize, an “epistemological value,” 

8 See Section 1.3.4.
9 Lagrange (1799 (Thermidor, An VII): 280) gives a general description of this goal when he deals with the 

analytical treatment of spherical trigonometry.
10 The reader should be warned that the expression “epistemic value” is used elsewhere with a markedly 

different meaning, for instance in the title of the book by Haddock, Millar, and Pritchard (2009). In that book, 
the expression refers to what makes the value of knowledge, as opposed to true belief, for instance. Knowledge 
is thus considered given a priori to the analyst, and what is at stake is its evaluation by contrast to other forms 
of beliefs. In our book, in general the term “value” refers to values like simplicity or elegance, which actors 
prize and put into play in the production of knowledge. What is at stake is how this valuing is correlated 
with the knowledge produced, and how these values can take different meanings. In our case, the expression 
“epistemic value” refers to a distinction we establish between values, the second pole of the distinction being 
“epistemological value” (see below). For a discussion about epistemic values in scientific practice, see Putnam 
(2002: 30– 3). Like Putnam in his book, we distinguish between a distinction and a dichotomy. We are not 
claiming that we establish a dichotomy between values: generality is a perfect example of values that are found 
in both sides of the distinction. Carrier (2012) also discusses the parts played by “epistemic values” in the 
production of scientific knowledge. He identifies two main roles. For him, “epistemic values” contribute to the 
selection of the goals chosen and the evaluation of their significance. Moreover, “epistemic values” are values 
conducive to truth. Carrier does mention generality as one factor that enables us to capture variety in the 
goals actors choose as significant (p. 240). This book is predicated on the assumption that one can go further 
in the analysis of generality as a value. The ways in which the values on which Carrier focuses in his analysis 
are conducive to truth differ from how in our view actors perceive generality sometimes performs the same 
task. This calls for an analysis of the modalities according to which various types of epistemic values fulfill this 
function. This issue goes beyond the framework of our book. However, it appears as a promising avenue for a 
future general inquiry into epistemic values.
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in the sense that its pursuit according to some criteria yields a kind of knowledge suited 
to how we want to know. We can obtain different forms of knowledge in geometry, that 
is, different types of formulations for theorems and different kinds of proof. Chasles 
has expectations regarding the satisfactory form of knowledge we should aim for. The 
link that, as we just described, Chasles establishes between generality, on the one hand, 
simplicity and fruitfulness as he envisages them, on the other, relates precisely to the 
latter concern.11

In the same way that actors form different historical accounts of generality, they also 
perceive the forms taken by generality and its virtues in different ways. Chapter 3, by 
Eberhard Knobloch, illustrates the fact by focusing on Leibniz (1646– 1716), a particularly 
rich case for a discussion of generality in this respect. What is interesting for us is that the 
virtues Leibniz lends to generality will at the same time relate to Chasles’s account and yet 
present important differences.

As we have seen, for Chasles a key manifestation of generality in geometry derived from 
a credo regarding the structure of knowledge in any theory. By contrast, the assumption 
from which for Leibniz generality derives is a theologico- philosophical principle, which 
holds there is a “universal harmony” in the world. This harmony is brought to light 
through the reduction of the variety of things to the highest order possible— this is another 
form generality can take. Mathematics can be used to highlight order. Order can also 
be disclosed within mathematics. This goal assigned to mathematics and mathematical 
endeavor thus grants generality its value. To use the terminology introduced above, it is 
in this regard an epistemic value. Knobloch’s chapter focuses on the latter dimension: the 
disclosure of order within mathematics. The possibility and the meaning of the general 
are thus postulated, and identifying the general in Leibniz’s view will allow us to perceive 
beauty in mathematics. It will take the form of “divine theorems,” “laws,” “methods,” 
and so on.

A first type of manifestation of the general is the production of theorems that “link 
together the most dispersed things,” or are common to all formulas in a given context. 
This appears as a first way of reducing a given variety and showing order in it. Although 
the theme of connecting truths was also present in Chasles’s account, Leibniz attaches 
different virtues to this reduction, which brings to light in which regards generality is also 
an epistemological value for Leibniz. For him, such theorems are “excellent summaries 
of human understanding,” constituting “abridgements,” which ease memorization and 
the work of thought. With reductions of this type, the practitioner is saved the labor of 
repeating similar treatments in situations that are shown to be related.

For Leibniz, the general also has the property of being simple, however, in his case, 
prominently in relation to the fact that it is concise:  all irrelevant details have been 

11 Values of this type are also those that are at play when actors choose between competing theories that 
equally account for facts. Simplicity, beauty, and other values have been evoked in this respect. We suggest that 
these values can be epistemic or epistemological, depending on how actors justify their use. They have been 
discussed mainly in the philosophy of physics and in relation to theory choice. The case in mathematics that 
we discuss here indicates that these values are used at different levels (or scales) and play different parts. This 
also awaits further description.
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eliminated. In this manner, Leibniz suggests, fruitfulness is implemented, and this value 
takes meanings close to those we outlined above. However, in line with Leibnizian reflec-
tions on the characteristic, it comes as no surprise that the meditation takes a specific 
course. For him— a fact that played no role in Chasles’s reflections— adequate notations 
yield conciseness. They thus play a key role in the exhibition of the general. Once notations 
paint the “intimate nature of things,” they disclose the universal in them, and reasoning 
becomes a computation. The reduction that adequate notation carries out also allows again 
the expression to “be easily retained” and to “the labor of thinking” to be “diminished.” 
As Leibniz shows, a reduction of this type also provides help in carrying out further 
reductions of the first type. They are both tools in the service of the art of invention.

Finally, for Leibniz as for Chasles, the general is the subject of an unending quest, the 
assumption being that there can always be higher levels of generality, yielding even more 
powerful resources. In this quest, a field appears as fundamental for Leibniz, namely, 
combinatorics. The key position of this field in relation to generality can be correlated 
to a specific mode of expression of the general: “laws” of formation. Laws of this kind 
highlight patterns in general expressions, formulas, or tables, allowing practitioners to 
produce these entities, without memorizing them, and thus dispense with them. The fact 
that these laws represent higher forms of generality echoes the fundamental position 
Leibniz grants to combinatorics in mathematics.

In conclusion, we see clearly that the meaning of the general, the values attached to 
it, as well as the forms it can take vary significantly from one context to another, in close 
relation to actors’ scientific activity.

How do actors understand the way(s) in which the general can be established and the 
way(s) in which the extension of its validity may be captured? How do they consider it 
can be worked with appropriately? These are the issues to which the next chapters turn, 
while displaying yet other meanings attached to, and other forms taken by, the general 
in other contexts.

1.1.2 Actors’ reflections about generality

Actors do not always formulate their reflections on generality explicitly, nor do they always 
make explicit which options they take in this respect. Yet, aspects of their reflections and 
choices on this issue can very often be gathered from clues we find in their writings. In 
some cases, background knowledge about actors and their immediate context, especially 
the scholarly culture in the context of which they operated, can complement the sources 
that come down from them and help us describe how they understood generality and 
how they worked with it. However, this is not always the case.

As usual, ancient history provides the most critical examples in this respect, where 
we have isolated documents, with no meta- level statements that might reveal actors’ 
reflections on generality and their practice of it. How can we, in such cases, interpret the 
clues and describe our actors’ take on generality? The book illustrates the problem, and 
examines this issue, with an example taken precisely from ancient history. This consti-
tutes its main incursion into earlier time periods. In fortunate cases, we can find other 
documents that, although they may have been written centuries apart from the sources 
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under consideration, present connections with them regarding the issue of generality and, 
further, make reflections on this topic more explicit. Even though this information must 
clearly be used with discernment, it yields precious evidence to interpret the clues our 
sources contain on actors’ understanding of, and practice with, generality.

Chinese mathematical texts from antiquity offer an example of a situation of this kind. 
For example, the classic The Nine Chapters on Mathematical Procedures (completed ca. 
first century ce) gives many clues that generality was a major epistemological value for 
its authors. And yet, at first sight, the book includes no comments on this fact. Nor can 
we find, strictly speaking, any contemporary document that would fill this gap in our 
documentation. However, we are fortunate enough to have another classic, probably 
completed a century earlier, The Gnomon of the Zhou [Dynasty], as well as commentaries 
from the third and the seventh centuries on The Nine Chapters, handed down with that 
classic. These documents all yield essential information enabling us to interpret features 
of the approach to generality in the context of The Nine Chapters, as well as in its com-
mentaries (Chemla, 2003, 2005). Greek mathematical texts of antiquity confront us with 
a similar situation.

Clearly, Euclid’s Elements also reflects careful consideration, as well as practice, of 
generality.12 However, no immediately related evidence can allow us to describe Euclid’s 
cogitations other than clues in his text. In this case, Aristotle’s detailed discussions on 
generality, which additionally often evokes mathematics as a key example, provide crucial 
information for the interpretation of these clues. Chapter 4, by David Rabouin, is devoted 
to this case study. Rabouin considers features of Euclid’s approach to generality more 
specifically in the example of the theory of ratios.

As is well known, the issue of generality is essential to Aristotle’s discussion of sci-
ence, since for him the principal characteristic feature of scientific knowledge is that it 
is knowledge of the general. In this context, Aristotle frames the issue in a very specific 
way. He considers that the general is attached to “genres,” and that it formulates essential 
attributes of entities falling under a “genre,” which derive from a “demonstration” 
holding for all of them. This specific approach to generality nicely correlates with the 
structure of Euclid’s Elements. Indeed, the Elements can be decomposed into two parts, 
one dealing with geometrical objects and the other with numbers. Moreover, propor-
tions are defined for these two domains of entities in two different ways, and similar 
properties of proportions are proved using wholly different characteristics of objects 
in each case.

At first sight, the correlation between the clues given by the mathematical text about 
the treatment of the general and the theory of “genres” expounded by the philosophical 
text thus appears to be obvious. However, Euclid’s Elements also contains a puzzling 
passage, in which proportions on magnitudes and proportions on numbers are brought 
into relation. This point seems to challenge the interpretation of the general in Euclid’s 
Elements as conforming to what Aristotle describes. It further raises problems for the 
interpretation of the Elements stricto sensu.

12 Pace Chasles, from whose perspective Greek texts of antiquity were deficient in this regard.
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It is interesting to note how the difficulty in interpretation is in line with a problem in 
understanding how Euclid deals with the general. In fact, Rabouin highlights that this dif-
ficulty is itself correlated with vexing issues in the interpretation of Aristotle’s problematic 
statements on the general. Accordingly, the solution Rabouin offers questions received 
views on the general in Aristotle’s theory. Widening the documentary basis on which this 
question has been approached, Rabouin offers a modified account of how Aristotle under-
stands the general in science and how he prescribes it should be pursued. It is noteworthy 
that this modified account enables us to make sense of the features of the Euclidean text 
that were perplexing. Perplexing, Rabouin stresses, only for the modern reader, since we 
have no evidence that ancient commentators took issue with these features of Euclid’s 
Elements. Perhaps, Rabouin suggests, false expectations with respect to generality in the 
ancient texts have created challenges for modern readers.

This conclusion is worthy of greater consideration by historians dealing with values 
such as generality. Different understanding and practices of a value in different contexts 
demand methodological prudence in order to avoid reshaping the past on the basis of 
our expectations. We have already met with similar concerns above.

This ancient discussion touches the question of the entity to which general properties 
can be legitimately attached. It also brings into focus the issue of which procedures can 
legitimately be used to establish a property of that kind. It sets the frame for a practice 
of the general. Closer to us, we still find actors, like the mathematician Henri Poincaré 
(1854– 1912), who wrote many texts discussing the meaning of general statements and 
ruminating on their legitimacy. Igor Ly’s analysis of these reflections, in Chapter 5, shows 
that the issues Poincaré addresses in this respect in his philosophical writings are wholly 
different from the issues outlined above. For Poincaré, as for Aristotle, there is no sci-
ence without the general. However, Poincaré is interested in understanding the different 
meanings of generality in different disciplines, and comparing the practices of generaliza-
tion in these different contexts. His aim is, in particular, to characterize the meaning of 
generality in mathematics and to understand the part played by mathematics in practices 
of generalization in other disciplines.

To begin with, what does it mean, Poincaré asks, to speak of “all the integers”, for 
instance? And, how should we interpret a mathematical statement asserting that a prop-
erty is shared by the elements of this infinite collection? Here, as elsewhere, Poincaré’s 
discussions about generality involve the infinite. A key point in Poincaré’s answer to these 
questions consists, Ly stresses, in his interpretation of the infinite: for him, it is never 
“given,” but is endlessly in construction, referring in fact to the potential infinity of a 
sequence of operations. Accordingly, generality is thus not the result of, but rather the 
operation of generalization itself. With respect to integers, for instance, Poincaré suggests 
their collection is conceived through the “power of the mind” to repeat the addition of 
1 indefinitely. This power of the mind, of which we have the intuition, is, for Poincaré, 
what gives meaning to such expressions as “all the integers.” It also allows us to shape and 
grasp the mathematical continuum and other mathematical concepts. The same “power 
of the mind” is brought into play in mathematical induction, which for Poincaré is not a 
logical, but a purely mathematical type of reasoning. The reason for this is that induction 
requires an indefinite combination of the same or of similar acts, which in Poincaré’s 
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view characterizes mathematical generalization, by comparison to generalization in other 
scientific fields. In fact induction provides mathematics not only with an essential tool 
for generalization, but also for shaping mathematical concepts. These arguments help 
explain why in Poincaré’s reflections, generality, generalization, and the infinite are always 
associated with each other.

Poincaré is also interested in generalization in physics and especially in the part played 
by mathematics in these generalizations. As Ly shows, Poincaré develops careful and 
specific analyses with respect to both mathematical physics and experimental physics. In 
the latter case, Poincaré offers an extremely subtle theory of the part played by mathemat-
ics in inductions carried out on the basis of experimental measurements. Here again, 
his conclusion leads Poincaré to oppose this type of induction and a generalization that 
operates by means of the extension of the domain of a predicate.

In all these cases, the scientist Poincaré discusses philosophical questions as an observer 
of scientific activity. He takes as his starting point the practices of generalization in math-
ematical, or experimental, physics. And he develops quite specific interpretations of what 
generality means and how generalization functions in different contexts, thereby justifying 
the legitimacy of these operations in mathematics and in physics.

Quite interestingly, the mathematician Poincaré is also essential in another respect. We 
have abundant evidence that in his work he proceeds in a specific way with respect to 
generality, constantly keeping an awareness of the generality of the situations he is dealing 
with. Even though, to the best of our knowledge, he remains silent about this, there is 
ample evidence of the fact in the statements he uses and the structure of his writings. 
This takes us to another range of issues that the book addresses.

1.2  Statements and concepts: the formulation of  
the general

We have seen so far the variety of reflections actors developed with respect to the general. 
These reflections partly overlap and partly diverge. They clearly constitute a precious 
asset for our project of a historical study of generality. However, how did actors express 
and state the general? How did they write it down? Part II of the book examines this 
question, emphasizing actors’ roles in shaping concepts and statements to grasp, and 
express, the general. On this issue, Poincaré will provide us with a magnificent example, 
which highlights a key phenomenon for our history: the historicity of the statements actors 
used to formulate the general.

1.2.1 Developing new kinds of statement

In Chapter 6, Anne Robadey provides evidence documenting the circumstances in which 
a practitioner introduced a new type of general statement. The statement in question 
asserts that a proposition holds true for “almost all” the objects considered, where the 
meaning of “almost all” is quantified precisely using mathematical tools. Robadey notices 
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statements of this kind are also characterized by the fact that no attempt is made to 
individually identify the “exceptions,” the existence of which is referred to.

The practitioner to whom Robadey ascribes the invention of this type of general state-
ments is none other than Poincaré himself. She is even able to situate the moment of this 
invention between early December 1889 and 5 January 1890. The historical background 
for it is clear. In 1888, Poincaré competed for a prize offered by King Oscar II of Sweden. 
Having been awarded the prize, he submitted the text of the memoir for publication. At the 
end of 1889, he became aware of a mistake in the proof of the main theorem and withdrew 
his publication. Within a month, he struggled to fix the problem and, on 5 January 1890, 
he was able to send the new version of the memoir, which was published. The introduc-
tion of the new type of statement was part of the resources on which Poincaré drew to 
formulate and establish a new result in place of the erroneous one. Robadey can document 
subsequent episodes more finely in the shaping of the statement under consideration.

In her chapter she emphasizes several points that are essential for our purpose. First, 
in his formulation of the new type of statement, Poincaré uses the word “exceptional” to 
refer to the cases for which the general property does not hold. He recurrently emphasizes 
that in these statements, this word, which is taken from ordinary language, is a techni-
cal term, making clear the mathematical meaning he has ascribed to it. Interestingly 
enough, Robadey notes, this fact contrasts with Poincaré’s way of using another technical 
expression: “the most general polynomials of their degree.” Clearly, the latter expression 
relates to yet another specific type of statement of the general. For us, its sense requires 
some explanation. However, Poincaré seems to take the technical meaning of that other 
expression for granted, never stressing it, nor even defining it. This suggests the conclusion 
that the latter technical expression was in common use in the mathematical culture for 
the members of which Poincaré writes. This thus gives us hints that in given contexts, 
actors use shared sets of specific technical expressions of the general. By contrast, when 
Poincaré introduces a new type of formulation of the general, he feels compelled to warn 
his readers of the technical dimension of its terms.

Second, Poincaré relies on knowledge in probability theory to ascribe a meaning to 
the term “exceptional.” In brief, he defines “exceptional” as that which arrives with a 
probability equal to zero. Moreover, in the second version of the memoir where he uses 
these concepts, he makes clear how he suggests defining such a probability. This, Robadey 
emphasizes, is in fact the first piece of evidence we have of Poincaré’s reflections on 
probabilities. In fact, when he brings probabilities into play to fix the flaw discovered in 
the first version of his memoir, Poincaré does not use knowledge on the topic that would 
be readily available. Robadey is able to show how the new version evidences Poincaré’s 
research work on probabilities that remained otherwise unpublished at the time. What is 
more, Robadey suggests the critical situation of having to correct his mistake prompted 
Poincaré’s personal work in this field, which he would later revisit. In fact, he puts his 
research on the topic into play to give meaning to the new type of statement he introduces. 
This fact highlights a key conclusion: shaping a new statement of this kind is not only a 
matter of formulation but also requires mathematical knowledge, which in this case was 
developed for this purpose. Actually, it is precisely this facet of the new statement— the 
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definition from probability it brings into play— that underwent transformations in 
Poincaré’s successive statements of his main new theorem between 1890 and 1891.

Third, through a remarkably fine analysis of a corpus of texts, Robadey establishes that 
the introduction of the new type of statement is correlated with other facets of Poincaré’s 
mathematical work to correct his result. Poincaré modifies the meaning of the key concepts 
at stake in his memoir— like that of stability. He restructures the organization of his text, 
redefining the goal to be achieved. The way in which he chooses what will become the new 
essential result of stability is correlated with the possibility of stating something strong, 
which is general enough to be meaningful, even though it does not hold universally.

Finally, the nature of the statement, which points to exceptional cases without identify-
ing precisely what they are, is correlated with the type of proof Poincaré develops, which, 
as Robadey stresses, is non- constructive. The new statement is altogether produced in 
the context of this gigantic reshaping and is what makes it possible. Again, the cultural 
artifacts actors produce in the context of their activity cannot be dissociated from the 
questions they address and the goals they set themselves. The modes of stating generality 
illustrate this more general assertion.

To recapitulate, the type of statement we are interested in was introduced as a resource 
to shape a new approach in line with the result that needed to be established. Although 
Robadey accurately establishes the circumstances for its introduction, we still lack a 
precise historical account of how other practitioners picked it up, and began using it. 
However, the fact is, as we shall see below (see Section 1.2.3), that statements of this kind 
circulated widely, being reworked and extended in various types of context, in which they 
served as inspiration to actors structuring collective research programs.

Such case studies are essential for our purpose, since they highlight a phenomenon that, 
to the best of our knowledge, has been overlooked. Statements of forms of generality have 
their history, which is worth addressing, and their production is as important a part of 
scientific work as is the production of new concepts and results. Once they have become 
part of the tools adopted within a given scientific culture, they yield key resources for 
the practice. But there is more. Robadey shows the approach to mathematical situations 
that statements of this kind disclose is not exceptional in Poincaré’s mathematics. To 
the contrary, it fits with a systematic attitude toward his research topics, to which many 
of his writings testify. One could refer to it as a style of dealing with generality. Indeed, 
Poincaré’s writings are full of explicit remarks he systematically adds to his reasoning, 
assessing degrees of generality of a situation under consideration. Robadey highlights the 
rich terminology omnipresent under his pen: “general,” “particular,” “exceptional,” “most 
general,” and so on. Moreover, she identifies three types of resource Poincaré puts into 
play to quantify a degree of generality. In addition to probability, she notes he regularly 
counts the number of arbitrary constants that the expression of a solution to a problem 
involves, as an assessment of the size of the set of solutions thereby found. He also uses 
insights from Georg Cantor’s (1845– 1918) research, using concepts that would soon 
become essential in topology (dense set, perfect set, and so on).13

13 We return to these concepts in Sections 1.2.3 and 1.3.2.
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The same kind of view on mathematical situations can also be perceived in how 
Poincaré writes down his exploration of a problem, when the treatment requires cases to 
be distinguished. The article by Robadey (2015) is devoted to how Poincaré proceeds 
when he presents his reasoning in the form of an enumeration of cases, as he often does. 
She shows that Poincaré systematically lists cases in an order of decreasing generality, 
opposing a general case to particular cases, whose generality relative to each other must 
also have been assessed, since they are listed accordingly. Incidental remarks throughout 
texts of this type reveal Poincaré’s awareness of relative degrees of generality among 
different types of particular cases.

This type of assessment of generality can be documented from Poincaré’s early writings 
on differential equations, in 1878 and 1879. Robadey establishes that, for this case, this 
feature distinguishes Poincaré from his predecessors. It constitutes the basis for the devel-
opment of a new type of reasoning using the relative degrees of generality of particular 
cases. In fact, the related hierarchy of cases, presented in the form of an enumeration, is a 
key resource on which Poincaré draws to develop his new global approach to differential 
equations. This new approach depends on his ability to focus on what is both tractable 
and essential in the mathematical situation, as determined by the assessment of degrees 
of generality.

This remark allows Robadey (2015) to characterize the nature of the general reasoning 
that Poincaré carries out. It is by no means a kind of “generic reasoning” of the type 
Hawkins (1977) showed that Weierstrass had criticized. In fact, Robadey suggests that 
under the label “generic reasoning” Hawkins might have put together types of reasoning 
that differ substantially, and she outlines the beginning of a typology which is most 
interesting for the project of our book. In this setting, Poincaré’s reasoning appears to 
be a general reasoning carried out within a framework defined by a quantification of the 
generality of the cases left aside, by comparison to the size of the collection of cases dealt 
with. In conclusion, we see a strong connection between some early works by Poincaré 
and his memoir evoked above:  in the latter case, the specific concern about generality 
takes the shape of a statement, whereas, in the former, it takes the shape of the structure 
of a text. Moreover, Robadey emphasizes, the project to shape an enumeration in this 
way and the criteria put into play to do so are not stated discursively: only the text of the 
enumeration and incidental remarks on it reveal this part of Poincaré’s work. The writing 
of the general is not only located in concepts and statements. It can also take textual forms, 
whose interpretation becomes more difficult for historians. In fact, elsewhere Robadey 
sheds light on another phenomenon of exactly the same kind, when she shows how a 
memoir by Poincaré is not in fact devoted to the topic it apparently deals with. Indeed, she 
establishes the topic under consideration is a paradigm in the context of which Poincaré 
chooses to present a general method.14

Frédéric Jaëck addresses a similar issue in the next chapter (Chapter 7) of the book, 
which he devotes to the introduction of what is for us today an “abstract mathematical 

14 Robadey (2004) further endeavors to account for why Poincaré chose to write his memoir in this way. 
Again, the interpretation of such texts is challenging, in relation to the fact that they express the general using 
a textual form.
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structure.” Incidentally, by contrast to the previous cases, here one would be tempted to 
recognize forms of generality related to abstraction. We have seen so far that these were 
clearly not the only types of generality. We will now see that the matter is more subtle. 
In the publication of his PhD thesis, in 1922, Stefan Banach (1892– 1945) introduces 
a system of “axioms,” in which we could be tempted to identify what today is called 
“Banach spaces.” Part of these axioms relate to the fact that Banach spaces are vector 
spaces. The other part introduces a norm and the property of completeness. However, 
in contrast to what previous historians of mathematics have claimed, Jaëck suggests that 
in this early paper, Banach does not introduce the object now given his name. In his 
view, the axioms play a different role in 1922 from the one they play in the Théorie des 
opérations linéaires which Banach published ten years later. They do not have the same 
generality, and this remark leads him to distinguish two stages in the process of emergence 
of Banach spaces. Jaëck suggests introducing a distinction between forms of generality, 
which yields a different periodization in the history of science. Again, the distinction 
between these forms depends crucially on suggestions regarding how historians should 
interpret their sources.

More precisely, in 1922, Banach’s aim in introducing these axioms is to identify key 
properties, shared by different collections of functions (a list of which is provided at 
the beginning of his article, and to each of which a specific norm can be attached). The 
introduction of these properties is tied to a specific organization that Banach intends to 
give to mathematical knowledge in the 1922 article. Banach’s aim was to deal with integral 
equations. For this, in a first part, he wants to establish certain theorems that hold true for 
various collections of functions. His ambition is to establish these theorems once and for 
all, solely by using in his proof the axioms brought to light. By proving that the various 
collections of functions, each with a specific norm attached, satisfy the axioms, he can 
apply the theorems to them. The key part played by the axioms in the 1922 publication 
is thus to allow Banach to make general proofs for theorems. As a result, the generality of 
the axioms is bounded by the list of collections of functions.

All the theorems proved in relation to the axioms are used, in the second part of the 
article, to deal with the integral equations. Hence the consequences of the axioms are 
only considered in relation to a preassigned goal. In this sense, there is no study of the 
“Banach space” object as such, in contrast to the 1932 book. Jaëck captures this latter 
feature of the 1922 article by stating that it does not manifest “reflexivity” with respect 
to these axioms. These remarks define a first type of generality that Jaëck identifies in 
Banach’s writings.

In the 1932 book, the same axioms have an entirely different meaning, which can be 
captured in the structure of the text. To begin with, in 1932, the axioms allow Banach 
to introduce a general object, which will later be called “Banach spaces.” The book 
studies some properties of this object as such, without attaching the axioms to a closed 
list of collections of functions. In Jaëck’s terms, the generality of the axioms is now 
“open.” Moreover, the results obtained about the objects manifest “reflexivity,” in that 
they betray an interest in their properties, rather than an intention of deriving specific 
applications. This is the point where generality is achieved by means of abstraction. 
“Reflexivity” and “openness” are the two criteria that lead Jaëck to identify, in the 1932 
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book, a second kind of generality. Indeed, between 1922 and 1932, the meaning of the 
term “general” has changed. From a textual viewpoint, the 1922 and 1932 publications 
present the same axioms, which in the present day we associate with “Banach spaces.” 
However, the meaning and status of these axioms, and as a result, the kind of generality 
they embody differ. The same conclusion holds true for the various parts into which 
the 1922 axioms can be grouped. We can find the axioms of vector spaces in Peano’s 
Calcolo geometrico and Riesz introduces the key properties of norms in 1916. However, 
the meaning and status of these statements, their generality differ from what we find in 
Banach’s successive publications.

Jaëck raises an essential problem for history of science. How can historians determine 
the nature and degree of the generality of statements, like axioms, they read in their 
sources? Jaëck illustrates the key fact that the generality of a statement derives not only 
from the words composing it, but also from the context in which it is used and the way 
in which it is used in this context. In line with this concern, Jaëck pays specific attention 
to the organization of the various texts he takes into account, bringing to light that the 
organization with which knowledge is presented, and the deductive structure are, in this 
case, essential ingredients in determining the kind of generality that its statements assert. 
Such a method proves here to be a useful tool for conceptual history. In a sense, the 
process Jaëck describes is of the type the philosopher Jean Cavaillès (1903– 1944) referred 
to as “thematization” in mathematics.15 From this standpoint, the micro- historical analysis 
Jaëck develops here suggests more historical work can be carried out to observe in greater 
detail how precisely thematizations occurred.

But this is far from the end of the story. First, with respect to the 1932 book: its 
organization in fact bears witness to a more global change of perspective. Its suc-
cessive chapters are devoted to various structures that are defined by a subset of the 
axioms introduced in 1922 (groups, general vector spaces, normed spaces, etc.). The 
intention, in 1922, of crafting general proofs paved the way to the introduction, in 
1932, not only of a general object, but of different general objects of the same kind. 
These objects all embody the second kind of generality. Moreover, these general 
objects are connected with each other in a scale of decreasing generality. Secondly, 
now, with respect to the 1922 article: Jaëck remarks that, when dealing with this docu-
ment, historians have previously focused their attention on the axioms in relation to 
the question of the origin of “Banach spaces.” However, the article gives a prominent 
role to linear operations. These are also general objects Banach considers in his PhD 
thesis. Further, even though most theorems about them are clearly motivated by 
the intention of solving functional equations, some theorems seem to indicate that 
Banach also considers them for their own sake. Perhaps, Jaëck suggests, in the 1922 
article, one can detect some reflexivity vis- à- vis operations and thus the constitution 
of a general object of the second type. Perhaps can we perceive here the beginning 
of what later would be called the theory of operators. Thematization processes might 
be sometimes intertwined.

15 See Cavaillès (1938: 177– 8).
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1.2.2  A diachronic approach: continuity  
and reinterpretation

In Chapters 6 and 7, we have considered how specific actors introduce ways of stating 
something general. We have examined the case of expressions using a specific type of 
concept or statements of a technical kind. We have also advocated why we have to con-
sider other types of general formulations that used more macroscopic textual features. 
Once these types of general entities and statements are introduced, how do other actors 
appropriate and rework them? In other terms, what is the historicity of these entities 
and statements? This is the specific issue examined in Part II.2, in which we adopt a 
diachronic perspective.

The first case study in this regard deals with a topic that is somewhat paradigmatic 
in the context of our project. It is an investigation of the concept of “genre” in natural 
history. Indeed, grouping living objects into species and genera can be taken as one of 
the paradigmatic activities, if not the very activity, embodying a search for generality in 
the sciences. In Chapter 8, Yves Cambefort analyzes the constitution of these “genres” 
in the long term. What the examination of this type of activity shows, which is of wider 
interest for our theme, is that the practices leading to the constitution of these groups in 
different contexts and at different time periods— practices of generality, we might say, or 
practices of genre making— present essential differences, despite significant continuity 
in the groups shaped and in the general terms used to refer to them. To highlight this 
point, Cambefort’s chapter sketches, mainly for zoology, how a similar ambition of, and 
a quest for, generality have been pursued with entirely different methods, and diverging 
interpretations of the groups constituted.

For Plato and Aristotle, Cambefort argues, the introduction of genres and species 
for animals did not aim to classify, but rather to differentiate between living objects. This 
is coherent with what we have seen above for Aristotle, in relation to mathematics. This 
approach to “genres” and “species” echoes their “downward” practice of differentia-
tion: Plato, like Aristotle, started from genera (in their sense), and introduced criteria of 
differentiation within these genera, to distinguish between species. Despite this similarity 
in the procedures of grouping, Cambefort stresses, their practices of dealing with dif-
ferentia were not the same. However, neither the constitution of a classification nor that 
of a terminology were related concerns for them. Only later, did these artifacts become 
explicit goals for naturalists.

For example, Aristotle’s concept of genre had no absolute value, each genus being 
understood in relation to the species into which it was divided. Any genus could, in fact, 
be considered a species with respect to another, higher cluster, which then was considered 
a genus. A key change occurs in this respect in the context of seventeenth- century botany, 
before it was adopted for animals.16 Cambefort suggests classification then becomes a 
central concern. Correlatively, the identification of natural objects becomes a key task. 

16 Note the circulation of a practice of generality from one context to another. We return to this issue 
subsequently.
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In this new environment, genres become more decisively attached to the classificatory 
activity, and they are interpreted as a level in a more general arborescent scheme. The 
latter feature illustrates how, depending on the context, the shaping of general entities can 
be associated with different spectra of scholarly operations. Further, at the time genres 
were considered to be absolute, occurring all at the same level (or rank) in the classification 
of living beings. In other words, the same “general entities” became less logical and, by 
contrast, more loaded with meanings related to the natural world.

In the subsequent century, we note another shift in the shaping of genres, in relation 
to changes in the ways of carrying out these activities. This is what can be gathered from 
the observation of Carl Linnaeus’ (1707– 1778) specific practice of identification and 
classification. While Linnaeus adopts some features and practices for genres and species 
deriving from seventeenth- century botany, he nevertheless suggests a new interpretation 
for genres, taking them to be entities created by God and hence natural facts the naturalist 
must discover. With this particular interpretation, the sort of naturalistic operations put 
into play to establish these groups— our general entities— undergo a transformation. The 
discovery of these genres and species becomes the purpose of the naturalist’s classificatory 
activities, now practiced in an upward way. The effort bears on identifying key features 
that enable the naturalist to recognize genres. Moreover, the system of names Linnaeus 
suggests is tightly related to this practice of grouping, since it aims to help practitioners 
situate genres and species as groups that present natural divisions with one another, as 
reflected in the terminology. Seen from a higher perspective, these names can be con-
sidered as symbolic tools shaped to facilitate the circulation within the system of general 
entities. Again, we see how in each context specific practices relate to ways of making 
genres, which are interpreted in different ways.

The contrast between Linnaeus and Georges- Louis Leclerc de Buffon (1707– 1788) 
illustrates clearly how other assumptions about the natural world can lead to an entirely 
different practice with “general entities.” As Cambefort emphasizes, Buffon’s assumptions 
are in sharp opposition with Linnaeus’. For Buffon the natural world is a continuum— and 
in his eyes, Linnaeus’ “systematic” approach is creating arbitrary and artificial classifica-
tions. Accordingly, for Buffon, classification is not a primary activity, and interestingly for 
us genres— the shaping of these “general entities”— are not prominent in the naturalists’ 
work. We return to his approach to generality subsequently.

Nineteenth- century zoology inherited the organization of activities around classifica-
tion and the creation of genres from Linnaeus. However, most practitioners gave a dif-
ferent interpretation to genres, highlighting their conventional meaning. Accordingly, they 
also placed emphasis on practical considerations attached to the definition of genres, an 
issue that remains meaningful to the present day. Notably, the size of the groups created 
can make significant differences in the practice, which sheds light on the key part played 
by the genres and species in the operations of situating given entities in the classification. 
We thus see how an activity with the aim of creating genres and species can interpret, 
and accordingly shape, them in entirely different ways.

With the publication of Charles Darwin’s (1809– 1882) Origin of Species (1859), new 
ideas were introduced in the life sciences, which brought about yet another mutation in 
the interpretation of genres. Genres were thus again maintained as meaningful “general 
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entities.” However, by means of a genealogical reading, the trees of earlier classifications 
became interpreted as temporal patterns, in which the upper- level nodes— for instance, 
the genres— represented common ancestors for lower- level nodes— for instance, spe-
cies. Consequently this new approach led to changes in the scholarly practices, through 
which these “general entities” were understood and thus shaped. Noteworthy is the fact, 
discussed by Cambefort, that in the life sciences in the present day, different groups of 
practitioners of systematics have developed different practices for the making of “general 
entities,” owing to their diverging way of striking a balance between several criteria. 
Notably, phylogenetic considerations do not represent the only meaningful criterion for all 
practitioners. This evidences contention among diverging collective ways of shaping genres. 
The contenders are characterized by different ways of inheriting from past scholarship 
and different scientific practices of cluster making. However, if “genres” are contested, the 
making of such types of “general entities” remains a shared goal. Through his diachronic 
outline on how this task was fulfilled in different contexts, Cambefort thus highlights the 
wealth of factors that are likely to enter into the shaping of general entities.

Similar conclusions derive from the case study Stéphane Schmitt presents in Chapter 9 
on the concept of “homology”— which embodies another way of looking for the general in 
the life sciences. Broadly speaking, this search attempts to identify parts in the structures 
of different species of living organisms that present a similarity, independent of their 
function. The interest in bringing to light such “homologies” has been correlated with a 
persisting working assumption that has taken different forms in history. This assumption 
basically asserts that there are a limited number of organizational plans on which all living 
beings are built. Aristotle had already held an assumption of this kind. For him, there even 
existed a single such plan. Naturalists like Etienne Geoffroy Saint- Hilaire (1772– 1844) 
also adopted the idea of a single plan of organization for all living organisms. Other 
naturalists opted for the slightly different assumption that a small number of such plans 
existed. For instance, Georges Cuvier (1769– 1832) held he could establish the existence 
of four basic schemes. These assumptions clearly relate to a search for generality in the 
life sciences. They have guided work on living organisms, leading practitioners to focus 
on how parts of different organisms correspond to one another.

The key thesis for which Schmitt’s chapter argues is that this type of search for gen-
erality has changed meaning, and even content, throughout history, in relation to the 
changing contexts within which it was carried out in the life sciences. However, the basic 
idea persisted, and even the fundamental practices of naturalists survived key changes 
in the theoretical framework.

In pre- transformist comparative anatomy, Schmitt notes, scholars looked for homolo-
gies in a formal way, without attempting to interpret the results. A search of this kind can 
be identified in the work of Renaissance naturalist Pierre Belon (1517– 1564). In order to 
express homologies, Belon designed specific kinds of diagrams, with which he displayed, 
for instance, the similarity between a human being’s skeleton and that of a bird (see 
Figure 9.1, in Chapter 9). This practice illustrates the invention of a way of writing down 
the general. The argument the diagrams aimed to make led to changes in some features 
in the description and the drawing of skeletons in unusual ways, so that the similarity 
appeared more clearly. In other words, here, the search for generality is connected with 
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a work practice, and it relates to modes of both organizing data and observing. However, 
in Belon’s works, the remarks about similarity are not developed systematically, the com-
parison remaining local and bearing on a sample of only a few skeletons.

In the eighteenth century, the search for resemblances between parts of different organ-
isms (the arm of the man and the wing of the bird, for instance) became a significant issue 
for practitioners. This increased interest in generality seems to have been promoted by a 
faith inspired by how the successes of Newtonian physics had brought order and unity into 
the conception of the physical world. Practitioners of the life sciences also had the aim of 
finding order in the living world. Like systematics, which we examined above, compara-
tive anatomy developed in new and more methodical ways within this context. These 
developments illustrate how ambitions of generality circulate between fields. However, 
they took various forms in different life sciences: Systematics and comparative anatomy 
developed, so to speak, in opposition to each other.17 This is where we return to Buffon.

Comparisons seeking to establish homologies were carried out on a large scale, and 
they showed what Buffon emphasized as the anatomical similarity of all living organisms. 
This led him to put forward for the first time a global interpretation of the meaning of 
this manifestation of generality. For Buffon, the global similarity derived from the fact 
that there had been a single “primitive and general design,” on the basis of which all 
living beings had been created by variation. Comparisons could show at the same time 
the variations in the application of the same design and also the “hidden resemblance,” 
which highlighted how the “Divine being” created. Clearly Buffon’s general entities differ 
strikingly from Linnaeus’. Likewise, Buffon’s program was an attempt to bring generality 
to the description of nature, but in a different way. In fact, Buffon pursued generality on 
different levels, which are in turn addressed in the general chapters distributed among 
the various volumes of the Histoire Naturelle.

Descriptions of animals were a key tool to achieving generality, and it had to be carried 
out in a specific way. This remark leads to a general conclusion, which we have already 
emphasized above: bringing to light a type of generality requires specific practices. Let us 
dwell here for a few lines on description in this context, as another practice of generality. 
Arbitrariness, Buffon emphasized, should be avoided as much as the excessive accumula-
tion of unorganized information. Buffon’s collaborator, Louis Jean- Marie Daubenton 
(1716– 1799), was commissioned to write the morphological and anatomical description 
of animals, from book III of the Histoire Naturelle onward, that is, from 1753. Generality 
appears to have been a key epistemological value inspiring his work. In a methodological 
chapter devoted to how description should be carried out, Daubenton makes clear how the 
method of complete description he advertises has “universal value.” He also emphasizes 
how comparison is, in his view, key to the description.

Instead of piling up facts without any hierarchy between them, he prescribes that 
description should rather put forward constant properties. Terms should be chosen to 
designate parts in such a way that the same term could designate parts of distinct animals 

17 Here and in what follows, in addition to Schmitt’s chapter in this volume, we rely on Schmitt (2010: 16–17, 
44– 54).
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that correspond to one other. In Daubenton’s words, one should proscribe “particular 
terms,” designating the “same thing” with different names, and promote instead “simple” 
and “universal” denominations. Clearly, the choice of terms is correlated to a systematic 
practice of comparison between animals.

The order of the description should also follow constant principles, in order to allow 
comparison: first describe the whole, and then the parts; first the external characteristics, 
then the internal organs, and only lastly the skeleton. In the first part of such a description, 
the position chosen for the animal to be described is systematically the same, both for 
the text and for the illustration. This practice went against previous standards, but was 
later adopted in zoology.

The inclusion of the anatomical part in the description was also meant to counter 
the practices of both those who merely observed and those who worked on systematics, 
on the grounds that they only remained at the surface of things. In Daubenton’s hands, 
anatomy was also conducted in a comparative way, inaugurating what soon after came to 
be known as “comparative anatomy.” To allow this comparison, the text of the description 
had to strictly follow the same structure. It also had to focus on elements essential to 
comparison, leaving aside the elements that brought nothing to the discussion of similari-
ties and dissimilarities. In this sense, the structure of the description was thus dictated by 
the program of comparison and the search for generality.

Specific animals were chosen as points of reference for the description of others.18 
This feature of the practice relates to the order adopted in the Histoire Naturelle to 
present animals. It also relates to specificities in the text of the descriptions: in his work, 
Daubenton identifies stronger similarities between some groups of animals as opposed 
to others. These divisions are made manifest by the fact that only the first animal in 
the division is described, the description of the others being abridged and turned into 
tables of numbers, thereby instituting an animal as “model.” These characteristics of 
the practice of description illustrate another way of taking the general into account. 
This form of generality is correlatively materialized in the overall structure of the text. 
This textual expression of a form of generality evokes what Jaëck describes with respect 
to Banach.

More broadly, Schmitt shows, the idea of generality captured by the concept of homol-
ogy between organisms was widespread in the second half of the eighteenth century and 
beyond, each author subscribing to a specific idea regarding its nature. Evolution did 
not derive from such developments, but as soon as the idea of evolution was adopted, it 
inspired an interpretation of the meaning of this form of generality, in terms of descent. 
Similarities were thus enrolled as arguments in favor of evolution, which conversely 
offered a totally new perspective on these similarities (their distribution and their mean-
ing). Archetypes became “common ancestors,”— a change in the underlying meaning. 
However, Schmitt emphasizes the work of bringing to light similarities— the practices of 
looking for the general— did not fundamentally change.

18 For this and other features of the practice of description and their relation to the purpose of comparing, 
see Schmitt (2010: 53– 57, 59– 60, 66– 68).
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We recognize a pattern similar to that sketched out above, with respect to systemat-
ics. Similarly, in the first place, geneticists attempted to get rid of homology, with the 
idea it was a superficial link between organisms. However, homology resurfaced at a 
genetic level. Unexpectedly, the same type of search for kinds of generality continued, 
even though in this case the reference of the term “homology” underwent a radical 
mutation.

1.2.3 Circulation between epistemological cultures

The two case studies examined in Section 1.2.2 both deal with long- term continuities in 
ways of approaching the general in the life sciences. In both cases, a single term (genre 
or homology) was used in the long term and embodies a type of generality being pur-
sued. How a concept of this type, introduced in a given cultural context, is appropriated 
into another requires a finer- grain analysis. This is the issue addressed in Part II.3, in 
Chapter 10, in which Tatiana Roque concentrates on concepts of “genericity” that were 
introduced into the study of dynamical systems and were constantly reshaped throughout 
the second half of the twentieth century.

Concepts of genericity are closely related to a type of general statement discussed 
above, the emergence of which, in mathematics, Robadey’s chapter documents. We recall 
that a statement of this kind typically asserts that a property P holds true for all objects 
in a domain D, except for a group of objects that can be “neglected.” It is thus not 
universally true, but true with a generality, the assessment of which requires mathematical 
work. Likewise, Roque studies a case in which the description and classification of all 
objects seems to be out of reach. Consequently, mathematicians settle for a classification 
of almost all objects. In fact, with this case, we return to Henri Poincaré, who is a key 
figure in our history.

Concepts of “genericity,” Roque argues, were brought into the theory of dynamical 
systems in relation to a research strategy adopted by a collective of mathematicians. In 
this respect, her chapter echoes Schmitt’s chapter, which describes the unfolding of a 
research program drawing on a shared hypothesis regarding general features living beings 
have in common.

Roque argues the strategy adopted in the study of dynamical systems relied on an 
essential a priori decision, that of not considering single systems in and of themselves, 
but sets of systems collectively. On this basis, the strategy consisted mainly of two key 
ideas. First, actors aimed to identify a collection of dynamical systems “large enough” to 
allow them to approximate, as closely as one might want, any dynamical system by one 
belonging to the collection. This defines a form of generality actors refer to as “genericity.” 
It requires introducing a notion of “closeness” between systems. This notion was shaped 
using techniques similar to those discussed in Jaëck’s chapter. Secondly, actors aimed 
to choose this collection of dynamical systems in such a way that it proved amenable to 
description. In this case, it meant that they were driven by the hope of possibly giving a 
classification to the systems in this collection in such a way that equivalent systems— in 
a sense of equivalence to be defined— would belong to a same class, and salient features 
would allow characterization of systems in any class.

 



24 Prologue: generality as a component of an epistemological culture

24

As Roque shows, the overall strategy, which relied in a crucial fashion on a type of 
generality and a method of bringing this generality into play, was in fact initially inspired 
by another mathematical domain, singularity theory. In that other domain, René Thom 
(1923– 2002) had followed the same strategy and introduced the term “generic” to refer 
to a collection of tractable geometric objects. The term “generic,” and the type of meaning 
it referred to, were not appropriated alone. We see in fact the importation of a notion of 
generality, in relation to a strategy, from one context into the other. From this remark 
derives an important conclusion: Seen from the perspective of the shaping of general 
entities and research strategies to use them, scientific cultures do not appear as closed 
cells. They are in conversation with each other and regularly appropriate not only ideas 
and results, but also concepts and ways of working.

In the case of “genericity,” Roque emphasizes the importance of the places (mainly 
Bures- sur- Yvette, Princeton, and Rio) in which, and the personal connections through 
which, the transfer was able to take place. Interestingly enough, this was not the first 
migration of the term “generic,” since Thom had borrowed the term, and the idea, from 
algebraic geometry, thanks to discussions with Claude Chevalley.19

While terms referring to forms of generality migrated from one domain to another, in 
fact their actual meanings were reshaped in each case to suit the new context of their use. 
Subsequent research on dynamical systems testifies to exactly the same phenomenon. 
Roque documents the stability of the epistemic tactics outlined above in the history of the 
theory of dynamical systems, from Poincaré to Smale. However, she shows how research 
along these lines regularly highlighted problems of two kinds.

First, actors hoped to establish the “genericity” of a collection of dynamical systems 
they were concentrating on, but failed repeatedly in their attempts. Situations of this 
kind led researchers to attempt to define the collection of reference in another way that 
would still be appropriate for the two tasks for which the collection was meant to serve. In 
other terms, they strove to redefine the reference of the term “generic.” These situations 
also led actors to attempt to identify which general phenomena had been overlooked in 
the shaping of the former collection. This inquiry focused frequently on “prototypes,” 
illustrating phenomena that had mistakenly been neglected: these objects illustrate other 
kinds of entities meaningful for a search for the general that actors introduce in some 
contexts. In relation to the work done to redefine the collection of dynamical systems, the 
salient features on which to concentrate also underwent transformations.

Second, actors frequently felt the need to rethink the concept of “genericity” they were 
using, in their attempt to define the representativeness of the collection of objects— or, 
alternatively, to define the negligible aspects of those outside the collection— in ways that 
could be better suited to the difficulty they were meeting. In other terms, they strove to 
reshape the concept with which to capture the general. Particularly important in this 
respect is the fact that in two different collectives, different sets of mathematical tools were 
explored. In the network that took shape around Bures- sur- Yvette, Princeton, and Rio, 
“genericity” was approached as it had been in singularity theory, namely, with topological 

19 On the history of concepts of genericity in algebraic geometry, see Schappacher (2010).
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tools. However, in the Soviet Union, around Andreï Kolmogorov (1903– 1987), prob-
ability theory, and accordingly measure theory, was favored to capture a similar idea 
in the study of dynamical systems. These tools were in line with those Robadey shows 
Poincaré used in his study of problems in celestial mechanics. This different approach 
soon circulated westward, and it proved to offer new opportunities, at a moment when 
the topological approach to representativeness seemed to meet with intractable problems.

Thus with evolution in research, and the changing range of phenomena being con-
centrated on, we see actors constantly reshaping the concept of generality with which 
they work, and its reference, in relation to the problems dealt with, what the research 
has shown about these problems, and the types of mathematical knowledge used in the 
definition of the concept. Further, the case studied by Roque illustrates a key fact: different 
collectives of actors sometimes shape generality in the same domain in different ways and 
with different tools. This is a phenomenon to which we return below.

1.3  Practices of generality

The previous sections have given insight into actors’ own reflections on generality as well 
as their shaping of concepts, statements, and forms of texts to express the general, refer to 
it, or work with it. Some of these tools, they inherit, rethink, or even reshape. Others, they 
simply invent in relation to the challenges they meet, or the project they set themselves. 
Poincaré’s enumerations and Daubenton’s descriptions are excellent illustrations of actors 
shaping of types of writing in this respect. Our analysis showed that these concepts, 
statements and forms of text are in most cases related to specific practices. Poincaré’s 
enumerations derive from how he deals with cases and how he intends to use them. 
Daubenton’s descriptions relate to how he organizes his naturalistic practice. Concepts 
of genericity are also meaningful in relation to a specific type of research program that 
relies on them. These examples show how the making of practices is a dimension of 
actors’ work, inseparable from other dimensions of their work. It illustrates more widely, 
we claim, how they shape ways of carrying out scientific activity.

Part III of the book brings practices linked to generality into focus, to examine them 
in the context of the scholarly cultures in which they can be observed. In addition to 
analyzing how actors dealt with the general using specific practices, we are interested in 
how they shaped these practices in relation to the issues they selected as meaningful, and 
especially how their results present correlations with the practices used.

1.3.1 Scientists at work

We have previously seen Leibniz, as a practitioner of philosophy and mathematics among 
other things, developing a reflection on the virtues attached to generality in mathematics 
and the forms the general could take. We have also seen how his specific understanding 
of generality was related to key facets of his philosophy. The first chapter (Chapter 11) of 
Part III, by Emily Grosholz, now focuses on how Leibniz’s reflection meshes with his own 
practice in mathematics. For this, Grosholz concentrates on the specific type of analysis 
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that Leibniz shaped, and she does so by considering one kind of mathematical object to 
which Leibniz devoted a great deal of effort: curves.

The contrast Leibniz draws between his own approach and Descartes’s analysis is 
telling. For Leibniz, Grosholz emphasizes, Descartes artificially restricted himself to a 
range of curves (the so- called “geometric curves,” to which we return below) to achieve 
universality for his method. This is not the first time we see an actor criticizing another 
actor’s practice of generality as artificially imposing boundaries on facts. We also return 
to these criticisms below. It is only in this context, Leibniz stresses, that Descartes’s 
analysis could proceed by a systematic and uniform reduction of problems. By contrast, 
Leibniz’s practice of generality develops in the context of specific situations, treated as 
paradigms, and aims to find patterns in them, or relating to them, that make them intel-
ligible. Connecting a curve to sequences of numbers, to other kinds of geometrical figures, 
including other curves, as well as to mechanical problems, all give ways of understanding 
the curve and highlighting its hybrid character. Taken separately or in conjunction, these 
patterns offer resources for solving problems about the curve. Further, they frequently 
appear to be shared with other problems and other mathematical objects, thereby yielding 
means of establishing bridges between the curve and other curves, or between problems. 
Conversely, establishing connections between curves or between problems, and thereby 
studying them in analogy with each other, allows that such patterns circulate and have 
an extended fruitfulness.

The general is thus approached, and dealt with, in the context of a particular— a 
particular that is treated in a general way. In this way of proceeding, the generality of 
the patterns highlighted is established by progressive extension. Patterns shared across 
contexts shed light on links that relate the different objects at the level of their intimate 
nature. This is how a search for generality of this type meshes with gaining understanding 
in all related contexts simultaneously. Clearly, a procedure of this type ascribes no a 
priori limit to the connections that can be built. Accordingly, Grosholz can assert that 
analysis, as practiced by Leibniz, lends itself to generalization. Generality is in this way 
explored not by abstraction, but by the analysis of the conditions of intelligibility of the 
paradigm, conducted in a never ending process. This description of Leibniz’s practice 
of generality powerfully evokes features of Poincaré’s practice outlined above, as well 
as a practice evidenced in ancient Chinese mathematical texts (Chemla, 2003). In all 
these cases, understanding appears to be the crux of the matter. Perhaps however, a finer- 
grained analysis of these practices would reveal differences in the choice of paradigms on 
which to focus, and the ways of using them. Leibniz appears to focus on what Grosholz 
calls “canonical objects.” Characterized by their simplicity, these objects become more 
meaningful with time, their canonicity being thus shaped through history.

Several features of Leibniz’s practice of generality present an interesting parallel 
with a practice identified in a completely different setting, which Darrigol analyzes 
in Chapter 12: Physicist James Clerk Maxwell’s (1831– 1879) use of analogy and, 
one could say, of “canonical” models. In this case too, generality is not an observers’ 
category. In 1856, Maxwell explicitly stated that a way of proceeding which he had 
opted for in his practice of physics aimed to “attain generality and precision,” while 
“avoid[ing] the dangers arising from a premature theory professing to explain the 
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cause of the phenomena.” The statement is striking, since it makes explicit how an 
actor clearly identifies several epistemological factors that are meaningful for him 
(generality, precision, avoiding the dangers arising from a premature theory). It further 
explains how Maxwell’s choice for a given practice strikes a balance between these 
three requirements.

Interestingly enough, as we mentioned at the beginning of this prologue, half a century 
later Pierre Duhem perceived a practice of physics like Maxwell’s as having given up 
“generality and rigor.” In opposition to a historiography of physics that has adopted 
Duhem’s view, Darrigol sets himself the goal of interpreting Maxwell’s own statement 
about his way of achieving generality. Noteworthy is Darrigol’s remark that whereas, for 
Duhem, abstraction was essential to the practice of generality, it was not for Maxwell. 
This clearly captures a key difference between the two practices, which also makes sense 
in other contexts.

To begin with, Darrigol shows how in 1856 Maxwell describes his shaping of a practice 
in physics as inspired by a fruitful analogy established by William Thomson (Lord Kelvin) 
(1824– 1907). Noticing a parallel between the search for thermal equilibrium and that 
of an electrical potential, which derives from structurally identical differential equations, 
Thompson had drawn conclusions based on a physical interpretation in the context of 
the former and stated, without further proof, the same conclusion in the latter. While at 
first sight Maxwell repeats a similar theoretical gesture as Thomson, the replacement of 
heat by a geometrical approach to fluid flows is not innocuous and goes along with a key 
feature of his practice of generality.

Indeed, Maxwell substitutes Thomson’s “analogy” with the establishment of an ideal 
mechanical model, which he then relates to three different physical situations. The ideal 
model is now what will embody the generality sought. In these three contexts, elements of 
the model are put in correspondence with concepts derived from experiments. Further, 
the three sets of physical phenomena can thereby mathematically be treated conjointly. 
This property of the dispositif illustrates one feature of Maxwell’s practice of generality. 
Interestingly enough, for Maxwell, staying only to the mathematical level would prevent 
the establishment of “connections” between the different situations— a benefit in terms 
of generality which thus in his view derives from his practice.

Darrigol then highlights how Maxwell’s practice of generality developed gradually in 
the subsequent years, gaining additional facets. The historian’s approach thus discloses a 
historicity in an actor’s practice of generality. In fact, the same remark applies to Jaëck’s 
discussion of Banach: his practice of generality changes in line with the change of meaning 
and status of the axioms he introduces. This general issue points out a most promising 
future research program. To return to the specific case of Maxwell, to a local use of the 
mechanical model as a tool to inquire further into various physical situations, he adds a 
global model capturing the mechanical nature of the whole range of phenomena dealt 
with in different domains. The fruitfulness of the “generality” of the practice is manifest 
through the unification between theories Maxwell achieves in this way. However, his 
awareness that many different mechanisms could be responsible for the “mechanical 
connections” uncovered leads him to add yet another facet to his practice of generality, 
when he attempts to capture the “general structure” common to all these models.
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The way in which Maxwell conducted this search led him to move from an assump-
tion of an underlying mechanical model to the general requirement that all these fields’ 
fundamental equations had to have a Lagrangian structure and involve mechanical vari-
ables of a generalized type. His multi- faceted search for generality thus led Maxwell to 
the identification of a highly general principle, inspired by one of his earlier methods 
of mechanical modeling. A key conclusion emerges from the case study:  it brings to 
light a correlation between Maxwell’s practice of generality, shaped to fulfill specific 
epistemological constraints, and his eventual introduction of a general principle, which 
incorporates features of this practice.20

1.3.2 A diachronic approach: continuities and contrasts

Practices of generality sometimes present a form of diachronic stability, despite the fact 
that they migrate from one context into a wholly different one. This is the key issue 
addressed by Jean- Gaël Barbara in Chapter 13, in which he focuses on a recurring practice 
of shaping general objects in the life sciences. The practice under consideration, he sug-
gests, is characterized by how it identifies objects through the converging approaches of 
several disciplines. Xavier Bichat (1771– 1802) is the first practitioner Barbara examines 
in greater detail from this perspective, and more specifically Bichat’s practice in what he 
called “anatomie générale.”

Bichat inherited from various practices of generality before him. To begin with, he 
inherited from (early) eighteenth century attempts to combine anatomical and physiologi-
cal approaches. These attempts manifest a transformation in the relationship between these 
two domains of inquiry. Prior to this, physiological studies had been based on anatomy. 
Anatomy highlighted general facts, on which practitioners relied to discuss the causes 
of the functions of the organs. In the eighteenth century, physiological discussions freed 
themselves from anatomy, and the actors likewise set out to identify general principles 
that might characterize living things as such. These reflections introduced the idea of, and 
quest for, “general physiological facts.” As a result, instead of having generality defined 
only by anatomical considerations, two different ranges of general facts could be brought 
together, and contrasted with each other, in the investigation. In that way, physiology was 
combined to anatomy, and did not only derive from it. Bichat followed such a trend and 
Albrecht von Haller’s (1708– 1777) investigations in particular. However, the specificity 
of Bichat’s approach lay in a systematic attempt to correlate general physiological facts 
with general anatomical facts. As a consequence, where for example, Haller had only seen 
one kind of tissue in a particular study, his cross- disciplinary approach allowed Bichat 
to subdivide it into three types, each type referring to a similarity in function and in 
pathological transformation. Tissues as “general objects” were born at the convergence 
between the two domains of inquiry.

20 This book does not systematically inquire into the reflections on, and practices with, principles in physics 
and beyond. This is, however, an important topic for a systematic study of generality. On this question, see, 
for instance, Seth (2006).
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Bichat also had the aim of achieving generality through his practice of observation. He 
expected that many repeated dissections would shape “clear and general ideas” through 
relying on the senses. Additionally, Bichat actively sought analogies between different 
observations. Barbara thus concludes Bichat combined two types of generality: the general 
as that which derives from similar observations; and the general as what occurs in different 
parts of an organism and is identified through the combination of features brought to 
light by different ranges of issues. Tissues are one such example.

Finally, Bichat’s valuing of generality has an immediate context. For the purpose 
of teaching anatomy, Bichat’s master, Pierre- Joseph Desault (1738– 1795), dissatisfied 
with the state of anatomical knowledge, which required large bodies of facts to be 
memorized, aimed to reorganize anatomical knowledge into chapters starting with 
general facts. Interestingly, teaching appears here as an activity, in the context of 
which the value of generality plays a key part. Moreover, we meet again with the 
correlation, encountered above, between valuing generality and aiming to alleviate 
the burden of memorization. Accordingly, Desault called for an “analytical surgical 
anatomy” in order to simplify and rationalize knowledge. Here, the term “analytical” 
likewise echoes a type of approach tightly linked with generality. We have seen above 
that Chasles likewise attempted to emulate it in geometry, for all the epistemological 
virtues he attached to it. We will soon return to this “analytical” type of approach in 
mathematics.

Bichat published Desault’s lectures after the latter’s death. Like Desault, after whom he 
taught anatomy in Paris, Bichat also promoted the quest for generality as an organizing 
principle in teaching. However, he took this task of importing analytical treatments into 
anatomy one step further, since he adopted the ideal in his own investigations. The transfer 
of generality practices from the activity of teaching to that of inquiry is noteworthy here. 
Bichat modeled his practice of inquiry on two complementary ideals, which he put into 
play using elementary practices of generality encountered above: looking for the right 
language that could provide an analytical tool, and looking for the elementary components 
into which to decompose reality and then to recompose it.

Tissues were precisely, in his view, the “elements” with which to carry out decom-
position and recomposition. Bichat’s project to classify them is in line with attempts at 
classification in natural history we have evoked above. In this context, Bichat follows those 
who value the use of a “natural method” and assumes the types of tissue identified are 
“real objects.” In fact, it is important for us to note that the specific practice of general-
ity for which Bichat opts, that is, approaching tissues from the perspective of different 
fields, appears precisely to be what grounds his conviction that these objects are real. In 
this respect, generality also constitutes for him what we have called an epistemic value.

Barbara suggests the practice of generality thereby defined was later appropriated by 
other scientists. He establishes his claim, by examining another practitioner’s approach 
to general anatomy: Louis- Antoine Ranvier (1835– 1922). It is to be emphasized that 
Ranvier focused on a level of inquiry different from Bichat’s, the microscopic scale, and 
he begins with another general hypothesis: the generality of the cell. At stake for him was 
to discover general structures, in the form of parts of cells and various types of cell. To 
achieve this goal, like Bichat, he also combined the different perspectives that anatomy 
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and physiology yielded on the same situation. For him, a combination of approaches of 
that kind likewise ensured that the objects identified were “real.”

The name that Joseph- Louis Renaut (1844– 1917) attributed to the practice in ques-
tion, which he described explicitly, captures its essence in an interesting way: “principle 
of converging methods.” In both cases, the key idea of the practice is the same. Ranvier’s 
references to Bichat seem to indicate, Barbara suggests, that Ranvier actually perceives his 
practice of defining general biological objects as being inspired by that of his predeces-
sor in the same field. By contrast, another case study, presented by Renaud Chorlay in 
Chapter 14, shows actors shaping practices of generality in opposition to that of their 
predecessors, which they reject.

We have evoked above how the practitioners who established projective geometry 
derived inspiration for their work from a careful examination of how “analytical” 
approaches brought into geometry types of generality that earlier geometrical approaches 
failed to achieve. The practice of generality in “analysis” that, among other geometers, 
Poncelet and then Chasles had observed in their reflections is precisely one of the three 
main practices on which Chorlay focuses. Investigating a classical corpus— that of the 
foundations of mathematical analysis in the nineteenth century— from a non- classical 
perspective— that of issues of generality— , Chorlay aims to capture key features of the 
scientific work bearing on generality, and related features, in what he refers to as three 
“epistemic configurations.” His strategy is to contrast how practitioners in these three 
contexts approached, and worked with, the notion of “function,” which had become   
the central notion in analysis from the mid- eighteenth century onward. The historical 
question of the foundations of analysis is usually investigated in terms of rigor, arithmeti-
zation, or set- theoretic thinking. Chorlay endeavors to show that questions of generality 
provide fresh and relevant interpretation frames.

For Joseph Louis de Lagrange (1736– 1813), whose Théorie des fonctions analytiques 
(1797) illustrates the earliest practice examined by Chorlay, the introduction to the 
notion of function assigns no strict boundary to the object. However, essential in 
Lagrange’s approach is a principle of representation of a function by a form of develop-
ment holding true uniformly for all the functions dealt with. Faithful to his practice of 
analytical treatment, in a sense already encountered above, Lagrange derives from this 
principle the whole “calculus of functions.” The way in which the development “holds 
true” for a function in particular also characterizes Lagrange’s work with generality. 
It holds true with full generality at the level of the form, granted that when concrete 
values are given to variables, the representation sometimes fails to have any meaning. 
Actors refer to this way of dealing with the general as deriving from the “generality 
of algebra.” Chorlay adds a description of how Lagrange captures singular cases by 
means of carefully designed examples, which are the simplest cases able to exemplify 
the phenomena.

It is this practice of generality, from which geometers like Poncelet and Chasles drew 
inspiration. As Chorlay emphasizes, it is also this practice that in Analysis Augustin Louis 
Cauchy (1789– 1857) criticized as mere “induction,” and against which he established 
a new practice of generality. Interestingly enough, as Chemla’s chapter recalls, in 1820 
Cauchy wrote a negative report on a memoir in which Poncelet introduced the “principle 
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of continuity” into geometry, to emulate how analysis achieved generality. In this report, 
Cauchy addressed exactly the same criticism to Poncelet’s principle. From the perspective 
of generality, we thus see how practices circulate from one culture to another. Cauchy’s 
criticisms show how an actor perceives this circulation quite clearly. This remark sheds 
new light on Cauchy’s criticism of Poncelet’s principle. We also see how new practices 
are explicitly designed in opposition to earlier ways of handling generality. Whereas in the 
earlier context, uniformity was highly valued, in the later context, generality was redefined 
in relation to the valuing of rigor.

Cauchy’s criticism paved the way for the shaping of the second “epistemic configura-
tion” Chorlay examines. In this second context, the notion of function does not have 
strict boundaries either. However, new types of statement appear, explicitly formulating 
conditions on the functions as well as on their variables for a proposition asserted to be 
true. They derive from a new form of proof in analysis, which examines the conditions 
required for each step in the proof to be valid. Chorlay thus highlights a correlation 
between the conduct of proof and the form of general statements formulated. These 
statements set limits to the extension of the group of functions for which the proposition as 
established holds true. Moreover, for given functions, these statements also have the aim of 
defining the class of values of the variables, for which a proposition can be asserted. This 
type of inquiry will be instrumental in the later development of set theory. The practice 
of generality in this second context thus appears to be closely related to other features of 
the “epistemic configuration.” Chorlay further emphasizes how in this context, a new use 
of examples emerges: singular functions are shaped as counterexamples, used to explore the 
limits of validity of propositions. This new practice would be of tremendous importance 
for analysis in subsequent decades.

The third “epistemic configuration” Chorlay analyzes presents several features of 
wider relevance for our inquiry. In this context, the approach to the notion of function has 
been entirely renewed. However, in line with the systematic exploration of the conditions 
of validity of statements, a new feature in the practice of generality has appeared: the 
classification of functions into classes. Accordingly, the statement of a theorem makes 
clear for which class it can be asserted. Further, late- nineteenth- century actors like Borel 
developed an interest in comparing the relative generality of a class with respect to a 
larger class in which it is contained— what Chorlay calls “embedded generality.” Chorlay 
emphasizes how various types of mathematical means are put into play, and even shaped, 
to carry out this new task in a precise way. Depending on the purpose, the means cho-
sen to assess the generality will differ. Moreover, Chorlay shows how in analysis new 
practices of proof emerge, which made use of these assessments of generality to conduct 
a reasoning. We have already seen how Robadey’s chapter documented the emergence 
of a form of statement and proof of this kind in Poincaré’s work. Chorlay’s case study 
thus shows how mathematical work was carried out to develop further means to achieve 
similar ends. Finally, this type of reasoning pinpointed by Chorlay will precisely be, as 
we have seen above, an essential ingredient in the deployment of the study of “generic” 
cases, examined by Roque. Seen from the viewpoint of generality, history of science thus 
displays circulations, between contexts, not only of concepts and statements, but also 
of reasoning and other practices relying on a type of generality, or aiming to achieve a 
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generality of a certain kind. It also evidences explicit disagreements between actors. They 
are topics essential for our inquiry.

1.3.3 A synchronic approach: controversies

Several case studies already mentioned evoke actors’ criticisms of predecessors’ practices 
of generality and their ensuing adherence to another, possibly new, practice (Leibniz 
criticizing Descartes, Cauchy criticizing Lagrange, and Duhem criticizing Maxwell). 
These episodes provide extremely useful evidence for an approach like ours, which aims 
to identify how actors shaped modes of expression and practices of generality in different 
contexts. Likewise, disagreements and debates on these matters are very interesting for 
the differences among cultures of scientific practice they reveal in this respect. We have 
already evoked a disagreement of this kind, between Linnaeus and Buffon. Their conflict-
ing approaches to the general yielded quite different scientific outcomes, both meaningful 
from the viewpoint of present- day biology. This part of the book examines more closely 
three other disputes of that kind, the first of which takes us back to seventeenth- century 
geometry.

In his survey of the history of geometry from the viewpoint of the value of generality, 
Chasles stresses the seventeenth century as a turning point. One of the key facts he brings 
forth is the introduction at that time of a specific type of general procedure, namely, 
a “method,” which allowed practitioners to deal with different objects uniformly, and 
accordingly connect the objects as well as the propositions established about them. Barbin’s 
chapter (Chapter 15) takes a closer look at an episode that clearly illustrates Chasles’s 
thesis, while shedding interesting light on differences between actors in this respect.

The episode occurred in the 1630s, and it is related to the problem of finding tangents 
to curves. What matters most for us here is that it gave rise to a controversy, in which the 
main protagonists were led to make their views explicit on what a general method should 
be and how it should be shaped. We can thus observe actors’ shaping of their practice in 
the making. The main protagonists, Descartes and Pierre de Fermat (early seventeenth 
century– 1665), both clearly valued general procedures, whose power extended beyond 
the treatment of single cases. They each designed a general method for the general prob-
lem, but they did so in different ways, echoing the fact they used different categories to 
describe them.

Descartes referred to his method for finding tangents as “universal.” Accordingly, he 
explicitly defined the range of curves to which it applied: the curves he called geometrical, 
in relation to the fact that an algebraic equation could be attached to them. Descartes’ 
method relies precisely on the equation and follows a uniform procedure to exhibit the 
tangent. It could thus be used equally for all these curves, but only for them: the frame-
work was fixed in advance— we have evoked Leibniz’s criticism of what he perceives as 
artificial in this procedure. Interestingly enough, although Desargues had a completely 
different approach to curves, he shared key features of Descartes’s practice of generality. 
As Chasles emphasizes, Desargues also devised uniform ways of defining conical sections 
and accordingly developed uniform reasoning that could establish related properties of 
different curves in exactly the same way. He too described his approach as “universal.” 
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Despite differences between Descartes and Desargues in the approach to curves and 
the way of dealing with them, Barbin shows that Desargues expressed his support to 
Descartes in the controversy. The conception and the practice of the general is what the 
two practitioners share in this case.

Fermat’s way of proceeding to approach the tangent problem stands in contrast to 
this practice of generality. His own practice displays a general method in the context 
of a specific problem. We have already encountered procedures of this type several 
times above. Yet Fermat’s practice is specific: his presentation of the general method 
in context establishes connections at a higher level between the method and another 
general method, associated to his name:  that of de maximis and minimis. Further, 
Fermat’s practice of generality consists in unfolding the potentialities of the general 
method, through extension and adaptation to different cases. Fermat does not set limits 
to the group of curves to which the method can apply. As a result, its power extends 
beyond the set of curves to which Descartes had from the beginning limited the scope 
of his method. In correlation with this “open” feature— to use the term introduced by 
Jaëck, which proves relevant in this context too— , Fermat does not consider it to be 
a priority to highlight the foundations of his method. The controversy with Descartes 
will compel Fermat, and also Roberval who sides with him, to formulate explicitly 
their views on what grounds the generality of a method. In conclusion, the episode 
nicely illustrates how actors shape general objects and general modes of proceeding 
in different ways. What is more, these different practices of generality mesh with, for 
example, different approaches to curves and different ways of working with them, and 
different working techniques to deal with equations. The type of generality pursued is 
also correlated with the emphasis on other epistemological values and goals. Whereas 
for Descartes, the uniformity of the procedure matters, for Fermat, the achievement 
of an ever broader or higher generality appears more meaningful. We have chosen to 
refer to such ways of doing mathematics, characterized by features of this kind, as 
“epistemological cultures.” This example illustrates how, even when actors operate 
at the same time, on the same objects and the same problems, the epistemological 
cultures, in the context of which they are active, differ. Accordingly, in each context, 
the value of generality displays different forms.

A similar conclusion emerges from the account Frédéric Brechenmacher gives in 
Chapter 16 of the Jordan– Kronecker dispute in the 1870s, which we evoked in the intro-
duction to this prologue. The conflict breaks out as a priority dispute. What is important 
for us is that in this context, the actors perceive that part of the dissension relates to 
how they practice generality. This leads them to make explicit how they believe general-
ity should be pursued. As Brechenmacher makes clear, Jordan in Paris and Weierstrass 
and Kronecker in Berlin have developed different approaches to a subject (what we 
understand today as the various types of reduction of matrices). They grasp that their 
results relate to each other, since they address problems deriving from the same tradition. 
However, they struggle to understand fully the relationship between their results. We 
will focus only on what the dispute tells us about our main topic, that is, the competing 
practices of generality at play in mathematics at the time and the distinct epistemological 
values actors associate to them.
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As we recalled in the introduction to this prologue, Kronecker’s formulation of how 
he understands the difference between the two practices of generality can be interpreted 
as a rejection of an old practice— that of a “generic reasoning”— in favor of another one, 
introduced by Weierstrass a few years before, and prized for its rigor. Kronecker criticizes 
Jordan for a reasoning that only aims to solve a problem in general, and does not care 
about exceptions where the reasoning fails to apply. This was in a nutshell the criticism 
Cauchy, before Weierstrass, formulated against an earlier way of proceeding in math-
ematics. The historiography of mathematics has strongly emphasized these episodes as 
testifying to the development of rigor throughout the nineteenth century. For Kronecker, 
Jordan’s approach is thus not truly general. However, it would be mistaken to believe that 
Kronecker’s goal in this case is limited to achieving a greater certainty. Incidentally, if 
such were the case, the demand for generality would only be a superficial requirement 
and would not touch the substance of the matter.

In fact, Kronecker’s demand of a full generality can be interpreted only if we associate 
it with the other value that gives meaning to it, that is, uniformity of the reasoning. Indeed, 
the fully general reasoning Kronecker expects does not only deal with all cases, but it also 
deals with them uniformly. In his view, the singular cases, for which a reasoning fails, are a 
precious indication that the practitioner’s understanding has not yet reached the crux of 
the matter. They point to “the real difficulties of the study,” and their dissolution, which 
is carried out only when the “true generality” has been achieved, is a criterion indicating 
that one has obtained a deeper understanding of the subject and discovered “the wealth 
of new viewpoints and phenomena which lie in its depths.” The generality envisioned is 
an epistemic value: it appears to be a guide toward the essential features of a situation. 
The butt of Kronecker’s criticism is thus not merely rigor. Kronecker’s practice, like 
Weierstrass’, also requires that problems be solved with effective means of computation. 
The urge to develop such means leads them to opt for an approach in terms of arithmetic 
invariants, that is, one figure of generality in mathematical terms. Accordingly, Kronecker 
criticizes Jordan’s approach for its lack of effectiveness.

Jordan, for his part, manifests another perception of generality. The key other value 
that he correlatively prizes is simplicity. In his eyes, the Berlinese’s computations are hard 
to understand and lack the simplicity of his approach. Accordingly, Jordan develops a 
mode of reduction of the objects involved into simpler pieces. In addition, these pieces 
are of the same kind as those analyzed, which embodies another figure of generality 
in mathematical terms. For Jordan, an approach of this kind allows the practitioner to 
“see” what is happening. When he defines his own general approach, simplicity and the 
possibility of understanding in similar terms appear to be guiding values. Further, from 
his perspective one virtue of this approach by reduction is that it highlights the relation-
ship between problems that were understood as different and yields related solutions to 
them: generality in this context also takes the form of unifying a wider set of problems. 
From Kronecker’s perspective, although the existence of the reduction is established, 
Jordan’s approach to the problem is flawed, since it makes the actual exhibiting of this 
reduction impossible for theoretical reasons.

Brechenmacher’s analysis thus highlights that in the two situations generality belongs to 
different complexes of values, and it is correlatively understood in different terms. These 
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features can be further related to the fact that actors favor different types of procedures, 
choose different foci for mathematical research, and in the end obtain different kinds of 
results.

The two studies of disputes examined so far took place within the framework of the 
same discipline. Even when actors work on the same object (curve), or the same problems 
(which we interpret as matrix reduction), practices and ideals, goals, and values differ. In 
this context, the ways of understanding and practicing generality also differ. The same 
conclusion derives from Evelyn Fox Keller’s analysis in Chapter 17, which is devoted 
to practices of generality in the context of two different disciplines, namely, physics and 
biology. More precisely, her study begins by examining a case in which actors belonging 
to these two fields diverge in their appreciation of what a general treatment of a biological 
problem should be.

The episode takes place in 1934. Physicist Nicolas Rashevsky (1899– 1972) presents a 
piece of research to biologists, in which he attempts to derive features of the phenomenon 
of cell division from a model in which he assumes some physical forces being applied to 
an idealized, and simplified, cell. For him, the cell that is the basis of his work is a model. 
It is a tractable simplification of the object. Rashevsky thereby puts into play a common 
practice in physics, which aims to capture the mechanism accounting for a phenomenon. 
In the context of a practice of this kind, the (re- )production of a given phenomenon, using 
a few factors that might be at play in a situation, is perceived to provide an explanation 
of the phenomenon. Such a result suggests a distinction between factors that seem to 
matter and those that are irrelevant with respect to the phenomenon under considera-
tion. Moreover, the simplicity of the model is itself perceived as an argument in favor of 
the possible generality of the mechanism. With these few elements, Fox Keller sketches 
features of the epistemological culture in which Rashevsky usually works. They include 
practices of research and epistemological factors, in this case, ideals of understanding 
and values. For the biologists who hear Rashevsky, his ideal cell is not interpreted as a 
model, but as a cell. As a result, in their views, the import of his results is completely 
different. For some, what Rashevsky talks about simply does not refer to any living 
organism: this cell does not exist. For others, his results are fine, but have no generality, 
their validity being restricted to the special case dealt with. Since the cell fails to take into 
account the fine details of the general cell, there appears to them to be no way in which 
the result can be generalized. Its relevance is minimal, if not insignificant. Through her 
study of the episode, Fox Keller captures the diverging expectations entertained in the 
two contexts with respect to generality, and she suggests this divergence partly accounts 
for misunderstandings that develop on the two sides of the disciplinary boundary.

These observations lead Fox Keller to concentrate on the subject matters dealt with 
in the context of the two disciplines. By contrast to the phenomena on which physicists 
concentrate, taken to be the products of logical and physical necessity, the properties 
of biological organisms (the objects biologists study) are never static, shaped by the 
inherently contingent nature of evolution. Clearly, this key difference between the subject 
matters implies that generality cannot present the same features in the two contexts. Fox 
Keller asks, what then are the forms generality can take in the life sciences, if one takes 
this key feature into account? She draws on resources provided by the history of science 
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to offer some quite innovative suggestions. Her reflection thus illustrates the resources an 
inquiry like that presented in this book could offer for practicing scientists.

What is more, the conclusion Fox Keller derives from her observations has a validity 
that extends far beyond the case study on which she focuses in Chapter 17. Indeed, 
she stresses that, if the epistemological cultures on which she concentrated present 
notable differences, this is due in particular to the specificities of the subject matters 
they deal with. This yields support to, and also accounts for, the thesis we have repeat-
edly emphasized: collectives of actors shape their ways of doing research in relation to 
the questions they select as being meaningful. Fox Keller draws our attention to the 
fact that, in this process, the subject matter with which they struggle does play a key 
part, not least for us in contributing to the determination of forms of generality that 
are meaningful.

1.3.4 Circulation between epistemological cultures

We have set our inquiry into the value of generality in the context of epistemological 
cultures, emphasizing how depending on the context, different ways of shaping generality, 
interpreting this value, and working with it have been devised. However, the various case 
studies have regularly evidenced that these scholarly cultures are not worlds closed to 
one another. We have seen resources introduced in the context of one appropriated by 
another. This is a conclusion holding true more generally. We have seen how it is also valid 
with respect to an epistemic and epistemological value like generality.

In the final chapter of Part II (Chapter 10), we have examined a case where a concept, 
that of “genericity,” was borrowed from one context to be adapted and used in another. 
Moreover, the concept was not adopted alone. It was used in relation to a collective 
research program whose broad outline was similar to the strategy followed in the former 
context. Likewise, the final chapter of the book (Chapter 18) highlights a striking case 
of appropriation of a practice of generality, shaped in a given epistemological culture, 
into a new culture. This case again displays the porosity of these cultures with respect 
to one another, precisely for the epistemological factors that are the focus of our book. 
The circulation in question had remained so far unnoticed. It was brought to light in 
the context of our collective research. Its significance illustrates the benefits that can be 
derived from the systematic study of a value like generality.

The case in question is Ernst Kummer’s (1810– 1893) introduction of the notion 
of ideal numbers into higher arithmetic, which represented a turn in the history of 
the concept of number as well as in the history of number theory. In this last chapter, 
Jacqueline Boniface describes the context in arithmetic, in which this innovation took 
place. Kummer’s work followed in the path opened by Carl Friedrich Gauss (1777– 1855), 
when the latter introduced into ordinary arithmetic the entities now called “Gaussian 
integers” (namely, a type of imaginary number). In 1811, Gauss had justified the intro-
duction into analysis of imaginary magnitudes, by considerations of generality: for him, 
they had the virtue of bringing into the field a general and uniform validity for truths. In 
1825, he further advocated the admission into higher arithmetic of “Gaussian integers” 
for the generality and simplicity they allowed him to introduce to the theory.
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Kummer follows this direction, when, as Boniface explains, he forms the project of shap-
ing a new form of arithmetic for “complex numbers” (with a specific meaning he gives to 
the expression), in analogy with ordinary arithmetic. His key idea is a hypothesis related to 
generality, since he assumes that the fundamental theorem of arithmetic, which asserts the 
unique decomposition of an integer into prime factors, should hold in that other domain.

Kummer introduces ideal numbers, in addition to imaginary numbers, as the entities 
necessary to ensure the uniform validity of that fundamental theorem for the class of 
“complex numbers” he studies. The introduction is thus premised on the idea that “com-
plex numbers” ought to present the same properties as integers in ordinary arithmetic. 
The failure of some “complex numbers” to satisfy this fundamental theorem is felt as an 
“anomaly” to be eliminated. Ideal factors are thus introduced to give the fundamental 
theorem a full generality.

To capture the ideal factors, Kummer proceeds through identifying the adequate 
properties of the usual factors that could hold for the ideal factors. Noteworthy is the fact 
that Kummer, precisely like Chasles in relation to his “principle of contingent relation-
ships,” distinguishes here between permanent and contingent properties of numbers. 
He suggests that the properties that do not hold uniformly should be discarded in favor 
of those that are permanently valid for all numbers, ideal or not. This remark points to a 
close parallel between Kummer’s reflections and what, as we have seen above, occurred 
in the context of projective geometry, in fact only a few years earlier. This observation 
leads us to notice that the term “ideal,” which Kummer chose to use to refer to the new 
entities, also evokes projective geometry: Poncelet had introduced the concept of “ideal” 
into geometry in relation to his “principle of continuity.” This principle, as we mentioned 
above, was introduced precisely to guarantee that the purely geometrical treatment of 
geometrical configurations has the same generality as the analytical treatment. It was this 
principle that Chasles reformulated using his “principle of contingent relationships” and 
the related concepts. Is this mere coincidence? As Boniface mentions, in the publication in 
which Kummer introduces his ideal numbers, he explicitly compares them to geometrical 
ideals, referring to ideas developed in the context of projective geometry.

If we observe the correlation between the two domains more closely, we see that 
Kummer borrows the term “ideal” from Poncelet. However, Kummer’s interpretation 
of the related elements follows Chasles’s approach and analysis, as formulated in his 
“principle of contingent relationships” discussed in Chapter 2 of this book. Chasles did 
not want to adopt the terminology of “ideal elements.” It thus appears that Kummer 
somehow makes a synthesis between various means, shaped to introduce generality in 
the context of projective geometry. What circulated between the two contexts was a 
dispositif for mathematical work, associated with a hypothesis on the nature of ideality as 
well as a conception of proof, all deriving from an emphasis placed on generality. The 
philosophical analysis of some principles, carried out by the practitioners themselves, 
yielded a diagnosis regarding the means of bringing generality to a field. This diagnosis 
allowed the importation, into other domains of mathematics, not of results, but of practices 
linked to generality. The conclusion indicates how the influence of projective geometry on 
subsequent mathematics needs to be approached in a broader perspective and especially 
in relation to the reflection on the value of generality which it promoted.
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We see how valuing generality leads to introducing homogeneity through the introduc-
tion of, in the first place, new relations, and, later on, of new elements. And we see that the 
techniques for doing so circulated from one domain of mathematics into another, before 
becoming a “general method” beyond the boundaries of any domain, like the “method 
of ideal elements” devised by David Hilbert (1862– 1943).

1.4  Conclusion

The exploration of generality carried out in this book could certainly have been broader. 
Indeed, many chapters in the history of science that might look essential for an inquiry 
like ours were left aside.21 Accordingly, many practices of generality were hardly evoked. 
In particular, practices of generality that were given pride of place elsewhere were evoked 
only tangentially here. We think, for instance, of the many studies that have analyzed the 
use of laws, cases, or models, in scientific activity. As we explained at the outset, we did 
not aim at exhaustiveness.

We have placed our collective study of generality under the auspices of a more global 
project that aims to understand the part played by values in scientific practice and 
knowledge. With this term, we did not mean economic value, or value defined in terms 
of usefulness, or even ethical values, even though these other values are certainly also 
important topics of research.22 Instead, our project aimed at contributing to the effort of 
making sense of how actors opt for ways of knowing and shape them, and which difference 
it makes for the knowledge thereby produced.

This facet of scientific activity has appeared as significant in the last decades and 
prominently so when historians and philosophers like Thomas Kuhn (1922– 1996) have 
attempted to account for the choice among theories in view of the underdetermination 
of theories by evidence.23 Values then appeared useful as tools that could help us to 
understand what it meant that there can be “alternative roads to knowledge,”24 or why 
dissensions over knowledge sometimes could not be solved.25 As a contribution to this 
emerging field of research, we have chosen to illustrate how a value— in our case, general-
ity, which from early on has seemed to be inseparable from scientific activity— could be 
explored in relatively great detail in a historical and epistemological fashion.26 In contrast 
to Kuhn, however, the scale at which we have worked was not that of a whole theory, but 
that of a smaller scale of scientific practice.

21 The reader will find additional studies in the book edited by Hagner and Laubichler (2006), which com-
plements ours in many respects. Mathematics is not dealt with in this other volume, whereas more weight is 
put on human and social sciences.

22 As is clearly illustrated by Putnam (2002), a reflection about any type of value is likely to yield insight for 
the study of other types.

23 Kuhn (1977). Note that by bringing “the scope” of a theory into focus, Kuhn touches a value that has 
relationship with generality as discussed in this book.

24 Carrier (2012: 242).
25 Laudan (1984).
26 In this respect, our project is part of another research program, which is thriving again and in many ways, 

after decades of quasi dormancy, namely, historical epistemology.
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This exploration has suggested that in different contexts the valuing of generality had 
been related with different goals. In relation to this observation, we have suggested distin-
guishing between epistemic values and epistemological values. We have also emphasized 
the variety of ways of stating the general, and the variety of general entities shaped. We 
have further brought into focus the fact that various ways of pursuing generality could 
lead to different types of knowledge— to mention but one example, knowing in terms of 
invariants as opposed to knowing in terms of elementary building blocks. In brief, the 
meanings that generality has taken even in the same domain, and even for a single analyst, 
are multi- faceted.

Probably, generality has thereby appeared to be an even more complex value than it is 
usually assumed to be. Two facts are important in this respect. Generality does not assume 
a uniform meaning across all the “scientific community” at a given time.27 Nor does it 
simply vary from individual to individual. We have rather suggested that the meanings 
and practices of generality would be better studied as collective facts, shaped in different 
ways in the context of different local epistemological cultures. In this way, we can account 
for shared specificities with respect to its pursuit, as well as for controversies that were 
fought, at least partly, in its name— like those between Fermat/ Leibniz and Descartes, 
or Kronecker/ Weierstrass and Jordan, and between physicists and biologists working on 
embryonic development. Yet, this conclusion does not mean that the cultures identified 
were impervious to each other in this respect.

On the contrary, distinguishing between local contexts allows us to highlight that 
not only results and concepts, but also ways of shaping general entities, ways of think-
ing about generality, ways of achieving the general, and research programs based on a 
way of approaching generality, circulate from one culture to another. With, for instance, 
Roque’s case study, we have seen examples of such circulation occurring diachronically. 
With the case of number theory and Kummer, as studied by Boniface, we have also seen 
circulation occurring synchronically. Finally, with Barbara’s case study, both synchronic 
and diachronic forms of circulation have been evidenced.

One could formulate the same remark in a different way. We have highlighted the 
scientific work that is involved in the making of general entities and general practices, 
and in their forms of interpretation. This is one way of illustrating the general claim that 
actors shape scientific cultures, and put knowledge into play to this end. The results of 
this work circulate in exactly the same fashion as the results of other facets of scientific 
work. As a consequence, the history of the shaping and practice of generality appears to 
have been non- linear, showing patterns of differentiation between scientific cultures, as 
well as circulation among them, and synthesis.28 These are the unexpected lessons that 

27 Daston and Galison (2007) can be read as another historical and epistemological study of an epistemic 
value, namely objectivity. They themselves place their inquiry in the context of an exploration of “epistemic 
virtues.” This option leads them to bring into focus the history of the making of the scientific practitioner. 
A key difference between their endeavor and ours is that they are interested in a historical account of the shap-
ing of modern notions of objectivity, which they take to be linear, whereas we emphasize the diversity of ways 
of understanding and practicing generality in the context of different contemporary epistemological cultures.

28 In this respect, our assumptions and our conclusions differ from those presented in Daston and Galison 
(2007).
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derive from considering, like Chasles, but with a wider focus, the history of science from 
the perspective of generality.

Another fact of tremendous importance has also appeared throughout our study. We 
have noticed recurring practices of generality in contexts that at first sight seem to have 
been far removed from each other. This is the case, for instance, of the choice of working 
with, and exploring, the general in the context of a paradigm, which we have emphasized 
can be evidenced in ancient China, in Leibniz’s practice as well as in Poincaré’s.29 This 
remark suggests that there could be basic modes of working with the general, whose 
identification remains a task for the future. It strikes us that a study like that presented in 
this book is an indispensable basis for such a research program to be possibly developed.

Similarly, the various case studies have shown that generality was often valued in   
combination with other values. In different contexts, we have observed different constel-
lations of values. Yet some recurring associations have emerged, like the simultaneous 
valuing of generality and simplicity. Again, this remark calls for a systematic inquiry into 
the key reasons for the recurrence of similar constellations of values. Here too, historical 
and epistemological fieldwork about values like simplicity, rigor, or fruitfulness is a pre-
requisite for such an inquiry to become genuinely possible.30 This is a research program 
whose development we call for, and to which we hope this book will contribute.
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2

The value of generality in Michel 
Chasles’s historiography of geometry

KARINE CHEMLA

2.1  Introduction: contexts and goals of   
the Aperçu historique

In 1837, Michel Chasles (1793– 1880), a former student of the Ecole Polytechnique and 
an already well- known geometer, published his Aperçu historique sur l’origine et le dével-
oppement des méthodes en géométrie, particulièrement de celles qui se rapportent à la géométrie 
moderne, suivi d’un mémoire de géométrie sur deux principes généraux de la science : la dualité 
et l’homographie. 1 In the book, the issue of generality in geometry, which already comes 
to the surface in the title, was central. Chasles’s introduction made this clear right at the 
outset in presenting the project of the book.

1 Chasles (1837). The title can be translated as General historical survey of the origin and development of 
methods in geometry, in particular of those that relate to modern geometry, followed by a memoir of geometry on two 
general principles of that science, that is, duality and homography. Two further editions of the book appeared in the 
nineteenth century. The third edition (Chasles, 1889), prepared posthumously by Catalan in 1889, is the most 
widely available. Contrary to what the title page claims, there are differences between the first and the third 
editions. My quotations and references rely on the first edition. I will also indicate differences between the edi-
tions, when they are relevant for my purpose. Each chapter of the book is divided into numbered sections, and 
I will also refer to the section numbers. Koppelman (1971) and Raina (1999) provide elements on Chasles’s 
biography. Kötter (1892) yields an evaluation of Chasles’s geometrical contributions, including the Aperçu 
historique. The first version of this chapter was written in early 2008, after presentation in the seminar we 
organized on the topic as well as in other venues. It is a pleasure to thank my different audiences as well as the 
research group that took part in the project of the value of generality and prepared this book for their remarks 
and suggestions. I would like to thank in particular Renaud Chorlay, Massimo Galuzzi, Emily Grosholz, Ken 
Manders, and David Rabouin for criticisms that helped me improve this chapter. Needless to say, the remain-
ing flaws are my sole responsibility. This chapter was completed while I  benefited from the support of a 
Chinese Academy of Sciences Visiting Professorship for Senior Foreign Scientists 外国专家特聘研究员, grant 
number 2009S1- 34 (Beijing, 2010). John Mumma has most generously offered his help to complete the elabo-
ration of this paper. I have pleasure here in expressing my heartfelt gratitude to him.
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At first sight, the reader may be tempted to believe that the purpose of the Aperçu 
historique was mainly historical: Chasles aimed at giving a sketch of the development 
of ideas in geometry. Yet, as is well known, Chasles added notes to the main text, some 
historical and others presenting new results.2 In fact, in the book, mathematics and history 
were combined as two kinds of tools useful in achieving a single aim. Chasles’s introduc-
tion formulated this aim, while explaining why he added notes with new mathematical 
results. He wrote:

These (notes) would not seem essential, if one envisaged only the historical aim of our 
work. However, through relating the course of Geometry and presenting the state of 
its recent discoveries and doctrines, we mainly had in view to show, by means of some 
examples, that the main characteristic of these doctrines is to bring to all parts of the science 
of extension a new ease and the means to achieve a kind of generalization, so far unknown, 
of all geometrical truths. This feature had also been the characteristic feature of analysis 
when it was applied to Geometry. We shall thus conclude from our general survey that the 
powerful resources that Geometry has acquired in the last thirty years or so can be compared, 
in several respects, with the analytical methods, with which this science can now compete, 
without being disadvantaged, in quite a large range of questions.

This idea will be reproduced, shall we say justified!, in many places of this writing, since 
it constitutes its origin and it never ceased to guide the lengthy research that the historical part, 
the Notes and the two memoirs that compose this book have required.3

The mathematical notes bear witness to the fact that, for Chasles, the book had a 
goal beyond its historical import. The historical and the mathematical developments 
it included derived from the same intellectual effort and were geared toward the same 
aim: bringing to light how the recent advances in geometry allowed the strictly geo-
metrical methods in this domain to rival the analytical approach to geometry, which had 
dominated the field in the previous two centuries. The “resources” recently “acquired” 
by geometry, as we shall see shortly, referred to new developments that led to the 
emergence of projective geometry and were associated, among others, with the names 
of Monge (1746– 1818), Carnot (1753– 1823), and Poncelet (1788– 1867). Further, 
Chasles was also referring to his own contributions in the notes and the Mémoire, 
introduced by a sixth and final chapter entitled: “Object of the memoir.” In other words, 
the Aperçu historique constituted a plea in favor of the new geometry, based on history 
and mathematics. Moreover, right in the introduction, Chasles identifies a key reason 
for this status that, according to him, had been gained by geometry: the new doctrines 
provided various means to “generalize,” whereas generality had long been deemed the 
privilege of “analysis.” Generality, and the related property of simplicity, are Leitmotive 
in the whole book.4

This theme was by no means new. Monge, Carnot, Poncelet, and other geometers 
of the early nineteenth century in France were all puzzled by the same question: from 

2 Chasles (1837: 2). The genesis of the book accounts for this mixture.
3 Cf. Chasles (1837: 2). My emphasis.
4 See, for instance, Chasles (1837: 47, Section 42).
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Descartes’s works onward, analytical methods brought about important developments 
in geometry. Why did purely geometrical methods not yield the same results? These 
geometers constantly pondered the question. Their diagnosis identified the generality 
that analytical methods provided as the key property that made the difference.5 Their 
reflections thus mainly bore on the means with which to introduce generality in geometry 
proper. Projective geometry emerged as a result of this effort. Moreover, these geometers 
turned more and more often to history to find resources for their investigation, as is 
amply illustrated by the introduction to the Traité des propriétés projectives des figures, the 
1822 book in which Poncelet first gave shape to the new geometry.6 Chasles’s book hence 
reflects a practice of mathematics, shared by a milieu, in which a study of history meshed 
with mathematical work and a meditation on methods.7

Chasles’s Aperçu historique may be considered as a synthesis and development of 
these reflections, in which the historical analysis of geometry from the point of view 
of generality received its fullest treatment. Moreover, Chasles introduced in the book 
new mathematical ideas related to these questions. These facts explain why the Aperçu 
historique is an interesting document to guide a reflection on the value of generality in 
geometry, which is the aim of this chapter: in relation to its purpose, the book develops a 
view on geometry and its history from precisely the perspective of generality. As a result, 
it provides source material to think about how generality is achieved in geometry, which 
means can be used to this end and which benefits might be derived from it. In Section 
2.2, I analyze Chasles’s interpretation of the history of geometry from the viewpoint of 
generality. While doing so, I shall stress the correlations between his reading of history 
and his own mathematical work. In Section 2.3, I examine Chasles’s own mathematical 
practice in relation to the value of generality. The conclusion will offer reflections on 
the value of generality in general, and also on the history of projective geometry from 
this perspective.

My goal in this chapter is not to deal with the topic of generality in geometry 
exhaustively. Nor is it to analyze in a critical way how Chasles selected and analyzed 
his historical source material. Rather, I limit myself to discussing, on the basis of his 
own account of the history of geometry as well as his presentation of mathematical 
results, some aspects of the problem of generality in geometry. At the same time my 
purpose is also historical. Chasles’s book attests to how a philosophical and historical 

5 On Monge and Poncelet, compare Taton (1951b:  79– 100), Belhoste and Taton (1992:  277– 99), and 
Belhoste (1998), on Carnot and Poncelet, see Chemla (1998), and on Carnot, Poncelet, and Chasles, see 
Nabonnand (2011). Taton (1964) contains interesting remarks on generality in analytical geometry at the time.

6 Poncelet (1822). Brianchon (1783– 1864) and Carnot were some of the mathematicians who provided 
insight in the history of mathematics in relation to their research in geometry. For Brianchon, compare Chemla 
(1990: 530). As far as Carnot is concerned, compare, for instance the “Discours préliminaire” of his Géométrie 
de position (Carnot, 1803: I– XXXVIII).

7 In particular, it must be stressed that Chasles did not practice history for its own sake. The development of 
his historical work is mainly motivated by the meditation on generality and the methods of the new geometry. 
This point is demonstrated by his explanation for not dealing with certain topics (Chasles, 1837: 93, Section 
34). In particular, in these pages, Chasles stresses that his Aperçu historique focuses on the “successive forma-
tion of methods” (my emphasis) in geometry. Elsewhere, he makes clear that his emphasis remains on what he 
calls “geometry of forms and situations” (Chasles, 1837: 143).
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reflection on generality, conducted from within mathematics, steered key developments 
in geometry. In fact, my analysis reveals how various actors of projective geometry in 
the first decades of the nineteenth century did not share the same ideas with respect 
to generality. Despite the lengthy treatment offered here, I am fully aware that the 
book would deserve a much longer analysis for its wealth of insight into the question 
of generality in geometry.

2.2  Chasles’s historical analysis of geometry

The historical part of the Aperçu historique may be roughly summarized in three main 
theses as follows:

First, in ancient geometry, in a phase that lasted until roughly the fifteenth century, 
Chasles claims there were neither general conceptions, nor general methods.

Second, some generality was progressively introduced from the seventeenth century 
onward, and Chasles examines the means by which this change was brought about. He 
identifies here two main channels: the introduction of geometrical means, which constituted 
until the end of the eighteenth century a less influential tradition, and that of analytical 
means, in a tradition stemming from Descartes’ Géométrie, which soon became dominant 
due to the generality and the fecundity it made possible.

Third, the modern geometry that steadily developed from the end of the eighteenth 
century onward constituted, in Chasles’s view, a turn. It shaped new purely geometrical 
methods to deal with questions in geometry and yet reach levels of generality similar to 
what had been achieved using analysis. Chasles scrutinizes how methods in pure geometry 
recovered means to achieve generality. He further explained how he contributed to them 
and what for him was at stake in pursuing generality as a value.

Let us examine his analysis of each of these phases in greater detail.

2.2.1 A diagnosis about the limits of ancient geometry

In his critical investigation into ancient geometry, Chasles highlights several respects 
in which it lacked generality. Each of them is approached negatively and contrasted 
with different practices shaped from the seventeenth century onward. In other terms, 
these aspects are approached anachronistically, in a retrospective way. Listing them thus 
highlights benefits to be derived from generality in Chasles’s conception. Let us examine 
some of them, albeit in an order different from his.

First, Chasles emphasizes how the Ancients gave, as different, propositions that in fact, 
from a modern point of view, amounted to the same statement. Several variants of this 
diagnosis can be found in his first chapter.

For instance, propositions that, in Greek geometrical books, appeared as unrelated 
could be shown to be “simple consequences” or “simple transformations” of a single 
general theorem. Such is Chasles’s diagnosis, when he comments on lemmas given by 
Pappus in relation to the De locis planis by Apollonius— I delete all unnecessary details:
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… One can also relate them to one and the same proposition, which expresses a general 
property of four points arbitrarily taken on a straight line […Chasles inserts here a refer-
ence to the theorem meant]

In that way, propositions 123 and 124, which express a relation between four points 
arbitrarily taken on a line and a fifth point determined through a certain condition, are 
easy consequences of this theorem.

Propositions 125 and 126 express a relation between four points arbitrarily taken 
on a straight line and one easily recognizes that this relation is nothing but a very simple 
transformation of the same theorem.

… It is remarkable enough that these four propositions (i.e., propositions 119– 22, 
note by KC), which look so different from the others and seem to have no relationship with 
them, are also consequences of the same theorem…” (Chasles, 1837: 42– 3, Section 36, my 
emphasis).

Several points are worth noticing here.
In this case, Chasles emphasizes that coming to know the relevant general theorem 

allows one to easily derive from it several propositions that Pappus presented as distinct 
and even unrelated. The generality of the theorem is here correlated to the number of 
different propositions deriving from it, that is, to its fruitfulness. We shall see that, in 
his own contributions, Chasles looks precisely for theorems that are the most general 
in the same sense, that is, those that by mere transformations— the word meaning here 
“reformulations”—  can be changed into several propositions formerly thought of as being 
different. In Section 2.3, by providing one such example from Chasles’s work, we shall 
analyze the tools that can be put into play to achieve this end, and we shall come back to 
the notion of “transformation.”

Moreover, in his comment on Pappus, Chasles puts a proposition being a (logical) 
“consequence” of a general theorem on a par with a proposition being a “transformation” 
of the general theorem. One can be more specific here. The single proposition to which 
Chasles relates all of Pappus’s lemmas has the shape of expressing “a general property of 
four points arbitrarily taken on a straight line.” This analysis provides Chasles with a tool 
with which to identify how propositions relate to this general one. With this tool, some 
propositions appear to carry out the same task and, through further examination, Chasles 
identifies that they amount to “a very simple transformation of the same theorem.” With 
the same tool, other propositions can be understood as being “easy consequences.” 
Whether propositions are derived from transformation or as a consequence, Chasles 
insists on the ease with which one obtains them: a simple consequence appears to be a 
mere change of form. This is the first occurrence of the value of “simplicity” in relation 
to that of generality. In fact, both epistemological values will prove to have, in Chasles’s 
conception, deep connections.

Finally, Chasles links relating distinct propositions to a single theorem and bringing 
them into relation with each other, highlighting a connection and a degree of similarity 
between them. This way of reading ancient sources and analyzing them already betrays 
distinctive features of Chasles’s approach to generality in geometry.

In other examples Chasles examines how propositions that look different in ancient 
Greek books turn out, according to his analysis, merely to be various particular cases of 
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a single theorem. For instance, after having introduced how in his Conics, Apollonius 
approached these curves and quoted proposition 37 of Book 3, Chasles notices:

The 23 first propositions of book 4 relate to harmonic division of straight lines drawn in 
the plane of a conic. They are, for the most part, various cases of the general theorem we 
just stated (Chasles, 1837: 19– 20, Section 12, my emphasis).

Chasles formulates the same conclusion regarding 43 propositions grouped by Pappus 
in the seventh book of his Mathematical collection:

At first sight, one does not perceive the true meaning of these numerous propositions, nor 
does one see the relationships that can tie them all to the same question, and reading in this 
state is painful. However, with some attention, one recognizes that they all relate to the 
theory of the involution of six points, which was created by Desargues and which became 
of great use in recent Geometry. These propositions are not properties of the most general 
relation of involution, the one holding between six points (it even seems that the Ancients 
did not know the transformations of this general relation), but they are properties of several 
relations which today can be considered as particular cases of this general relation (Chasles, 
1837: 39– 40, Section 34, my emphasis).8

We come back later to the topic of involution. Let us examine what Chasles’s analysis 
reveals here about ancient geometry as well as his own conceptions of geometry. As 
in the previous case, Chasles notices that, seen from another perspective, propositions 
presented in Greek sources as unconnected appear in fact linked to each other: They 
express “properties of relations” that are “particular cases of a general relation” holding of 
six points. We can grasp here how the relation of “being more general” leads in Chasles’s 
view to establishing an organization of mathematical knowledge.

Other correlated features emerge here. The failure to perceive connections between 
propositions is correlated with the fact that the “true meaning of these numerous proposi-
tions” is missed and reading them is laborious. We can grasp here a contrast between 
such a situation and the ease yielded by an understanding of the connection between 
propositions stressed above.9 Moreover, Chasles establishes a link between “understand-
ing” propositions and relating them with each other in a way that connects them all to a 
more general fact. Identifying the “meaning” amounts to finding the most general theorem 
from which they derive. He concludes:

This analysis of Pappus’ 43 lemmas seems to me to allow us to grasp the general idea and 
to make their reading easier. One sees there that many propositions among them express 
the same theorem: it is because the statements of these propositions are applied to specific 

8 Similar reorganizations of ancient Greek source material are frequent in the Aperçu historique.
9 Chasles returns to this contrast when he presents Desargues’s contribution and, especially, the introduc-

tion of the relation of involution between six points arbitrarily placed on a conic. On the one hand, he stresses 
that ancient geometers did not know such general propositions. On the other hand, he explains why this 
accounts for the length and intricacy of their proofs and treatises (Chasles, 1837: 79– 80).
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figures and the few differences between them come from the difference of position of the 
points considered in these propositions (Chasles, 1837: 41, Section 35, my emphasis).

Besides emphasizing the two points made earlier, Chasles adds an important detail: from 
the new perspective, statements that in Pappus’s book look different are seen to “express 
the same theorem.” This is an essential reason for Chasles’s interest in generality in 
geometry. He puts forward two reasons to explain how the relation between the various 
propositions was obscured.

On the one hand, propositions concerned figures that were not understood as being 
particular cases with respect to a single more general figure. In other words, the general 
diagram for which the proposition held true was not brought out. Here, Chasles shows that 
the various propositions concern four or five specific points, instead of the configuration 
of six points involved in the most general relation of involution. Chasles formulates the 
same diagnosis in other circumstances.

On the other hand,— and this leads us to another fundamental reason for which Chasles 
diagnosed a lack of generality in ancient geometry— there were as many propositions as 
there were possible relative positions of the various parts of a figure. Chasles contrasts this 
practice with the modern one, which introduced means to group into a single proposition 
all the statements about figures that differed from one another merely with respect to the 
positions of their components:

It is one of the great advantages of modern Geometry over the ancient one that it (the 
former) can, through considering positive and negative quantities, comprehend, by means 
of the same statement, all the various cases that the same theorem can present when one 
varies the relative positions of the different parts of a figure.10

In his Report on the progress in geometry, written upon the request of the Ministry of 
Education and published in 1870, Chasles stressed this point again, associating it with 
Carnot’s contribution in his Géométrie de position (Carnot, 1803). In addition, and this 
introduces a new element into the discussion, Chasles emphasized at that time the link 
between, on the one hand, the introduction in geometry of the tool of negative and positive 
quantities and, on the other hand, a change in the practice of proof which is essential to 
achieve generality in geometry. He writes:

The Geometry of position contained a felicitous conception of the nature of positive and 
negative quantities, which allowed one to generalize each question, in the sense that a single 
proof could suffice, whichever the relative positions of the different parts of a figure may have 
been, whereas, until then, each question demanded as many proofs as there were varieties 
of position in the points and the lines of a figure. This conception appears to us to be the 
main idea that characterizes Carnot’s book.11

10 Cf. Chasles (1837: 41, Section 35). My emphasis. The third edition deletes the key word “all” (Chasles, 
1889: 41– 42).

11 Chasles (1870: 4, my emphasis). In between, Chasles had introduced into geometry sign conventions for 
directed segments or angles and, although he credited Carnot with this idea, he had modified the implementa-
tion of this tool. Compare Chasles (1852: III– XI). Nabonnand (2011: 37– 43) analyzes Chasles’s introduction 
of signs and their relation to his practice of generality.
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Clearly, the issue of achieving a greater generality in geometry also requires developing 
a reflection on how proof should be conducted for establishing a general statement in a 
general way. This was one of the issues at stake in the early nineteenth century, one to 
which Chasles would return regularly.

One aspect of this question evoked here is the global device that Carnot introduced 
to reach this aim: a conception of positive and negative quantities. This device was one 
of the contributions on which Poncelet meditated before he introduced his “principle of 
continuity,” one of the main tools crafted in the early nineteenth century to introduce 
some generality into geometry and, more specifically, into geometrical proofs. Poncelet’s 
main goal with the “principle of continuity” was to change the practice and conception 
of proof along the same lines and for the same purpose.12 It is interesting that in Chasles’s 
note XXIV on the history of the “principle of continuity,” he insists on the tension between 
rigor and generality:

One cannot conceal to oneself that one owes the huge progress that the Moderns have 
achieved in Geometry to this relaxation of the (demand for) rigor of the Ancients. The 
Ancients, who were more keen to convince than they were to highlight, have hidden all 
the threads that would have led one to find the path towards their methods of discovery 
and invention and that could have guided those who continued their works. This has 
been the cause of the timorous and muddled course of Geometry, of the incoherence of its 
methods in questions that had the same nature, or, to speak more precisely, of the absence 
of secure methods of its own like those of modern Geometry for entire classes of questions that 
possessed a certain generality.13

In Chasles’s discussion of the question of proof in ancient geometry, the lack of general-
ity related to proving is approached from the viewpoint of the constraints imposed by 
rigor, which demand distinguishing between various cases. Chasles further stresses other 
dimensions of the question of the generality of a proof in the following conclusion he 
draws with respect to ancient geometry:

Each method did not in effect possess anything general and was limited to the particular ques-
tion that had given rise to it; each known curve— and their number was quite limited— had 
been studied individually (that is, in isolation from the others, note by KC), and by means 
that were completely specific to it, without any of its properties, or the procedures that had 
led to it, being possibly used to discover the properties of another curve.14

The lack of generality of proofs in ancient geometry is here analyzed from two differ-
ent angles. The means used to deal with a given mathematical object brought into play 
particular features of that object. Facts that might have been general were approached 
by procedures specific to the objects under study. Moreover, as a result, the methods 
devised could not be used to study other similar objects, preventing the establishment 

12 On this question, compare Chemla (1998). We analyze below how Chasles reformulated the principle of 
continuity and renamed it as “principle of contingent relationships.”

13 Chasles (1837: 359). Poncelet had emphasized the same point before Chasles (Chemla, 1998: 173).
14 Chasles (1837: 51, Section 1). The third edition has a typo here and indicates Section 9. Emphasis is mine.
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of connections between the objects. The organization of mathematical knowledge that 
inspires Chasles’s comments connects propositions in a way different from what is the 
main concern in connecting them within an axiomatic- deductive structure.15

Chasles goes on with the example of the problem of determining tangents to 
curves: in ancient geometry, for each curve, the problem was solved by a method that 
could not inspire the solution for another curve. These methods, he stresses, were 
“essentially different.” Clearly, this comment is inspired by a contrast he has in mind 
with the general methods that were devised in the seventeenth century to solve this 
general problem. He comments on the methods in great detail, and precisely from this 
standpoint, in the following chapters.16 One remark allows us to grasp better what, in 
Chasles’s view, characterizes a genuinely general method. Indeed, when speaking of 
“general method” in relation to ancient geometry, the so- called “method of exhaustion,” 
which Euclid and Archimedes regularly used in issues related to measuring surfaces 
or volumes, immediately comes to mind.17 We know that the general name for what 
we might be tempted to perceive here as a general method was introduced only in the 
seventeenth century, by Grégoire de Saint- Vincent. In ancient texts, the “method” has 
the status of a pattern of proof recurring in various contexts. Chasles has an interesting 
comment on this, which casts light on a dimension of his approach to the problem of 
generality. He writes:

The method of exhaustion, which rested on a main idea (KC: literally, “mother idea”) that 
was completely general, did not deprive Geometry of its character of narrow- mindedness 
and specialization, since this conception, lacking general means of application, was becom-
ing, in each particular case, a wholly new question, that did not find resources (KC: that 
is, resources to become efficient) but in the individual properties of the figure to which 
it was applied.18

In other words, despite the fact that a single pattern of reasoning was used, the ways in 
which it was applied were not general. The attention placed on the modalities of application 
of general methods, and especially their uniformity— another type of generality— inspires, 
as we shall see, many other comments in the Aperçu historique. By contrast with the specific 
uses of the “method of exhaustion” in antiquity, Chasles stresses the shaping of uniform 
means of applying a single and general method as characteristic of a turn that occurred 
in the seventeenth century.19

15 We see here how in his view general methods connect the objects to which they are applied and the 
propositions yielded. For Chasles, the roots of mathematical knowledge are provided by “general proposi-
tions” from which the others are derived as mere “transformations” or “easy consequences.” In contrast, an 
axiomatic- deductive organization places emphasis on another kind of starting point and stresses the rigor of 
the derivations rather than their generality. We return to these issues below.

16 See Evelyne Barbin’s chapter in this book (i.e., Chapter 15).
17 Youschkevitch (1964).
18 Chasles (1837: 51– 2).
19 In the specific case of assessing areas and volumes, Chasles attributes to Cavalieri, with his geometry of 

indivisibles, the creation of means allowing a uniform “application, or, rather, a transformation of the method 
of exhaustion” (Chasles, 1837: 57, Section 5).
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Chasles’s Chapter II deals precisely with the shaping of geometrical means that intro-
duced some generality into geometry mainly in the seventeenth and eighteenth centuries. 
Chasles opens this chapter by stressing the contrast between geometry as practiced in 
that period and geometry as practiced until the fifteenth century, which he treated in his 
first chapter. In his view, the latter was as much “specific” as the former was “general,” 
as much “concrete” as the former was “abstract.” He announces:

The characteristics of generality and abstraction that Geometry acquired from this period 
on became more and more prominent in the subsequent periods. At the present day, these 
(features) make a huge difference between modern Geometry and that of the Ancients.20

Let us hence turn to Chasles’s account of the various ways in which geometry achieved 
greater generality from the sixteenth century onward, relative to the various directions 
identified as problematic in the previous time period.

2.2.2  The contrast with geometry in the seventeenth  
and eighteenth centuries

What Chasles calls the second and the third time periods, and treats in Chapters II and 
III, respectively, are in fact overlapping timespans. Chapter II deals more specifically with 
the introduction of new geometrical approaches and extends partly into the eighteenth 
century, whereas Chapter III begins with the radical change brought about by the pub-
lication of Descartes’s Géométrie, as an Appendix to the Discours de la méthode (1637), 
and the introduction of analytical means into geometry. Let us examine, from Chasles’s 
perspective, the related changes with respect to the question of generality, beginning 
with the impact of new geometrical approaches like those developed by Desargues and 
Pascal, among others.

We have already alluded to the emphasis placed by Chasles on the emergence, dur-
ing these centuries and within this framework, of general methods, like the method of 
indivisibles or the methods of tangents, which allowed practitioners to deal with classes 
of problems uniformly. On which other aspects does Chasles dwell?

Chasles underlines two key changes with respect to generality and, perhaps even more 
importantly, highlights a correlation between them: they bear on, respectively, the kind of 
geometrical objects dealt with and the connections that can be established between the 
propositions related to them. In the Aperçu historique, these changes and the correlation 
between them are exemplified by the approach to conic sections presented in Desargues’s 
Brouillon projet d’une atteinte aux événements des rencontres du cône avec un plan (Rough draft 
for an essay on the results of taking plane sections of a cone, hereafter abbreviated to Brouillon 
projet) (Desargues, 1639). In Chasles’s terms, “Desargues’s method allowed him to bring 

20 Chasles (1837: 52). Note the use of the term “specific” in opposition to “general,” and that of the term 
“concrete,” referring precisely to the specific, in opposition to the word “abstract.” This conception of abstrac-
tion is worth another publication. To state it briefly, Chasles considers the objects of ancient geometry as 
“concrete” by comparison to the geometrical objects introduced in the seventeenth century. See below for 
Desargues’s conception of conics or Descartes’s approach to curves.
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into the theory of conics, as he did in various other writings, new views of generality which 
widened the conceptions and metaphysics of Geometry.”21

Chasles refers here to a shift in the conception and the treatment of the object “conics.” 
In ancient geometry, in a tradition based on the approach to conic sections in Apollonius’ 
Conica, the various conics were produced as curves cut in a cone by a plane placed in a 
specific and fixed position with respect to that cone— that is, perpendicular to a deter-
mined triangle attached to the cone (Chasles, 1837: 17– 18). Depending on the nature 
of the cone, the curves obtained were ellipses, parabolas, or hyperbolas. According to 
Chasles’s analysis, Desargues’s key modification was to introduce the idea that the plane 
could be placed arbitrarily with respect to the cone. As a result, the various conics could 
be obtained as sections of one and the same cone, thereby being the perspective image 
of each other. The fact that the position of the plane became general is important, but it 
would not matter, were it not for the essential following remark, which was Desargues’ 
correlated step: “conic sections, being formed by the different ways in which one cuts a 
cone which has a circle as its base, should participate in the properties of this figure” (Chasles, 
1837: 75, Section 20, my emphasis).

Several consequences resulted from this method.
First, for each property of the circle, one could look for an analogous property for any 

other conic section. The properties of the simplest curve among them could serve as a 
guide for inquiring into the properties of the others.

Second, as a result, each property of any of them could be reflected in a related 
property of any of the others. The properties of the various conic sections were thereby 
brought into connection with each other, and were no longer isolated facts, in contrast to 
how, according to Chasles’s diagnosis, propositions had been treated in ancient geometry. 
This strategy did not apply only to the ellipse, the parabola and the hyperbola. In the same 
vein, as Chasles stresses in the two following sections, “Desargues applied to systems of 
straight lines properties of curved lines” (Chasles, 1837: 76) and his ideas led him to 
“apply to conic sections various properties known for the system of two straight lines” 
(Chasles, 1837: 77). If such a circulation of properties between these geometrical situa-
tions was possible, this was linked to an essential fact on which Chasles dwelled. Indeed, 
the conic sections, being “formed by the various ways in which one cuts a cone having a 
circle as its base,” included for Desargues not only the circle, but also a system of two lines.

This remark leads us to the third point emphasized by Chasles. In correlation with 
such an exploration of the connections between their properties, Desargues brought about 
a change in the nature of the objects:

He thus considered, as varieties of the same curve, the various sections of the cone (the 
circle, the ellipse, the parabola, the hyperbola, and the system of two straight lines), which, 
until then, had always been treated separately and by means specific to each of these sections.

21 Chasles (1837: 75, Section 21), my emphasis. Even though the sentence is not entirely clear, it indicates 
that Chasles perceives the techniques for achieving generality have their history. At the time when Chasles 
writes, Desargues’s Brouillon projet was lost. We return to the method by means of which Chasles restored these 
ideas below. On Desargues’s geometry, see Taton (1951a) and Field and Gray (1987).
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Descartes tells us Desargues also considered a system of several straight lines parallel 
to each other as a variety of a system of lines converging towards the same point (…).22

These are the changes in which Chasles saw “new views of generality, which widened 
the conceptions and metaphysics of geometry.” Interestingly enough, he relates this issue 
to that of the treatment of the objects. The contrast between Desargues’s approach and 
that of ancient Greek geometers in this respect brings us back to the question of the 
generality of proof, evoked in the previous section. Here, this issue is connected to that 
of the generality of the objects.

Clearly, for Chasles, studying objects in relation to one another was not merely a 
method for discovering new properties for each of them. Neither was it simply a way 
of eliciting general objects. Most importantly, such a technique would lead to shaping 
means for approaching objects, solving problems and proving properties in a uniform 
and hence general way. The “methods of indivisibles” or the “methods of the tangents,” 
shaped in precisely the same time period to address different questions, corresponded 
to a concern of this kind. Designing them required that the problems for which they 
provided solutions could be formulated in a general way.23 This, in turn, also required that 
curves be approached as general objects. These considerations explain, I think, Chasles’s 
comment on how these methods compare with Descartes’s analytical method: they “also 
bore, in their metaphysical principles, the seal of this generality (…)” (Chasles, 1837: 94). 
General objects and general methods appear to be, in his eyes, two sides of the same coin, 
emerging conjointly in the seventeenth century.

In the specific case under consideration, Chasles views the key operation allowing 
Desargues to carry out this mutation in the objects of geometry— , that is, bringing the 
properties of conics in relation to each other through linking all the conics cut in a cone 
to its circular base— as a particular case of a more general method: finding out methods 
of transforming figures into one another and thereby transferring the properties obtained 
about one to the others. In his Chapter II, devoted to the second time period in his 
periodization of the history of geometry, Chasles identifies this idea in various domains 
of sixteenth and seventeenth century geometry.24 However, it must be stressed that these 
methods are connected, under the single heading of “transformations,” only by Chasles’s 
retrospective view. At that time, instead of being various applications of a general method, 
they appear to have occurred as distinct and unrelated ideas.

In Chasles’s historical account, this was not the only way of connecting propositions 
in a geometrical fashion that appeared in the seventeenth century. What he could gather 

22 Chasles (1837: 75– 6). Emphasis is mine.
23 About Descartes’s, Fermat’s and Roberval’s contributions to the problem of determining tangents, 

Chasles writes: “These three famous men share the glory of having solved, each in a different way, a prob-
lem which no geometer had yet dared tackle in its generality, that is, the problem of tangents to curves (…)” 
(Chasles, 1837: 57). This statement is to be compared to Chasles’s comment on the determination of tangents 
by authors of antiquity, quoted in the previous section.

24 He interprets in this way Vieta’s introduction, in spherical trigonometry, of the triangle reciprocal of 
a given triangle, or the geometrical transformations of conics into one another, carried out for instance by 
Grégoire de Saint- Vincent (see, respectively, Sections 3 and 33 in Chasles, 1837: 54, 91– 2).
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from Pascal’s complete treatise on conics led Chasles to identify another modality of 
carrying out the same operation at the time. The treatise was already lost when the 
Aperçu historique was written. Yet, Chasles could rely on a seven- page long excerpt from 
it, entitled Essai pour les coniques, which Pascal published in 1640 and which had been 
rediscovered and published by Bossut in 1779. Moreover, Chasles relied on references to 
the complete treatise found in the correspondence between scholars as well as on notes 
taken by Leibniz on it.

Evidence showed that Pascal had adopted Desargues’s approach to the conics, evoked 
above (Chasles, 1837: 74), and used perspective methods. In addition, and this is the 
important point now, the Essai pour les coniques started with a “lemma,” called the “mystic 
hexagram,” a proposition “from which everything else had to be deduced” (Chasles, 
1837: 72, Section 17). Chasles describes the various theorems that Pascal had derived 
from this fundamental proposition and had selected for inclusion into the summary that 
the Essai pour les coniques offered. As a geometer who had an intimate understanding of 
propositions on conics and their connection with each other, Chasles concluded:

We understand perfectly well, from what we know of the fruitfulness of the theorems we just 
quoted, that, as Pascal announced it, he made them the basis of Complete Conical Elements 
and that, by deducing them from his mystic hexagram, he derived from this single principle 
400 corollaries, as Father Mersenne said (…).

We notice that these various main theorems each expressed a certain property of six points 
placed on a conic, which explains how Pascal could deduce them from his mystic hexagram, 
which was itself a general property of these six points. But each of these theorems had taken 
a different form, which made it suitable for particular uses which encompassed a huge 
number of properties of conics.

It is this art, which is infinitely useful and consists of deducing from a single principle a 
large number of truths, of which the writings of the Ancients offer no example and in which 
our methods are more advantageous than theirs.25

This is a key statement, on which we shall dwell. Chasles emphasizes several points in 
what, he gathers, was Pascal’s full treatment of the conics. These points will turn out to 
be essential features of Chasles’s own practice of geometry, as we shall show in Section 
2.3. Moreover, they represent key aspects of Chasles’s approach to generality. Let us 
exhibit them.

First, Chasles derives his assumption regarding the organization of the treatise from 
Mersenne’s allusion to it: a single “principle” would have been placed at the basis of 
the whole domain, and its “fruitfulness” would be clear from the wealth of propositions 
deriving from it. Such “principles” evoke those typical of analytical treatments of math-
ematical domains in the eighteenth century: statements from which, by the mere tool of 
algebraic transformations, all the propositions that can be formulated on a given topic 
derive.26 These “principles” must be distinguished from other kinds of principles, like 

25 Chasles (1837: 73, Section 18). Emphasis is mine. The third edition has minor differences.
26 On the case of analytical geometry, see Taton (1964). Chemla and Pahaut (1988) deals with the example 

of analytical treatments of spherical trigonometry. Further examples are evoked in Chemla (2003). Boyer 
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the “principle of continuity,” evoked above. The latter kind, governing the nature of the 
conclusion that a proof allows to be stated, became central in the practice of geometry 
in the early nineteenth century (see Section 2.2.3). Yet, despite key differences, these 
principles all relate to questions of generality.

If we were to remain at this superficial level of description, the opposition drawn 
by Chasles between Pascal’s treatment of conics and ancient geometry could not be 
grasped. We would not understand why such an organization of knowledge is differ-
ent from the axiomatico- deductive organization presented in, for instance, Euclid’s 
Elements. The other main point to be observed, Chasles adds, is the way the derivation 
was (allegedly) made.

In Chasles’s understanding, the mystic hexagram is a “general property” of six points 
on a conic. He further perceives that each of the “main theorems” deriving from it 
expressed a property of six points. Note, en passant, that this relationship between the 
mystic hexagram and the main theorems appears to be of the same kind as that between 
the propositions Chasles had used to discuss the connections between Pappus’s lemmas, 
as was outlined above. However, although in these two contexts Chasles reads propositions 
with a similar tool of analysis, consisting of “general relations” holding between kinds of 
arbitrary points, Pascal’s own formulation of the mystic hexagram was different. For the 
sake of historical analysis, Chasles brings into play his personal mathematical expertise in 
guessing what the lost treatise looked like. Connections of this kind between propositions 
were a key tool in his hands. Quite revealing is the fact that, precisely in relation to this 
type of derivation, Chasles refers the reader here to his “Note XV,” which was part of a 
treatise he was preparing on “rational geometry” and in which he used repeatedly this 
tool.27 We shall explain this point in greater detail in Section 2.3.

On the other hand, although each of Pascal’s “main theorems” were derived from the 
fundamental “general property,” Chasles emphasizes, the fact that they had a “different 
form” was precisely what lent them their specific “fruitfulness” (each having “particular 
uses” and “encompassing a huge number of properties of conics”). This emphasis on 
the correlation between the “form” of a theorem and its “fruitfulness” also proved to be 
a key concern in Chasles’s own research on geometry.

In addition, according to Mersenne’s testimony, the deduction of properties of conics 
from the “main theorems” was performed in such a way that the propositions appeared 
as “400 corollaries” of the mystic hexagram. In other words, an innumerable number of 
“particular properties” were deduced from the “general property” with almost no proof.28 
The fruitfulness of the “main theorems” is correlated with the ease of the deduction they 

(1956) seems to have overlooked this specific feature of research on analytic geometry in the second half of 
the eighteenth century.

27 Chasles describes the treatise he first intended to compose and explains why he gave up writing it 
(Chasles, 1837: 253– 4). In fact, in 1852, he started the publication of the treatise he had in mind (Chasles, 
1852). In the introduction, he recounts the genesis of the book.

28 Poncelet (1822: xli) uses the same word of “corollaries” to designate the properties of conics that Pascal 
derived from the “mystic hexagram.” His assessment relies on his own perception of the part played by the 
“mystic hexagram” in the theory of conics. Poncelet (1822: 110) credits Brianchon with understanding the 
nature of Pascal’s contributions to the study of conics.



 2.2 Chasles’s historical analysis of geometry 61

   61

allow. All these features characterize Chasles’s approach to the “generality” of the mystic 
hexagram.

To conclude, for two essential ideas, Chasles imagined that Pascal, whose treatise 
was lost, had used means he himself considered as fundamental. This explains why he 
considered this writing to exemplify a geometrical practice different from what was known 
of ancient geometry. According to Chasles’s intuition, Pascal’s lost treatise shed light on a 
link that proved essential for Chasles: the link between the fruitfulness of some proposi-
tions and their ability to connect a large number of other propositions.

In the following pages (Chasles, 1837: 74– 80), Chasles brings to bear historical evi-
dence to suggest that all these ideas and practices (considering conics in the most general 
way, connecting propositions by means of transforming figures or by deriving them as 
particular cases from the most general proposition) came from Desargues’s Brouillon 
projet, which by Chasles’s time was lost. In it, Chasles gathered, these means and ideas were 
combined, and Pascal drew inspiration from this writing.29 In Desargues’s case, Chasles 
asserts that the single fundamental proposition on which the treatment of conics relied 
expressed a relation of involution between six points arbitrarily chosen on a conic. This 
reconstruction allows Chasles to place strong emphasis on the relationship between the 
various new means of achieving generality he had so far highlighted:

However, in addition to its extreme fruitfulness, the theorem in question presents another 
feature that it is no less important to bring to light for a philosophical examination of the 
course and spirit of methods concerning conics. This (feature) is that this theorem, by its very 
nature, allowed Desargues to consider, on a cone with a circular base, sections that were 
entirely arbitrary (…) (Chasles, 1837: 79, Section 23, my emphasis).

In other words, Chasles suggests there is an essential link between the nature of the 
theorem Desargues placed at the basis of his treatment of conics and the general and 
uniform approach Desargues promoted for all conics. When we turn to Chasles’s own 
treatment of conics, we shall understand better how he conceives of the relation between 
these various aspects of the mathematician’s activity.

We can conclude from our discussion that Chasles consistently insists on the fact of 
connecting propositions. He does so negatively, in his account of Greek geometry, and 
now positively, in his discussion of (supposedly) seventeenth- century achievements.

Despite these essential changes in the methods and objects of geometry in the sev-
enteenth century, these means remained less powerful than those provided by the other 
approach that took shape at roughly the same time, or even slightly earlier. In Chapter III, 

29 Note that the historical evidence Chasles adduces indicates that Desargues’s contemporaries in the seven-
teenth century perceived the generality of the objects and propositions partly in the same way as Chasles did. 
Chasles (1837: 88) credits Poncelet with having been the first geometer to understand Desargues’s contribu-
tion. However, interestingly enough, Poncelet’s account of Desargues’s and Pascal’s work on conics does not 
insist on the point Chasles stresses here and elsewhere: the organization of knowledge about conics in the form 
of a single theorem from which every other property can be easily derived. This aspect of the value of general-
ity in geometry appears to be specific to Chasles. Section 2.3 argues that this feature permeates his historical as 
well as his mathematical approach. Since the publication of the Aperçu historique, a copy of the Brouillon projet 
resurfaced thanks to the efforts of René Taton (see Taton, 1951a).
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Chasles turns to a discussion of the characteristics and results of the latter, emphasizing 
right at the outset how Descartes’ Géométrie (1637), from which it stemmed, “gave to 
geometry the character of abstraction and universality that distinguished it in an essential 
way from ancient geometry” (Chasles, 1837: 94).

As far as “universality” is concerned, Chasles stresses the superiority of the Cartesian 
“conception” with respect to earlier methods like those of Cavalieri, Fermat, and others. 
The latter were general, he grants, in their “metaphysical principles,” in the sense analyzed 
above. However, only the Cartesian approach “provided the means of applying these 
methods in a uniform and general way.”30 Chasles thus emphasizes again, albeit in a new 
way, a dimension in which generality can be sought for in geometry: the “uniformity” with 
which one applies a method. We shall meet again with this concern in Section 2.3. In that 
respect, the Cartesian “doctrine” brought about a change of the older general methods.

As for the “abstraction” Chasles attaches to the Cartesian method, the value stands in 
contrast to the “concrete” approaches that were the hallmark of Greek geometry, in the 
sense emphasized above (footnote 20). In the way Chasles describes the turn Descartes 
brought about in geometry in this respect, we recognize he lays stress on exactly the 
same features as those he emphasized as essential about Desargues a few pages before. 
He writes:

Descartes’s Geometry (…) established, by means of a single formula, general properties of 
entire families of curves, so that one could not discover in this way any property of a curve 
that would not immediately make us know similar, or analogous, properties in infinitely many 
other lines. Until then, one had studied only particular properties of some curves, taken one 
by one, and always with different means that established no connection between different curves” 
(Chasles, 1837: 95, First section, my emphasis).

By contrast to ancient geometry, instead of working with “concrete” curves— we would 
rather say “particular”— , Chasles stressed, Descartes was dealing with “entire families 
of curves.” Moreover, by the very fact that he proceeded with “formulas,” Descartes 
could establish general properties for these families. Abstraction, in his sense, thus meshes 
with generality. Here too, Chasles further emphasizes the connection that Descartes’s 
approach brought to light between properties of a vast number of geometrical objects. 
More importantly, however, the contrast Chasles draws in the following lines indicates 
the key point in his view here: proofs for these properties could be carried out in the same 
way. This is where the superiority of Descartes’s method lay and where it allowed powerful 
developments in the general methods brought forward previously. Chasles’s analysis thus 
highlights how, even though by different means, Desargues’s and Descartes’s approaches 
brought about, in some respects, comparable kinds of generality. Moreover, he indicates 
where they diverge in their treatment of generality.

In Chasles’s eyes, the invention of the calculus, by Newton and Leibniz, gave geometers 
so powerful and easy a means in mathematics that it led most practitioners to neglect pre-
vious approaches, except Descartes’s geometry, which had provided the true foundation 

30 Chasles (1837: 94, 1889: 95), first section. Emphasis is mine.
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of the new calculus (Chasles, 1837: 142). Analytical treatments of geometrical problems 
developed, and they brought to geometry a form of generality that reached a level hitherto 
unheard of. As a result, they remained the mainstream of geometrical research until the 
end of the eighteenth century and overshadowed forays made by people like Desargues 
and Pascal.

Yet, some geometers kept developing purely geometrical approaches, and Chasles 
analyzes their contributions. He chooses this point of his exposition, in particular in 
relation to Tschirnhausen, to present his views on the advantages and shortcomings of the 
analytical approach as well as to outline his own conception of the practice of mathematics 
(Chasles, 1837: 114– 15). He will then show how the shortcomings of analytical methods, 
the conception of which relates closely to Chasles’s ideal for mathematics, are overcome by 
methods specific to the new geometry, which he presents in the following chapter. Further, 
Chasles expounds how the new geometry is also able to provide the same advantages as 
analytical methods, as far as generality is concerned. We shall return in the conclusion to 
the overall vision Chasles develops for mathematics. Let us now examine his views on the 
advantages of analysis in terms of generality— a feature that, in the eyes of the practitioners 
of projective geometry, gave it superiority over geometrical methods. We shall also outline 
how, in Chasles’s view, these advantages were implemented in geometry, thereby allowing 
practitioners to practice geometry in a purely geometrical way.

2.2.3  A diagnosis regarding the power of analysis   
and the new geometrical methods

According to Chasles’s analysis, a “new era” started in pure geometry after a century of 
“rest” in the eighteenth century. Its opening was marked by the development of Monge’s 
descriptive geometry, published in book form as the Géométrie descriptive.31 In his view, 
this “doctrine” played a role in, and exerted an influence on, geometry comparable to that 
of Descartes’s Géométrie nearly two centuries earlier (Chasles, 1837: 189). As before, we 
shall not assess the historical claim. Nor will we attempt to determine whether Chasles 
retrospectively attributes to Monge ideas that emerged only later or whether he rightly 
grasps in Monge’s book the origins of these ideas. Rather, we shall go on following Chasles’ 
analysis of the various forms taken by generality in geometry and try from this viewpoint 
to interpret this claim. Clearly the parallel Chasles draws between the Géométrie descrip-
tive and Descartes’s geometry derives from his perception of the advantages brought by 
analysis to geometry and also of his interpretation of how Monge’s contribution intro-
duced similar benefits in geometry per se. In that respect, we shall concentrate on two 
fundamental contributions which Chasles reads in the Géométrie descriptive and which 
embody a turn in the way of working in pure geometry: first, the use of a “method of 
transmutation of figures” (Chasles, 1837: 194– 5) and, second, the introduction of what 
Chasles calls the “principle of contingent relationships” (Chasles, 1837: 204). Chasles 
subscribes to the view, also held by Poncelet, that these two contributions represent the 

31 A critical edition of the book can be found in Belhoste et al. (1992).
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main new sources of generality introduced in pure geometry at the end of the eighteenth 
century and the beginning of the nineteenth century. In the Aperçu historique, he will 
assess each of them by means of a comparison and a contrast with analytical methods.32

Before he begins highlighting these contributions, Chasles sketches the contents of the 
Géométrie descriptive, stressing two main ideas in it. On the one hand, he writes, Monge 
gave a method to “represent, in a plane area, all the bodies with a given form and thereby 
transform, in plane constructions, graphical operations that would be impossible to carry out 
in space.” On the other hand, Monge “deduced, from this representation of the bodies, 
their mathematical relationships, resulting from their forms and respective positions” 
(Chasles, 1837: 189, Section 1, my emphasis). Chasles grasps in these ways of proceeding 
in geometry several essential consequences.

First, it opened the way to a new form of reasoning. Having a fixed correspondence 
between figures actually drawn in the plane and bodies in space allowed the geometer to 
draw inferences about the latter by means of a reasoning on the former. Space geometry 
could thereby develop. Further, more generally, the “correlation” established between 
plane and space geometry led to the possibility of proving propositions in one by means 
of a piece of reasoning in the other. Introducing perspective in addition to the projec-
tions used by descriptive geometry— to transform the plane figure associated to a spatial 
configuration into another plane figure— constituted a systematic means of transferring 
a property established in the former to the latter.

Chasles introduced the expression “method of transmutation of figures” to designate what, 
in his view, constituted the essence of such operations. By means of this general expression, 
he stressed where according to his own diagnosis the import of these new proofs beyond 
the new theorems proved lay (Chasles, 1837: 195). The comparison with the use of algebra 
in geometry proved to be the most telling way of formulating this import, thereby pointing 
to one of the advantages of algebra with respect to generality as well as to the way Monge 
opened the path toward implementing this benefit in the new geometry. Chasles wrote:

In addition, if one thinks about the procedures of algebra and seeks for the cause of the 
immense advantages that it brings into Geometry, does not one perceive that it owes part 
of these advantages to the ease of the transformations that one applies to the expressions 
that are first introduced in it?, transformations whose secret and mechanism constitute 
the analyst’s true knowledge and which are the constant object of his research. Was it 
not natural to seek to likewise introduce within pure Geometry analogous transformations 
bearing directly on the figures proposed and on their properties?” (Chasles, 1837: 196, 
Section 8, my emphasis).

32 In his preface to the Traité des propriétés projectives des figures, Poncelet had developed a similar diagnosis 
regarding the key changes in pure geometry with respect to generality, in the few decades before the publica-
tion of his own book (compare Poncelet, 1822: XXI– XXXV). However, Poncelet’s way of recounting the 
historical evolution differs from Chasles’s. Moreover, the comparison Poncelet develops between geometrical 
and analytical approaches presents nuances worth examining. Lastly, it is interesting that, although Chasles 
agrees with the main points in Poncelet’s analysis, he renames and reformulates each of the two principles that 
Poncelet identified as essential. Explaining these points, and comparing the two authors in this respect, exceeds 
the scope of this chapter.
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Chasles thus depicts the “method of transmutation of figures” as a tool in geometry that 
parallels the use of “transformations of expressions” in algebra and that could bring 
generality to that field by way of geometrical means. It is interesting for our purpose to 
interpret his comparative statement with respect to the two terms of the comparison.

First, as regards algebra, the way in which Chasles draws the comparison indicates a 
feature that is specific to its methods and responsible, in his view, for the power it brings 
to geometry: the systematic and convenient use, in proofs, of transformations applied to 
expressions, that is, to formulas. In addition to the generality proper to the formulas, 
which we stressed above, the techniques for transforming them yield a powerful, uniform, 
and general means of proving, which, further, establishes links between the propositions 
entering in the reasoning. One recognizes here several aspects of the connections between 
propositions, which, we emphasized above, Chasles assessed positively. Here they mesh 
with each other, Chasles placing emphasis on the fact that these transformations provide 
a specific way of proving. This feature of the method thereby distinguishes the knowledge 
gained in this way from that obtained in the context of ancient geometry, whose proposi-
tions, Chasles regularly deplored, remained isolated from each other.

As for the second term of the comparison, that is, the “method of transmutation of 
figures” in modern geometry, Chasles invites us to consider it as a geometrical counterpart 
to the analytical procedures just outlined. It transforms figures into each another directly, 
that is, not by means of algebraic tools. In correlation with this, it transforms properties 
of the original figure into properties of the resulting figure. If we limit ourselves to such 
a coarse description of the method, we may wonder why Chasles did not consider it to 
have been introduced, in an embryonic form, in the seventeenth century, through the 
treatments of the conics developed by Desargues and Pascal. In fact, the key point here 
appears to be, in Chasles’s view, Monge’s introduction of the idea of “transmutation of 
three dimensional figures into plane figures and conversely” (Chasles, 1837: 195). This 
new way of reasoning reveals how particular the transformations used in the seventeenth 
century were: by means of a particular construction, they linked together figures shar-
ing the “same genre” (Chasles, 1837: 128, 195, 261), and they connected their related 
properties. In contrast, Monge’s novel approach paved the way to a much more general 
conception of geometrical transformations. They could link together figures having dif-
ferent “genres” and could transform properties of some of them into wholly different 
properties of the others— Chasles speaks of an “immense generalization” of the perspec-
tive used by Desargues and Pascal (Chasles, 1837: 212). These transmutations could 
be employed within proofs to transform a situation into a different one and to deduce a 
property about the former from a related but inherently different property about the latter 
which would be much easier to prove. In this way, geometrical transformations could 
play a key part in proofs, just as transformations of expressions had been essential for 
analytical approaches (Chasles, 1837: 268). In terms of generality, they would bring to 
geometry the benefits that analytical methods derived from their use of transformations.

One thus understands why Chasles sees in the ideas presented in the Géométrie descrip-
tive resources that could exert on geometry an influence similar to that of Descartes’s 
geometry. Further, Chasles relates all kinds of transformations introduced in geometry 
since the publication of the book to the same general concern. In conclusion, he invites 
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geometers more generally to develop such methods systematically (Chasles, 1837: 196). 
It is interesting for our purpose to notice that Chasles considers these methods from the 
most general viewpoint, that is, as belonging all to a single class of tools. This fact can be 
perceived from the status Chasles gives to the two topics to which he devotes the Mémoire 
introduced by the Aperçu historique: the duality and the homography of figures. In his 
view, they are “general principles of extension,” from which geometers can derive diverse 
methods that are in fact “methods of transformation of that kind” (Chasles, 1837: 196). 
Duality and homography are even “general doctrines of deformation and transformation of 
figures” (Chasles, 1837: 254, Chasles’s emphasis).33 Chasles claims to have determined 
the single theorem from which any method of transformation between figures of the 
“same genre” could be derived (Chasles, 1837: 224, 228). In section 3, we return to this 
claim. Let us simply stress here that Chasles manifests an interest for the foundation and 
the organization of such methods.

Symptomatically, the diagnosis that developing these tools is of prime importance 
derives less from remarks regarding their efficiency than from some of Chasles’s reflec-
tions on analytical methods. He identifies the cause of the power of algebra in the ease 
with which its “expressions,” that is, the formulas, are transformed— in Section 2.3.1 we 
return to the emphasis Chasles places on determining the “cause” or the “source” of 
mathematical properties. Moreover, he takes the “true knowledge” in algebra to lie in the 
way transformations are carried out. Far from being “given” a priori by the very nature of 
the topic, as one might think, Chasles stresses that the transformations of expressions are 
as such a key topic of research for “analysts.” The parallel leads him to plead for developing 
methods for the “transmutation of figures” in geometry.

In fact, from Chasles’s perspective, these operations represented only a first way of sys-
tematically introducing into geometry transformations comparable to those characteristic 
of analytical methods. In Section 2.3, we shall meet with other types of transformations 
that play a key part in Chasles’s practice of generality in geometry.

The second decisive contribution regarding generality that, in Chasles’s eyes, the 
Géométrie descriptive made to geometrical methods relates to a principle that, in his Traité 
des propriétés projectives des figures of 1822, Poncelet explicitly brought to the foreground 
under the name of “principle of continuity.” In fact, Chasles reads the principle back 

33 Chasles (1837: 268) explicitly compares all these means of transformation to the “formulas and general 
transformations of algebra.” He concretely describes how they allow the practitioner to derive from any known 
proposition an almost infinite number of others, contrasting such a practice to that of ancient geometry, pre-
cisely because links are thereby established between propositions. As a result, “truths” are no longer isolated 
facts. Within this context, Poncelet’s use of projections in his Traité des propriétés projectives des figures (1822) 
appears as one among several other means inspired by a similar concern. An important difference nevertheless 
must be noted. In the preface to his treatise, Poncelet explains his motivation for focusing on projections: a 
reflection on the nature of propositions led him to identify, and concentrate on, “projective properties,” that 
is, properties that remain valid under projection. Because of this feature, these properties could be established 
by means of a proof carried out on a particular figure, the conclusion then being stated for the general figure. 
Chemla (1998: 181) discusses a context in which Poncelet shaped this approach. In the Aperçu historique, 
Chasles dissociates the two issues. As we saw, he deals with “transformations” as a topic in itself and with full 
generality. He raises the question of the methods for generalizing properties separately and also in general 
(Chasles, 1837: 262– 4). I plan in another publication to compare Chasles’s and Poncelet’s conceptions of 
geometrical transformations.
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into the Géométrie descriptive, published some decades earlier, by bringing to light how 
it implicitly underlaid proofs that Monge had carried out (Chasles, 1837: 198). Chasles 
also offers a new conceptualization of the principle, thereby possibly playing down once 
more Poncelet’s contribution (Chasles, 1837: 197– 207, 357– 9).34 In Chasles’s view, the 
principle constituted a new method of proving in geometry— a general method— which 
was the counterpart, for geometrical methods, of some aspects of the application of 
analysis to geometry. So, again, Chasles discusses how geometrical reasoning should 
proceed, by reference to the advantages brought to proof by the use of analytical methods 
in geometry. However, in this case, the parallel with analysis is more fundamental than 
in the previous case, where it merely supported a plea in favor of developing research in 
a given direction. Now, Chasles derives the very validity of this new principle from the 
fact that it merely translates within geometry modes of reasoning that are common in the 
application of algebra to geometry.

Let us sketch the essence of the principle in Chasles’s analysis, before we examine the 
latter question. Its formulation requires a concept and several key oppositions.

The concept is that of a (geometrical) “figure,” in relation to the “circumstances 
of construction” according to which it is considered. The examples Chasles examines 
illustrate what he has in mind. A figure can be the combination of a straight line and a 
surface of the second degree, or it can be two circles. In other words, a figure combines 
various elements (points, lines, or surfaces). The introduction of the “circumstances of 
construction” aims at distinguishing, for the same figure, between the various “disposi-
tions” that these elements can have with respect to each other. For example, the line can 
meet with the surface or not.

Among the circumstances of construction, Chasles opposes “particular” and “general” 
ones. The opposition is mainly explained by discussing what he means by “particular 
circumstances of construction”: such circumstances occur when “points, lines, or surfaces 
happen to coincide with each other.” In the examples mentioned, this is the case where the 
line is tangent to the surface or the circles are tangent to each other. With respect to the 
principle examined, Chasles’s attention focuses mainly on the “general circumstances of 
construction of a figure.” The key remark is that a figure can present several “cases” in its 
“most general construction”: the line can either meet with the surface or not. Moreover, 
if we exclude the case of tangency, the cases where the line meets with the surface, or 
where it does not, have “the same generality,” this feature being guaranteed by the fact 
that the line is drawn arbitrarily with respect to the surface. In Chasles’s words for it, “the 
general conditions of construction of the figure remained the same.”

The next opposition Chasles introduces allows him to characterize the differences 
between two such distinct cases of the same figure. Some parts in the distinct cases 

34 In his discussion on the validity of the principle, Chasles alludes to the criticism that Cauchy addressed 
to Poncelet’s “principle of continuity.” Cauchy formulated the criticism in his report on Poncelet’s Memoir 
presented to the Académie des sciences, treating it as a mere induction (Chasles, 1837: 199). Poncelet (1822:   
vii– xvi) reproduces Cauchy’s report, which was read on 5 June 1820. This attack probably explains why 
Chasles makes the relation between the principle and the analytical methods clear. It might also explain his 
attempt to reformulate the principle. This question exceeds the scope of this chapter. Here, I focus on Chasles’s 
version of the principle.



68 The value of generality in Michel Chasles’s historiography of geometry

68

are “integrant and permanent parts of the figure,” that is, “they depend on its general 
construction” and, also, “they are always real.” Other parts are “secondary, that is, 
contingent and accidental,” in that they are “indifferently real or imaginary, without 
changing the general conditions of construction of the figure” (Chasles, 1837: 200, 
Chasles’s emphasis).35

On the basis of these distinctions, Chasles further opposes “accidental and contingent 
properties” (my emphasis) of integrant parts of a figure to those that are “intrinsic and 
permanent.” The latter allow in all the cases to construct the integrant parts of the figure, 
whereas the former can play this role only in some cases (Chasles, 1837: 205– 6). The 
example given is essential in that it illustrates how the same geometrical object— the 
radical axis of two circles, whose existence is a permanent property of the figure of two 
circles— can be approached in both ways. Defining it as the common chord of the circles 
approaches it by means of a contingent property, whereas one can also define it by the 
permanent property of being the line of equal power.

The principle Chasles grounds on such an analysis of a figure concerns the proof 
of general theorems that bear only on permanent parts, and not on contingent parts, 
of the figure. The “principle of contingent relationships” states that such theorems can 
be proved with respect to one general circumstance of construction of a figure and, as 
a result, be claimed valid for any other general circumstance. One can hence choose a 
general disposition of the figure for which the proof is made easier. In particular, in the 
general disposition chosen, some contingent elements can be palpable and hence used in 
the proof, even though in other general circumstances of construction of the figure, they 
would no longer appear. The “principle of contingent relationships” claims that this will 
not affect the validity of the conclusion.

Note that generality plays a key part in the principle: the starting point of the proof 
must be a figure in a general circumstance of construction. This is an essential condition 
to be able to state the conclusion with full generality. The subtle analysis of the principle 
in terms of allowing a transfer of a property from the general to the general, without 
further proof, evokes Poncelet’s analysis of the “principle of continuity” in his 1822 

35 Chasles (1837: 200.) Earlier, in relation to the example of the line and the surface of the second degree, 
considered by Monge, Chasles had been more specific, in relating these qualifications to the actual figure: “…A 
figure can present in its most general construction two cases; in the first one, some parts (points, planes, lines, 
or surfaces), on which the general construction of the figure does not necessarily depend, but that are con-
tingent or accidental consequences of it, are real and palpable; in the second case, these same parts no longer 
appear; they have become imaginary; and yet the general conditions of construction of the figure remained 
the same” (Chasles, 1837: 198). The emphasis is Chasles’s. The concept of figure Chasles describes recalls 
the one introduced in Carnot (1801). Carnot had analyzed such a figure as a varying system of quantities and 
he considered the correlations between a primitive system and any other one. The continuous deformation 
that allowed Carnot to transform the former into the latter played a key role in his theory. Poncelet adopted 
this feature of the dispositif in his formulation of his “principle of continuity.” By focusing on various kinds of 
parts and properties, instead, Chasles wants to do away with considerations of continuity, that is, of infinity. 
In his interpretation of the consequences of his analysis of a figure for granting a geometrical meaning to the 
term “imaginary,” Chasles refers explicitly to Carnot’s contribution, denying, however, that Carnot considered 
imaginary correlations between figures. Compare the note XXVI “Sur les imaginaires en géométrie” (Chasles, 
1837: 368– 70). This is in fact incorrect (see the section “Des corrélations complexes et des imaginaires,” in 
Carnot, 1801: 177– 88).
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treatise.36 However, Chasles’s interpretation of the nature of the opposition between 
the various states of the figure differs.37 The justification of the validity of this mode of 
proving is also partly different. Its justification is of interest to us here, since it shows 
how the introduction of the principle into pure geometry derives from a diagnosis of 
the power of analytical methods with respect to generality.

Such a principle, Chasles admits, cannot be justified a priori with the means available to 
the geometers of his time in pure geometry. He concedes that the proof of the validity of 
this mode of proceeding in geometry could only be given, “for each case taken separately” 
and “a posteriori,” by “a reasoning based on the general procedures of analysis” (Chasles, 
1837: 200). The key point here is the fact of noticing that the different dispositions of a fig-
ure, depending on different general circumstances of construction, are not distinguished by 
analytical methods. This was one of the properties of Descartes’s method Chasles praised— a 
property he characterized as deriving from a specific use of formulas. This is how by a single 
piece of reasoning, such methods reach conclusions that are applied to all general disposi-
tions. In other words, this specificity of algebra is precisely what grants to its reasoning its 
generality, allowing one to avoid different proofs for different cases as ancient geometers 
did. The “principle of contingent relationships” is nothing else but an importation of this 
type of generality in geometry. The trust geometers placed in the way of proving was in fact, 
Chasles underlines, grounded on “their habits of using the analytical methods.”

However, Chasles does not satisfy himself with this justification. Instead, for any truth, 
for the proof of which contingent features of a figure in a general state of construction were 
used, he invites practitioners of geometry to go beyond “Monge’s somewhat superficial 
method” (Chasles, 1837: 205) and search for a proof that would only use the permanent 
properties of integrant parts of the figure. The latter proofs would thus hold for any 
general construction of the figure (Chasles, 1837: 204– 6). In his 1852 treatise, Chasles 
systematically provides such proofs (Chasles, 1852: XV– XVI).

This remark concludes our survey of the diagnosis Chasles reformulates, after Poncelet, 
regarding the power of analytical methods in geometry and the reasons why the new ideas 
introduced a similar generality into pure geometry. We have so far examined Chasles’s 
treatment of the history of geometry from the perspective of the value of generality. We 
shall now examine some ways in which Chasles’s own practice of geometry reveals other 
elements of his view on the question of generality. Our analysis will highlight how his 
negative comments on the geometry of the Ancients and his praise for what he gathers 

36 As Poncelet emphasized, when proving projective properties, one can conclude the general statement 
from a proof based on a particular case. However, the “principle of continuity,” like its reformulation as the 
“principle of contingent relationships,” is a way to prove the general statement by relying on a figure in “gen-
eral circumstances of construction.” On this opposition, compare (Chemla, 1998: 179– 81). See also Chasles 
(1837: 203).

37 Poncelet had introduced “ideal elements” to refer to elements that were still extant on a figure, although 
the relationship between them and other parts of the figure had changed. Deleting any reference to ideal ele-
ments, Chasles distinguishes between permanent/ contingents parts and properties. When Kummer introduces 
ideal elements in number theory, his use of the terms “contingent” and “permanent” discloses the influence 
of Chasles’s interpretation of the “principle of contingent relationships,” whereas the use of the term “ideal” 
clearly retains features of Poncelet’s conceptual framework. See the chapter by J. Boniface (Chapter 18) in 
this volume.
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from Desargues’s and Pascal’s approaches are both inspired by his own stand on the 
issue of generality.

2.3  Chasles’s methods related to generality 
in geometry

2.3.1 Looking for the source of methods and theories

The full title of Chasles’s Aperçu historique manifests a difference between the two parts 
composing it. The first half of the title, that is, Aperçu historique sur l’origine et le développe-
ment des méthodes en géométrie, particulièrement de celles qui se rapportent à la géométrie 
moderne, relates to the historical section of the book and refers to methods in geometry. By 
contrast, the second half, that is, suivi d’un mémoire de géométrie sur deux principes généraux 
de la science : la dualité et l’homographie, corresponds to the Mémoire and stresses that it 
bears on “two general principles,” that of duality and that of homography. We saw that 
Chasles dates the introduction of “methods” in geometry from the seventeenth century 
and examines how such methods were further developed in modern geometry. In contrast, 
by his account, the principles appear to characterize mainly modern geometry.

Chasles is not the first geometer to bring forward principles in geometry. As was already 
indicated, in his Traité des propriétés projectives des figures, Poncelet had, for instance, 
introduced the “principle of continuity.” Chasles, however, does more than just introduce 
principles. He provides personal reflections on their nature, their properties, and their 
justification. These principles are intimately related to his approach to the issue of general-
ity in geometry. We shall hence sketch here some aspects of his conception of principles 
that relate more specifically to that issue.38

As we saw above, when discussing various methods of transformation of some figures 
into others, Chasles does not consider these methods independently from each other, 
but seeks to understand their relationships and to organize them as a set. His analysis of 
methods of transformation between figures of the “same genre” leads him to state that they 
“all derive from a single fundamental principle, with respect to which they are only particular 
applications” (Chasles, 1837: 219, 223– 4, my emphasis). Chasles refers here precisely to 
the “principle of homographic deformation, or simply principle of homography” (Chasles, 
1837: 261, Chasles’s emphasis), which is one of the two main topics of his Mémoire. Here 
the principle brings together a variety of methods, introduced by various authors, and 
shows how they become particular cases of a general mode of operating. The same remark 
holds true for the principle of duality: Chasles reads different methods of transformation 
of one figure into another one, this time of a different “genre,” as particular applications 
of a “principle that constitutes a complete doctrine of transformation of figures” (Chasles, 
1837: 228, Chasles’s emphasis). In addition to the relations thereby established between the 

38 We withhold for another publication a more detailed analysis of the various types of principles that were 
introduced in mathematics at the time.

 

 



 2.3 Chasles’s methods related to generality in geometry 71

   71

figures, Chasles insists on the transformations of properties of the former into properties 
of the latter.39 Such principles differ from a principle like the “principle of continuity” or, 
in Chasles’s terms for it, the “principle of contingent relationships” in an essential way. 
The point here is not to allow practitioners to extend a property proved for one figure to 
other figures. Rather, these principles are general in the sense that they easily yield many 
other methods for carrying out this operation that were once thought unrelated to each 
other. We shall consider below examples of the generation of a set of methods.

Chasles’s interest in bringing out such principles is an essential feature of his approach 
to generality— perhaps even a specific feature of his, by contrast to other geometers of his 
time. This interest extends to the organization of properties and appears to relate more 
generally to his conception of the ideal approach to geometry. Chasles devotes some pages 
to the description of his methodology, which he concludes with the following declaration:

… We believe we can say that, in each theory, there must always exist— and we must iden-
tify it— some principal truth from which all the others can be easily deduced, as simple 
transformations or natural corollaries; and that if this condition is achieved, it alone will 
be the hallmark of true perfection in science (Chasles, 1837: 115, my emphasis).

The faith Chasles expresses here strikes an echo with the shortcomings he recurrently 
exposed about Greek writings on geometry. In the passages quoted above, we saw 
Chasles emphasizing exactly the same virtues, yet deploring their absence in Pappus’ or 
Apollonius’ works. Instead of keeping propositions as independent statements, he sug-
gests, the practitioner should look for a general truth from which all other truths derive, 
in a way that connects them with each other. Chasles’s approach to history thus appears 
to be tightly correlated with his own values.

Here, as above, Chasles underlines the benefits in terms of proof. However, in this case, 
the expectations differ strikingly from the benefits drawn from the “principle of contingent 
relationships”: in his view, bringing to light such a key statement reduces proof to almost 
nothing. The type of generality that emerges from Chasles’s methodological creed differs 
from those he had attached to Monge’s Géométrie descriptive. Interestingly enough, it 
brings us back to the structural properties Chasles attributed to the writings of Pascal and 
Desargues, on the basis of the information available to him. We remember he emphasized 
how these geometers had assigned, to a fundamental position in their treatment of conics, 
a general property, from which all the other propositions would be derived as “corollaries.” 
In fact, we shall now see that the qualities Chasles prized in their approach to geometry 
mainly reflect the values he himself prized in his practice of geometry.

Chasles comes back to the same thesis in the concluding pages of the Aperçu historique. 
There, a quotation he gives from a letter Quetelet wrote to him reveals that he shares with 
this correspondent a common ideal in this respect.

It is unfortunate, M. Quetelet wrote to me, that most mathematicians today have such 
an unfavorable judgment about pure Geometry … It has always seemed to me that what 

39 For the list of methods falling under that principle, compare Chasles (1837: 224– 35, 237).
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deters them most is the lack of generality of the methods they think they perceive there. 
However, is it really the fault of Geometry or of those who cultivated this domain? I am 
very inclined to believe that there exist some higher truths that must be so to say the source 
of all the others, more or less like the principle of virtual velocities is for mechanics (Chasles, 
1837: 267, footnote 1, my emphasis).40

The words Quetelet uses, and which evidence an ideal comparable to Chasles’s, make the 
relation between looking for the “source of all” propositions and the issue of generality 
explicit. Moreover, they reveal a striking comparison Quetelet makes: he draws a paral-
lel between such a practice in geometry and a feature typical of analytical practices in 
the eighteenth century. As was mentioned above, practitioners of mathematics like Euler 
or Lagrange strove to offer analytical treatments of whole domains of mathematics, in 
the following sense: they attempted to identify the least amount of propositions possible, 
also called “principles,” from which all the other propositions of the domains in question 
could be derived by the simple virtue of analytical transformations (Chemla and Pahaut, 
1988: 151– 2.) In this respect, Quetelet evokes the principle of virtual velocities, from which 
Lagrange derived the whole mechanics in his Méchanique analytique (Paris, 1788). The 
general propositions which should be identified as the “source” of all other truths in pure 
geometry appear to share key properties with such analytical principles: the other truths 
derive from both types of statements, by “transformations.” However, a difference between 
the two practices is that, in the case of geometrical procedure, deduction is “easy,” as Chasles 
emphasized, the other truths appearing as “simple transformations or natural corollaries.” 
In the main text, Chasles develops Quetelet’s comparison, continuing the list of domains 
that in the previous century were shown to derive from basic principles of that kind. In 
Chasles’s view, the “general laws” (Chasles, 1837: 267), in which he is interested and from 
which he strives to derive geometry in the sense sketched above, thus constitute, within 
geometry, an ideal inherited from analytical treatments developed in the eighteenth century.

Chasles’s sharing of this ideal can be correlated with the fact that he brought to the 
fore, and focused in a specific way on, the notion of cross- ratio and its conservation by 
all the transformations deriving from his two general principles.41 He writes:

We shall present them (that is, the principle of homography and the principle of duality, 
note KC) … with a greater generality than any of these methods (that is: specific methods 
for transforming a figure into another one either of the same kind or of a different kind, 
like in the transformation by reciprocal polars, note KC). The scope we shall give them 
will find its principal usefulness in a most simple principle of relations between magnitudes, 
which will make them applicable to numerous new questions.

This principle rests on a single relation, to which it will always suffice to reduce all the 
others. This relation is the one we have called anharmonic ratio between four points or a 
pencil of four lines. This is the single type of all relations that can be transformed using the 

40 In fact, a few pages above, Chasles had endorsed exactly the same views and given them as what moti-
vated his own research in geometry (Chasles, 1837: 253– 4).

41 Chasles is aware that some of his predecessors, like Poncelet, Brianchon, and even before, knew this 
property. His claim of originality with respect to cross- ratio lies in the position he grants to the concept and its 
conservation in geometry (Chasles, 1837: 34– 5).
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two principles that we shall prove. And the law of correspondence between a figure and its 
transformed one consists in the equality of corresponding anharmonic ratios.

The simplicity of this law, and that of the anharmonic ratio, makes this form of rela-
tion most adequate to play such an important part in the science of extension (Chasles, 
1837: 255, my emphasis).

From Chasles’s perspective, the importance of the cross- ratio— in his terms “anhar-
monic ratio (rapport anharmonique)”— rests on the fact that it is the single relation 
underlying all relations that continue to hold after a figure is transformed according to 
the two principles. More precisely, any equality that can be transferred in this way can 
be “reduced” to cross- ratios. Chasles adds the equality of the corresponding cross- ratios 
grounds the relationship between two such figures. Bringing this common origin to light 
in all such relations, that is, linking them to a general property from which they all derive, 
plays, in Chasles’s view, a key role in the practice of geometry which he champions. 
This is carried out by the operation of “reduction,” central in Chasles’s definition in the 
following lines of the art of the geometer, in comparison with, as well as in contrast to, 
that of the analyst:

When the relations to be considered appear at first sight not to fall under this formula, the 
art of the geometer will consist in reducing them to it, using different preparatory operations, 
in some respects analogous to the changes of variables and the transformations of analysis 
(Chasles, 1837: 255).

We have emphasized above how Chasles compared the transformations of figures into 
one another with the transformations of expressions characterizing the work of the 
analyst. The two principles of homography and duality encompass all the geomet-
rical transformations of a comparable kind. Here, however, Chasles compares other 
operations carried out by the geometer to those proper to the analyst. These operations 
relate to generality in that they aim at bringing to light the “source” of a relation and 
thereby linking it to other similar relations. They hence play a part in the organization 
of properties.

In order to understand more concretely what Chasles means by these operations, how 
he puts them into play and, more generally what his conception of the “source” actually 
amounts to, we shall now follow part of his own treatment of the cross- ratio, in which 
many features of his practice of generality are exemplified.

2.3.2 The form of a definition and its generality

Chasles devotes his Note IX (Chasles, 1837: 302– 8) to the definition and the main 
properties of the cross- ratio of four aligned points, or four converging lines. For four 
aligned points, a, b, c, and d, he defines the function in question— which we shall denote 
as (a, b, c, d)— to be given by the expression:

ac
ad

bc
bd

: ,
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or any of the three similar expressions that one can form with these four points. As he 
stresses, the key property of the cross- ratio was long known, since it can be identified in 
Pappus’ Collection. Yet, the formulation for which Chasles opts and which differs from 
Pappus’ makes explicit a key reason for the central importance of the notion in the kind 
of geometry he seeks to develop. Chasles states:

When four lines stem from the same point, any transversal meets them in four points 
whose anharmonic ratio has constantly the same value, whatever the transversal may be 
(Chasles, 1837: 302).

If one considers two transversals ad and a′d′ cutting the four lines stemming from the 
point O (see Fig. 2.1),42 the proposition yields the following relation:43
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Chasles alludes to a proof of this relation, which in fact is to be found for the first time 
in Carnot’s Essai sur la théorie des transversales (1806):44

If, from a point taken arbitrarily, one draws four lines that end on four aligned points, the 
anharmonic function of these four points will have precisely as its value what this function 
becomes, when one substitutes, for the four segments occurring in it, the sines of the angles 
that the four lines comprising these segments make with each other (Chasles, 1837: 302).

42 For modern geometry, Chasles calls for a style without figures (Chasles, 1837: 190, 207– 8), the develop-
ment of which is required by the change of methods. We cannot comment on this most interesting feature here, 
and will leave the topic for a future publication. However, to make things easier for our reader, we shall not 
conform to Chasles’s style. Chasles himself included figures in his later treatises.

43 Chasles shows that any such equality entails the equality between the other expressions of the cross- ratio 
(Chasles, 1837: 303).

44 See Carnot (1806: 77), to which Chasles (1852: xxi– xxii) explicitly refers.
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Figure 2.1 The invariance of the cross- ratio by projection
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This property leads Chasles to the introduction of the second notion he needs in 
Note IX:

This function between the sines of the angles between the four lines stemming from the 
same point will be called anharmonic function of the four lines (Chasles, 1837: 302, his 
emphasis).

Chasles emphasizes right away that this approach to the cross- ratio shows why it is 
invariant under projection.

With this notion, we can illustrate how Chasles carries out the reduction of a relation 
to an equality between cross- ratios and the consequences resulting from this operation. 
Our example will be the definition of the “involution of six points,” to which Chasles 
devotes his entire Note X (Chasles, 1837: 308– 27). In a first part of the note, which 
presents the known properties of the involution, he provides the usual definition for it. 
It reads (see Fig. 2.2):

When six aligned points corresponding to each other two by two, such as A and A′, B 
and B′, C and C′, make segments with each other, in such a way that we have the relation

(A)    
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one says that the six points are in involution, and the points corresponding to each other 
are said to be conjugate (Chasles, 1837: 309, Chasles’s emphasis).

Chasles adds that any permutation on the names A, B, C gives rise to equalities that also 
hold. He further states that one can deduce from these equations other “expressions” of 
the involution, such as the following relations:

(B) 

AB BC CA AC CB BA
or AB BC C A AC C B BA
or AB B C
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or AB B C C A AC C B B A
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=
=  (Chasles, 1837: 309)

Chasles insists: “One could set out to prove, by means of computations, that any of 
the equations of (B) follow from the equations of (A), and conversely.” Moreover, one 
could also prove in the same way the equivalence between any of the forms within (A) or 
within (B). Chasles discards this approach as well as the geometric interpretation which 
he mentions Poncelet and Brianchon used to establish these equivalences. Chasles opts 
for another approach to the question, which yields an “even simpler and more direct” 

A B C A′ B′ C′

Figure 2.2 Involution of six points
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proof. It consists in reformulating the definition of the involution, in such a way that it 
“reduces” the equality that forms its core to a function of the cross- ratio (or anharmonic 
ratio, in Chasles’s terms). Indeed, the second part of the note introduces the following 
new definition:

Six points, pairwise conjugate45 with each other, are in involution, when four of them have 
their anharmonic ratio equal to that of their conjugates.

Thus the six points A, B, C, A′, B′, C′, three of which, A′, B′, C′, are respectively 
conjugate with the first three, are in involution if the anharmonic ratio of four points 
A, B, C, and C′ is equal to the anharmonic ratio of their conjugates, A′, B′, C′, and C 
(Chasles, 1837: 318).

Writing down the three equalities that follow from this definition, Chasles obtains:
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In other words, with this change of definition for the involution, which shows how it 
depends on the cross- ratio, we now understand that the equations (A) and (B), which 
formerly appeared to be different properties, in fact all state the same relation: an equality 
between cross- ratios. This type of phenomenon is at the core of Chasles’s reflection on 
generality in geometry. It illustrates benefits that can be derived from developing the 
“art of the geometer” along the lines quoted above. The comments with which Chasles 
introduces the new definition explain what is at stake for him with this phenomenon:

… The involution of six points enjoys several other properties, and can be expressed in 
various forms, different from the equations (A) and (B), which will possibly be useful in 
various geometrical researches.

The most important property of this relation of involution, the one that appears to us to be 
the source of all the others, rests on the notion of anharmonic ratio. This crucial property allows 
us even to give a new definition of the involution of six points, a definition that encompasses, at 
the same time, the two kinds of equations (A) and (B), and which leads naturally to different 
other expressions of the involution of six points (Chasles, 1837: 317, my emphasis).

Chasles’s statement, which bears here on the ideal form for a definition, echoes his general 
methodological declaration mentioned in the previous section. We illustrate below in 
greater detail how it is more generally typical of his research. In this case, the cross- ratio 
highlights the property of the involution from which other properties either appear to 
be the same or to follow naturally. We saw that for Chasles, the ease brought by the 
approach is proof that one has identified the “source.” On this basis in the following 

45 Here “conjugate points” simply refer to the constitution of pairs of points. The question is whether these 
pairs of conjugate points are in relation of involution or not (Note KC).
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pages, Chasles sets out to derive new “expressions,” or “forms,” of the involution, using 
the same techniques as those he uses in other contexts. We illustrate this below. The set 
of new expressions sheds further light on how Chasles correlates finding the source of 
properties and linking properties to each other. Despite the close relationship between 
these expressions deriving from the fact that they all stem immediately from the source, 
Chasles insists that each of them brings its own benefits to geometrical research.

We note that the source was disclosed by a mere change in the “form” of the expres-
sion. The relationship established between the form of a statement and its fruitfulness 
appears in this case with respect to a definition. We shall now analyze a case where the 
same phenomenon presents itself with respect to a theorem.

2.3.3 The form of a theorem and its generality

In the Note XV, entitled “On the anharmonic property of points on a conic line— proof 
of the most general properties of these lines” (Chasles, 1837: 334, my emphasis), Chasles 
revisits some properties of conics from the perspective of the notion of cross- ratio. The 
note, which presents the key new ideas he developed about conics, will provide us with 
source material to analyze features of his specific approach to generality. Chasles’s starting 
point is Desargues’s theorem, which bears on the figure of a quadrilateral inscribed in a 
conic, across which a transversal arbitrarily placed runs (see Fig. 2.3).46 In Chapter II of 
the main text, Chasles had quoted the theorem as follows:

This relation consists in that: “The product of the segments on the transversal contained 
between a point on the conic line and two opposite sides of the quadrilateral is to the 
product of segments contained between the same point of the conic line and the two 
other opposite sides of the quadrilateral, in a ratio equal to that of the products made in a 
similar way with the second point of the conic line situated on the transversal” (Chasles, 
1837: 77).

If we call A, A′ (resp. B, B′) the intersections of the transversal with two opposite sides 
of the quadrilateral, and C, C′ its intersections with the conic, Desargues’s theorem can 
be represented by the following formula:
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We have seen that in his Note X, Chasles developed a new approach to this relation 
called by Desargues the “involution of six points.”47 From his new viewpoint, the relation 

46 On Desargues’ own statement of the theorem, see Field et  al. (1987:  54– 5, 106– 7). See also Taton 
(1951a: 143– 7).

47 When we outlined features of Chasles’s reading of Greek geometrical texts of antiquity above, we indi-
cated how he used the involution to show that a great deal of theorems, stated by Pappus as different proposi-
tions, were in fact merely “particular cases of this general relation.” For this, Chasles needed to reformulate the 
propositions to bring to light the hidden relation between the facts stated. Chasles uses another operation to 
highlight the link between propositions and the involution: reading the figure on which they bear in a different 
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amounts to stating that the cross- ratio of the four points A, B, C, C′ is equal to that of the 
four conjugate points: A′, B′, C′, C. At the beginning of Note XV (Chasles, 1837: 334– 5), 
Chasles further reformulates the statement, using the fact that the cross- ratio of four 
aligned points is equal to the cross- ratio of four lines joining a point outside the line 
to these four points. From two opposite vertices of the quadrilateral, P and R, Chasles 
suggests drawing lines toward the points where the conic intersects the transversal (see 
Fig. 2.4). Desargues’s theorem thus becomes an equality between the cross- ratios of two 
pencils of four lines:

PA, PB, PC, PC = RA , RB , RC , RC′ ′ ′ ′( ) ( ).

Relying on the invariance of the cross- ratio by projection, Chasles proves the theorem 
easily, by considering that the conic is a circle (Chasles, 1837: 335). Moreover, its converse 
follows immediately:

A

C

B′

A′

C ′
B

Figure 2.3 Desargues’ theorem

way. For instance, through a reading of the figure for Proposition 130 of Book VII in Pappus’s Mathematical 
collection in terms of a quadrilateral and its two diagonals cut by an arbitrary transversal, Chasles identifies it as 
an expression of the involution between six points (Chasles, 1837: 78). Similarly, a new reading of the figures 
for Propositions 127 and 128, where a line is read as a transversal having a specific position with respect to 
the quadrilateral, is needed to disclose that the propositions are particular cases of Proposition 130 (Chasles, 
1837: 35). Yet, in his proofs, Pappus makes use of specific features of the figures, thereby concealing the rea-
son why the propositions hold true and thus the connection Chasles identifies. For Chasles, Desargues derived 
the general statement about the involution through his attempt to “apply to conic sections various properties 
known for two lines” (Chasles, 1837: 77.) In Chasles’s interpretation of Pappus’s Proposition 130, the two 
diagonals of the quadrilateral can be read as a conic going through the four vertices. Seen from this viewpoint, 
Desargues’s theorem is a generalization made possible by Desargues’s general conception of conics alluded to 
above. This is one instance of a connection brought about by general conceptions.
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When one has two pencils of four lines, corresponding one to one to each other, if the 
anharmonic ratio of the first four lines is equal to the anharmonic ratio of the other four, 
the lines of a pencil will meet, respectively, the corresponding lines in four points, which 
will be on a conic line going through the two points that are the center of the two pencils 
(Chasles, 1837: 335).

We may be tempted to consider that we simply have obtained an equivalent formulation 
of Desargues’s theorem. Chasles’s diagnosis is clearly different, and it reveals key features 
of the approach to generality in geometry to which he adheres:

This theorem, as can be seen through the proof we just gave for it, is essentially 
only an expression different from that of Desargues; however, its corollaries, extremely 
numerous, encompass part of the properties of conic lines, to which Desargues’ and 
Pascal’s theorems did not seem to possibly extend. And indeed, in addition to the benefits 
specific to its different form, it has something more general than any of these two theorems; 
and these two theorems are deduced from it, no longer as transformation, but as simple 
corollaries. This is what we shall show in a moment, through indicating the nature of 
the applications to which this theorem lends itself (Chasles, 1837: 335, my emphasis).

In other words, equivalent formulations of the same fact— in Chasles’s words, different 
“expressions” of the same theorem— do not have the same generality. This statement 
contradicts common beliefs about generality and is thus worth pondering.48 In the case 
of Desargues’s theorem, the key feature of the reformulation is that it highlights how the 
property relates to the cross ratio.49 In Chasles’s understanding, the important feature 
of the new “form” is that it allows practitioners to derive from it, as “corollaries,” a 
wider range of propositions than its earlier form could apparently reach. As a result, a 
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Figure 2.4 Reformulation of Desargues’ theorem

48 Gowers (2008), and the ensuing discussion on the same web page, deals with a similar issue.
49 Chasles (1837: 81) evidences this is what is at stake for Chasles.
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greater number of theorems will thereby appear to derive from the same “source” and 
will thereby be connected. The ease brought into proof plays a key part in the dispositif. 
Observing how Chasles actually derives various propositions in this way will thus allow 
us to interpret this declaration.50

Chasles first derives from the theorem, by a mere change of perspective, a general 
proposition that gives rise to many different methods for generating conics. The derivation 
relies on a new way of reading and using Fig. 2.4. If we fix three lines in the first pencil, 
say, PS, PC, and PC′, as well as the corresponding three lines in the second pencil (RS, RC, 
RC′),51 any position of the line PQ determines a value for the cross- ratio of the first pencil, 
and hence a position for the fourth line in the second pencil. As a result, the latter two lines 
will intersect on the conic determined by the points P, S, C, R, C′ (Chasles 1837: 336).

On this basis, Chasles suggests various devices that yield pencils of four lines with 
equal cross- ratios and thereby generate conics.

The first device uses a fixed angle ((D) and (D′), in bold lines on Fig. 2.5) and three 
fixed points (α, β, γ). Four lines drawn from α cut respectively (D) and (D′) in two sets 

β

γ

α

(D)

(D′)

Figure 2.5 Corollaries to the new formulation of Desargues’s theorem

50 We simply give a glimpse of Chasles’s style in Note XV, inviting the reader to consult the Note itself for a 
better appreciation of the elegance and fruitfulness of the approach.

51 For the valid permutations of the terms of the cross- ratios, compare Chasles (1852: 30– 3).
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of four points having the same cross- ratio. Joining β (resp. γ) to the four points in line (D) 
(resp. (D′)) hence yields two sets of corresponding lines having the same cross- ratio. As 
a result, the four intersections of the corresponding lines, together with the points β, γ, 
belong to a conic. Another reading of this device yields yet another way of generating a 
conic, which, Chasles states, is “precisely Pascal’s mystic hexagram, presented in another 
form” (Chasles, 1837: 336). In this way, Pascal’s theorem is connected to the fundamental 
theorem placed at the basis of the treatment of conics.

The second device Chasles describes is represented in Fig. 2.6.
By construction, the two pencils drawn from α and β have the same cross- ratio. If they 

are placed differently with respect to one another, their corresponding lines intersect in 
points that belong, together with α and β, to a single conic. Chasles gives an example 
of this:

Suppose that the two primitive pencils have kept their respective centers, through the 
motion; that is to say, that they turned around their centers; then the theorem that we 
have just stated expresses precisely Newton’s theorem on the organic description of conic 
lines (Chasles, 1837: 336, my emphasis).

Again, thus, one derives as a corollary a statement that might have previously been thought 
as different from the others. In fact, Newton’s theorem now appears connected straight-
forwardly to Pascal’s and Desargues’ theorems, through the immediate link each has with 
the theorem placed at the source of Chasles’s treatment of conics. Chasles goes one step 
further:

If two angles of arbitrary, but constant, magnitude, turn around their vertices, in such a 
way that the intersection point of two of their sides draws a conic line which goes through 
their vertices, the two other sides will intersect on a second conic line, which will also go 
through the two vertices (Chasles, 1837: 337).

β

α

Figure 2.6 Other corollaries to the new formulation of Desargues’s theorem
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In this form, Chasles perceives the expression allows the geometer to connect different 
methods together and to yield infinitely more such methods:

This theorem, which is a generalization of Newton’s, is in fact only a particular way, among 
an infinite number of similar other ways, to draw conics through the intersection of two 
straight lines moving around two fixed points, or the intersection of two sides of two angles 
moving around their vertices (…). Therefore, Newton’s theorem, which has had some 
fame and which seemed essential in the theory of conic lines, appears to be nothing but 
a very particular case of a general mode of drawing these curves.

This sequence of derivations further leads Chasles to formulate two general methodologi-
cal comments, which we examine in turn. First:

… This circumstance appears to us fully appropriate to show two things: first, it is always 
useful to return to the origin of geometrical truths, to discover from this higher point the 
different forms that these truths are likely to take and that can extend their applications; 
for Newton’s theorem, which some very distinguished geometers were not adverse to 
prove as one of the most beautiful of the theory of the conic lines, has nevertheless not 
yielded important consequences, since its form lent itself only to few corollaries. By contrast, 
the general theorem from which we deduce it lends itself to a great number of diverse 
deductions (Chasles, 1837: 337, my emphasis).

The previous examples help us substantiate and understand better the recurring 
declarations Chasles makes on the different forms a theorem can take. Even though 
all the properties stated above appear as simple transformations of one another, their 
different forms do not have the same fecundity. Newton’s theorem would not allow 
geometers to derive as many properties as its reformulation— which derives from 
the fundamental property chosen— does, and certainly not as corollaries. Chasles 
insists: looking for the “source” is precisely looking for the viewpoint from which to 
uncover the different “forms” a given theorem can take. Since each form easily yields 
different applications, this research extends the range of truths covered by a theorem. 
Moreover, the expansion is carried out in a way that puts all derived propositions in 
relation to each other. It is all the more so since the “source” is common to all truths: it 
thereby connects the greatest number possible of theorems previously unrelated to 
each other.52

We now see clearly how this specific practice of generality compares to eighteenth 
century analytical treatments in geometry, the “source” of the former echoing the “prin-
ciples” of the latter. We also understand better why this feature of Chasles’s approach to 
generality in geometry is correlated to his assumptions regarding Desargues’s and Pascal’s 
geometrical practice, outlined above. Mersenne’s description of the structure of Pascal’s 
treatise, which Chasles quotes, fits perfectly with his own belief with respect to the ideal 
organization of mathematical knowledge.

52 Chasles attributes all these properties explicitly to the fundamental theorem, compare Chasles (1837: 81, 
Section 26).
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The second methodological comment Chasles offers bears on propositions that could 
be candidates as a “source.” Note XV leads him to stress that they have other epistemo-
logical qualities:

We, then, see here a proof of the following truth, that the most general propositions and 
the most fruitful ones are at the same time the simplest and the easiest to prove; since none 
of the proofs given for Newton’s theorem can match the brevity of the one we gave for 
the general theorem in question (the theorem about the cross- ratios of the two pencils of 
four lines related to the quadrilateral inscribed in a conic line, note by K. Chemla); this 
proof has even the advantage that it requires no preliminary knowledge of any property 
of conic lines (Chasles, 1837: 337, my emphasis).

Chasles provides still other criteria to identify these highly important properties: they 
usually hold for the plane as well as for the sphere (Chasles, 1837: 240) or the three- 
dimensional space (Chasles, 1837: 45).

Another facet of Chasles’s approach to generality appears essential: the search for 
the different “forms” of any given theorem. In this respect, Chasles manifestly devised 
techniques that could widen the applications of a theorem or connect it to a more general 
theorem. Observing his practice seems useful in interpreting how Chasles concretely 
understands the “art of the geometer.” As I have argued, this art lies in shaping modes 
of transformation different from those that, according to Chasles, Monge developed in 
geometry. We have seen how Chasles attributed to the Géométrie descriptive the intro-
duction of new ideas about the type of transformation of figures that would transfer 
properties from one figure to another. Chasles, by contrast, focused on the change 
of form of expression that could lead to connect theorems formerly thought as being 
unrelated.

These other transformations relate to two distinct tasks we have already evoked. First, 
as is the case for Pascal’s “mystic hexagram,” Chasles changes the form of its expression to 
bring to light its link to the fundamental theorem. Second, as was illustrated in the case of 
Newton’s way of generating conics, Chasles derived from the fundamental theorem another 
form for Newton’s method, which allowed him to generalize the modes of generation 
significantly. Perhaps Chasles also did perceive these transformations as similar to those 
that, in the analytical art, derive, from the principles lying at the basis of its organization 
and by the mere strength of the transformation of formulas, all the statements in a given 
domain.

Chasles further introduces in geometry techniques to pursue the same goals. Let us 
focus on one of them, which clearly has its origin in an observation of the analytical 
art: the introduction of geometrical indeterminates. The examples of Chasles’s use of this 
technique that we can find in Note XV illustrate how it helps widen further the scope 
of the fundamental theorem. Continuing the sequence of transformations applied to the 
latter, Chasles writes (see Fig. 2.7):

One can give another statement for the general theorem that is the topic of this note: (…) 
The first four lines will meet an arbitrary transversal in four points, and the other four lines 
will meet a second transversal in four points corresponding one by one to the first four 
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points; and the anharmonic ratio of the first four points will be equal to the anharmonic 
ratio between the other four (Chasles, 1837: 338).

The points where the lines PS, PC, PC′, and PQ meet the original transversal have the 
same cross- ratio as the intersections of these lines with any other transversal. This remark 
also holds true for the intersections of the lines RC, RS, RQ, and RC′. The original 
transversal can hence be duplicated, as shown with the two bold dashed lines in Fig. 2.7. 
Reading the same theorem with respect to the intersections on these two transversals 
yields the statement just quoted.

Chasles comments on it:

This statement has the greatest generality possible, because of the indeterminacy of position 
of the two transversals (Chasles, 1837: 338, my emphasis).

In what follows, Chasles will suggest placing the two transversals in specific positions, 
which strongly evokes the formula of the analyst, in which one gives a variable a specific 
value. As a result, the theorem above will yield various known properties, the connection 
of which once more is thereby brought to light.

Chasles suggests the two following instantiations:

(…) Suppose the first transversal is one of the four lines stemming from the second 
vertex of the hexagon (that is, CSPQC′R, addition by K. Chemla), and that the second 
transversal is one of the lines stemming from the first vertex; then the theorem obtained 
is precisely the first of the theorems Pascal stated in his Essai pour les coniques, as one that 
could be deduced from his hexagram.
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Figure 2.7 Generalizing Desargues’s theorem by the introduction of indeterminate transversals
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(…) Now, suppose that the two transversals merge with one of the sides of the hexagon, 
the resulting theorem will be the very theorem by Desargues about the involution of six 
points (Chasles, 1837: 338).

We hence clearly see how the introduction of the indeterminate geometrical elements 
enables the geometer to connect properties.53 In conclusion of this whole sequence of 
variations on the form, Chasles concludes:

Thus, it is proved that the mystic hexagram, another theorem by Pascal also on the 
hexagon, that of Newton on the organic description of conic lines, that of Desargues on 
the involution of six points, and that of the Ancients ad quatuor lineas, are all corollaries 
of our theorem. We thereby understand the great number of particular truths to which this 
theorem (the one with which Note XV began, addition by K. Chemla) can extend, thereby 
showing relationships that had so far remained unnoticed and an origin both shared and 
satisfactory.

We can thus consider this theorem as being in a way a center from which most proper-
ties of conic lines, including the most general, derive. It would be appropriate, due to 
this very significant fruitfulness and the extreme ease with which it can be proved, that 
this theorem served as the foundation of a geometric theory of conic lines (Chasles, 
1837: 338– 9).

The theorem “lying at the center” embodies a kind of generality that characterizes 
Chasles’s approach to geometry in the first half of the nineteenth century by contrast to 
other French geometers, like Monge or Poncelet. This conviction regarding the organiza-
tion of a domain of mathematics, which Chasles shares with Quetelet and which accounts 
for his practice of geometry, can easily be shown to be correlated with Chasles’s personal 
mathematical contribution: bringing to the fore the notion of cross- ratio as that which lay 
at the source of transferable properties.

2.4  Conclusion

Chasles’s historical, mathematical, and even philosophical reflection about generality 
in geometry appeared multi- faceted. It echoed several aspects of the generality actually 
achieved in the application of analysis to geometry and thus seems to have been derived 
from a reflection on the sources of generality in the latter approach.

To begin with, analytical approaches are characterized by their use of formulas and the 
transformations of formulas into one another. The formulas do not distinguish between 
various configurations of the same geometrical system. They also do not separate related 

53 It would be worth analyzing systematically the similar techniques that Chasles brought into play in his 
writings, in order to complete the description of his reflection on the transformations that can be used in geom-
etry. Such transformations evoke the kind of operations by means of which the geometer emulates the analyst 
and also brings a kind of generality to the practice of geometry.
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but different objects such as conics. As a result, they connect propositions that could be 
otherwise perceived as different. Moreover, they allow the geometer to deal with them 
conjointly in his derivations, thereby subjecting them to a uniform treatment. Finally, 
formulas establish connections between propositions through the transformations to 
which they lend themselves as formulas. In Chasles’s view, Desargues had brought views 
to geometry that introduced a similar uniformity. When taking as object any section of a 
cone, he had modified the objects geometers traditionally took into consideration, in a way 
that allowed him to treat them conjointly. Further, in transferring appropriate properties 
of a given conic to other conics, he had introduced connections between properties that 
were once perceived as unrelated. Such connections were, till then, believed to be proper 
to algebra. Chasles identified in Monge’s Géométrie descriptive key ideas that inspired 
generalizations of these moves within geometry. First, Monge had carried out reasoning 
simultaneously on different geometrical configurations, further widening the objects taken 
into consideration in geometry. In the Aperçu historique, Chasles formulates a “principle of 
contingent relationships” to synthetize subsequent geometers’ reflections on this idea that 
he grasps in Monge’s reasoning. Second, Monge had widened the conception of the type 
of transformations one could apply to a geometrical configuration to transfer its properties 
to a transformed configuration. Chasles compares this practice to the analyst’s use of 
transformations, calling geometers to work systematically on transformations. Further, 
he develops a “doctrine” that highlights the connection between all these methods, in a 
way that characterizes specific features of his own approach to generality.

Chasles also focuses on another type of transformation in geometry, which a reflection on 
analytical treatments seems to inspire: the change of form of a theorem. The transformations 
of formulas into one another constitute indeed the heart of analytic procedures and account 
for its simplicity and efficacy in Chasles’s view. However, these transformations cannot 
bring “understanding,” since they do not shed light on the intermediary truths and thus 
do not show to the mind the connection between the result and the origin of the reasoning 
(Chasles, 1837: 114). As a result, they do not highlight “the true reason of things.”

The theory Chasles develops about the change of forms of theorems has the goal of 
introducing transformations into geometry. However, in contrast to the analytical ones, 
these transformations are easy and simple, to the point that they can be explained to any-
one on the street.54 They are immediate and connect truths to one another in a way that 
enlightens the mind, by showing the “source” of each truth. This attempt makes sense in 
relation to a belief to which Chasles subscribes: in any theory, there is a principal truth, 
which lies at its source and from which all the other truths follow “as simple transforma-
tions or natural corollaries.” The achievement of such simplicity yields the “criterion” 
that “genuine perfection” has been achieved in the theory (Chasles, 1837: 115). In this 
context, the change of form of a theorem is a tool by means of which the geometer can 
identify the truth which is the source of the others. This truth is characterized, among 
other criteria, by how simple it is and how easy it is to prove.55 It is further characterized 

54 Chasles attributes this ideal to Gergonne, referring to a memoire by Quetelet (Quetelet, 1827: 88, note 1.)
55 Chasles (1837: 115– 116, Note 2) attempts to account for this feature.
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by how easy it is to derive from it all other truths. It is thus most fruitful and general, in 
the sense that the other truths appear to be merely variants of it. The change of form of 
the source is also a tool to derive from it different expressions for it that enable extend-
ing the scope of truths that can be deduced from it. It is finally a tool used to establish 
connections between a given truth and the source, and in this lies part of the “art of the 
geometer.” Accordingly, although in this context like in analytical treatments all truths are 
connected through transformations, in contrast to analytical approaches the connections 
are established in a way that the mind can understand.

This belief bears on the theory as a whole, and on the organization of knowledge that can 
be achieved for it. Transformations of the statement of theorems play a key part in shaping 
such a theory, in a way that is reminiscent of the organization of knowledge brought about by 
analytical treatments of a domain. As we have shown, actors make the parallel, and compare 
the “source” to the principles of analytical theories. Here too this practice of generality in 
geometry thus appears to be inspired by other features of analytic approaches. In both cases, 
the organization achieved is completely different from what an axiomatico- deductive struc-
ture would yield. A first difference is manifest: neither the “principle” nor the “source” of a 
theory is taken to be indemonstrable. In Chasles’s case, the ease of its proof is an important 
criterion in its identification. Moreover, the reduction of proof to a minimum is a goal guiding 
the reshaping of the theory to reach its ideal form, whereas other goals characterize the project 
of organizing a theory in the context of axiomatico- deductive practices.

The parallel between Chasles’s ideal for a theory, which captures the essence of his 
practice of generality, and the analytical treatments should not conceal key differences 
between the two. The propositions that are placed at the root of the theories are, Chasles 
insists, of a different nature (Chasles, 1837: 119, Note 1). Probably even more important, 
however, are two related properties of Chasles’s take on generality: the geometrical theory 
shows the deep reasons for the truths of theorems and it establishes connections between 
the truths. These two properties derive mainly from the dissolution of proof that has been 
achieved in the theory. As a consequence, every statement is derived in such an easy way 
that understanding of the whole theory can be shared with everybody. After all, these 
differences account for why, despite the advantages that analysis brought to geometry, 
Chasles devoted much effort to develop a geometrical approach to geometry.

In that sense, Chasles’s Aperçu historique appears to provide a synthesis, within geom-
etry, of all the means of generality introduced by traditions that since the seventeenth 
century had remained in this respect unrelated to each other.
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3

Generality in Leibniz’s mathematics

EBERHARD KNOBLOCH

3.1  Introduction: “Everything is ruled by reason”

On 2 February 1702, Leibniz wrote to Varignon: “This is the case because everything 
is ruled by reason, and because otherwise there would be no science or rule. That would 
not be in accordance with the nature of the highest principle.”1 In other words: “The 
great harmonious order of the universe that ideally exists in God is embedded in the 
creation as reflection of the supremely rational nature of the creator” (Pasini, 2001: 959). 
Mathematics can reflect that order and that harmony.

In principle, there is a philosophical- theological basis of Leibnizian mathematics. From 
the beginning everything that exists is to be found in an orderly relation. The general and 
inviolable laws of the world are an ontological a priori (Holz, 1983: 55). The universal 
harmony of the world consists in the largest possible variety being given the largest pos-
sible order so that the largest possible perfection is involved.

Thus, to find the general laws, the general theorems, the rules, and the methods means 
to discover the universal harmony in mathematics and elsewhere.

This was the origin of Leibniz’s wish for such methods, theorems, rules, laws, objects, 
notions, notations, disciplines, and problems.

Even his language reflects the theological context— he called the theorems “divine”:

Sed omnium difficillima artis analyticae pars est, inventio theorematum … cum theo-
remata quae scilicet res maxime dissitas inter se harmonia quadam ligant, praeclara 
sunt compendia rationis humanae…. V. g. nisi extarent divina illa theoremata de centro 
gravitatis, tot praeclaras quadraturas, fortasse non invenissemus. (But the most difficult 
part of all of the analytical art is the invention of theorems … because the theorems that 
link together the most dispersed things by a certain harmony are excellent summaries 

1 “C’est par ce que tout se gouverne par raison, et qu’autrement il n’y aurait point de science ny regle, ce qui 
ne seroit point conforme avec la nature du souverain principe.” (GM IV, 94; Knobloch, 2006: 382).
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of human understanding…. If, for example, there were not those divine theorems on 
the center of gravity, maybe we would not have found so many excellent quadratures).2

After having examined the relationship between the value of generality and the harmo-
nies that are at the center of Leibniz’s concern (Section 3.2), I shall turn to the relationship 
of generality to several other epistemic values: beauty (Section 3.3); conciseness/ simplicity, 
a topic that I shall approach on the basis of the example of Leibniz’s work on the divisors 
of a product (Section 3.4). The latter epistemic value will lead me to raise the question 
of how the interest in generality relates to another of Leibniz’s major concern: notations. 
I shall take in this case the examples of determinants and sums of powers (Section 3.5). 
In order to explain the relationship of generality to utility and fecundity I shall refer to 
his so- called transmutation theorem (Section 3.6). Eventually I shall demonstrate how 
generality is connected with laws of formation (Section 3.7).

3.2  Generality and harmony

Those among the theorems that are general represent the order and reveal the order, the 
harmony. In short, every harmony implies a general theorem, implies generality.

Such a belief is manifest in Leibniz’s remarks written in January 1675, when he dis-
cusses analytical developments of an algebraic fraction whose numerator and denomi-
nator are polynomials. He replaces y by y + β— he calls this operation “explicare,” “to 
unfold”— and compares the two formulas term by term:

A
by ca y da y ca y
gy ha y ka y la y

z z z z

z z z z= + + + +
+ + +

− − −

− − −

1 1 2 2 3 3

1 1 2 2 3 3



++

a and its powers are factors of homogeneity that serve to always obtain terms of the same 
dimension z.

Leibniz replaces y by y + β and calls the result P. In order to compare the coefficients 
of the corresponding powers of y he denotes the numerator by S, the denominator by I. 
PSyz

 denotes the coefficient of yz  in the numerator of P,  ASz refers to the coefficient of 
yz

 in the numerator of A, etc.
Thus he gets:

PSy b ASzz = ( ),

PSy b ASz z ca ASzz− = + −1 1( ) ( ),β  etc.

because  
 
b y b y zy

z z
yz z z z z( ) (

( )
).+ = + + − + +− −β β β β1 2 21

2


2 A VII, 1, 708. Summer of 1673.
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Eventually he sums up:

Atque ita habemus formulam quae una est ex utilissimis totius analyseos, continuata 
enim exhibet generaliter explicationem formulae cujuscunque per binomium. Unde facile 
habetur et explicatio trinomii, scilicet explicando rursus ipsum β. per binomium; et per 
consequens habetur explicatio formulae cujuscunque per polynomium quodcunque. 
Progressiones hic occurrunt et harmoniae quocunque te vertas, et sufficiet inspexisse 
Tabulam, ad eas advertendas. Quot autem harmoniae, tot deteguntur theoremata generalia 
omnibus formulis communia, quae manifestum est, ex ipsa combinationum natura suam 
originem habere. (And thus we have a formula that is one of the most useful of all of 
analysis. Because if it is continued, it generally represents the explanation of an arbitrary 
formula by means of a binomial. For that reason one easily gets also the explanation of 
a trinomial, namely by explaining again β by a binomial. And as a consequence one gets 
the explanation of an arbitrary formula by an arbitrary polynomial. Here progressions 
and harmonies occur wherever one turns and it will suffice to have a look on the table 
to notice them. In fact, one discovers as many general theorems that are common to all 
formulas as there are harmonies. Obviously, such theorems originate from the very nature 
of combinations.)3

The order, the general law, must be discovered. Leibniz calls them arcana, mysteries, 
thus reminding us again of the religious context in which for him this research develops. 
For example, in 1678, he says about the general algorithmic solution of linear equations:

Ecce verum analyseos Arcanum (Behold, the true mystery of analysis).4

In January 1676, he elaborates a figure in order to find the law of distribution of prime 
numbers (see Fig. 3.1).

The multiples of 2, 3, 4, 5, etc. are marked one after the other on the horizontal parallels. 
The diagonals connect

2, 3, 4, 5, etc., that is, the natural numbers beginning with 2,
4, 6, 8, 10, etc., that is, the even numbers beginning with 4,
6, 9, 12, 15, etc., that is, the multiples of 3 beginning with 6, etc.

He comments:

Figura notabilis, in qua primorum et multiplorum arcana latent (A remarkable figure 
wherein the mysteries of prime and multiple numbers are hidden).5

To discover these mysteries, this harmony, one needs a “key.” This is what is evidenced 
on the basis of Leibniz’s own comments, when he is looking for the representation of 

3 LKK, p. 24.
4 LDK, p. 12.
5 A VII, 1, 580; Knobloch (2004: 59).
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symmetric functions by elementary symmetric functions x, y, z, δ, ε, etc. Let a, b, c, d, e, 
etc. be an arbitrary number of variables such that

x a b c d e
y ab ac ad bc bd
z abc abd abe bcd

= + + + + +
= + + + + +
= + + + +





 etc

are the elementary symmetric functions. The powers or products a a b a bc3 3 3, , , etc. are 
meant to denote symmetric functions. He writes in September 1680:6

Perficiendus est hic calculus, mira enim compendia, et omnino totius Algebrae clavem 
continet. (This calculus has to be perfected because it contains wonderful abridgements 
and, in general, the key of all of algebra.)

By contrast to the previous example, here it is no longer a theorem, but a “law of forma-
tion” of such calculations that reflects their order or their harmony. Such a law must 
comprehend all cases. It is reflected in the following representations that Leibniz deduces:7

a xx xy yx z
a b yx yy zx

a bc zx zy x

3 2

3 2

3 2

2 3
2 4
2 5

= − − +
= − − +
= − − +

δ
εδ

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.11.12.13.14.15.16. 17. 18.19.20.21.22. 23. 24. 25. 26.27.28. 29. 30.

Figure 3.1 The law of distribution of prime numbers
(Credits: A VII, 1, 580)

6 LKK, p. 191.
7 LKK, p. 190.
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and remarks:

Notetur egregius ille modus a3 revocandi ad harmoniam cum caeteris dum 3yx divellendo 
in duas partes −yx et −2xy nam caeteroquin hiabat series statim ab initio, quod concoquere 
non poteram. (That excellent way of reducing a3 to a harmony with the others by dividing 
3yx in the two parts −yx and −2xy should be emphasized. Because otherwise the series 
had a gap at the beginning. I could not adapt this fact.)

In other words, the way of writing down expressions plays a key part to make the general 
features in a situation appear. We shall come back to this question in Section 3.5.

3.3  Generality and beauty

In Leibniz’s view, the generality of a theorem, of a method, is accompanied by its beauty.
In short, generality implies beauty. I would like to give five examples to support this 

thesis. His Arithmetical quadrature of the circle, the ellipse, and the hyperbola was elaborated 
in Paris in the years 1675/ 76. By means of his rigorously established use of infinitely 
small quantities he deduced his “transmutation theorem” that is explained in detail in 
Section 3.6 (“Generality and utility/ fecundity”) and based on the construction of a new, 
integrable curve with regard to a given smooth curve.

Leibniz comments upon this method:

Inde porro investigans Methodum reperi generalem admodum et pulchram ac diu 
quaesitam, cujus ope datae cuilibet curvae analyticae, exhiberi potest curva analytica 
rationalis aequipollens. (By continuing my researches I have found a completely general 
and beautiful method sought for since a long time. It enables one to exhibit an analytical, 
rational, equivalent curve to an arbitrary, given analytical curve.)8

Neither here nor elsewhere can the implication “generality implies beauty” be reversed.
In the same way, when Leibniz speaks about the elimination of a common unknown 

of two algebraic equations, he states:

Sed possunt condi tabulae generales pulcherrimae. (But the most beautiful, general tables 
can be established.)9

By tables Leibniz means the general solution of elimination problems regarding two 
algebraic equations with several variables so that a special case can be reduced to the 
general case without that the special case has to be solved for itself.

The generality reveals the beauty of these tables, of general formulas. Likewise, when he 
is looking for the number of divisors of a product of prime numbers, he calls the theorem:

theorema pulchrum, breve, generale (a beautiful, concise, general theorem).10

8 Leibniz 2004: 138f.
9 LDK, p. 160.
10 LKK, p. 269.
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Note here the link that Leibniz establishes to the value of conciseness, we shall come 
back to it in the next section. Again, when he deduces Cramer’s rule for solving systems 
of linear equations, he concludes:

Habemus ergo theorema pulcherrimum cuius vis se extendit in infinitum. (Thus we have 
a most beautiful theorem the force of which extends to infinity.)11

Here, the generality of the rule is captured by the extension it has. Lastly, about the 
elementary symmetric functions he remarks:

Usus formarum praeter pulchritudinem et generalitatem contemplationis in eo consistit, 
ut ope earum inveniamus Radicem generalem aequationis affectae cujuscunque gradus. 
(If we leave aside the beauty and generality of the consideration, the utility of symmetric 
functions consists in the fact that we find with their aid the general root of a non- pure 
equation of an arbitrary degree.)12

Here too, beauty and generality are associated with a third value: utility, to which we shall 
return in Section 3.6.

3.4  Generality and conciseness/ simplicity

In Leibniz’s eyes, generality implies the two related values of conciseness and simplicity. 
If one really and completely penetrates the structure of the facts of a case, its description 
has to become concise, simple. The special details have disappeared in the statements of 
the facts, leading to a general theorem or method.

As a consequence, the generality of a theorem, of a method, is accompanied by its 
conciseness, by its simplicity. That is why Leibniz called theorems abridgements of the 
human understanding.

In short, generality implies conciseness and simplicity.
Such a link is precisely what Leibniz underlines in his comments about proposition 18 

of his Arithmetical quadrature of the circle, the ellipse, and the hyperbola, in which ax yn m=  
or x y an m =  form simple analytical figures. Leibniz demonstrates that the ratio of the 
area between two ordinates, the arc of the curve and the axis to the area between the 
corresponding abscissas, the same arc of the curve and the conjugated axis is equal to 
m:n. He says:

Hanc propositionem, novam ni fallor, credidi memorabilem, tum ob simplicitatem 
expressionis, quia facile retineri potest, tum ob usus generalitatem. (This proposition, 
new if I am not mistaken, seemed to me remarkable because of the simplicity of the 
expression, because it can be easily retained, and because of the generality of its applica-
tion as well.)13

11 LDK, p. 10.
12 LKK, p. 55.
13 Leibniz 2004: 157.
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Likewise he greatly praises the power series of the cosine function, saying:

Itaque hanc unicam seriem utique simplicissimam et retentu facillimam in animo haberi 

sufficit: c
a a

= − +1
2 24

2 4

 etc. (Therefore it suffices to have in mind this single series that 

is definitely the simplest and the most easily retained: c
a a

= − +1
2 24

2 4

 
etc.)14

In both cases, he thus insists on the ease for memorization that these theorems repre-
sent: in the former case, the theorem is easy to remember, because of its simplicity, in the 
latter case, one can limit oneself to memorizing only the theorem, because everything else 
needed can be deduced from it. Somewhat later, Leibniz adds:

Haec series ergo … universalissima et omnium quas norim ad usum publicum aptissima 
est. (So this series … is the most universal and, to the best of my knowledge, the most 
appropriate of all for a public application).

Leibniz mentions mechanics, engineering, geodesics, nautics, and astronomical calculations 
among the possible applications. Its special usefulness is based on the quick convergence 
of the series: the first three terms already lead to a high reliability of the value of c.

Yet the value of conciseness is sometimes in tension with that of generality, as it appears 
in the following example. In May 1678 he looks for an algorithmic solution of an algebraic 
equation of arbitrary degree. He uses symmetric functions and adds the revealing comment:

Hac autem via simul et compendiosiorem et non minus generalem, reperiri posse non 
puto. (But I do not believe that a method can be found that is at the same time shorter 
and no less general.)15

As Leibniz emphasizes, the link between simplicity and generality depends on the way 
of writing. He creates a notation for the resultant of a system of linear equations in the 
following way (see Section 3.5, “Generality and notation”):

0 1 2 3⋅ ⋅ ⋅

denotes the product 10⋅21⋅32⋅43 that is the product of the elements of the main diagonal 
of the coefficient matrix

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

14 Leibniz 2004: 337.
15 LKK, p. 98.
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0 1 2 3⋅ ⋅ ⋅  denotes the 24 permutations having the sign + or –  according to a special sign 
rule discovered by Leibniz in January 1684. In other words, 0 1 2 3⋅ ⋅ ⋅  represents the 
determinant of the coefficient matrix. He thus concludes:

Atque ita habemus ex his modum simplicissimum et generalissimum, scribendi formulam 
hujusmodi quancumque. (And in this way we obtain the simplest and most general method 
of writing such an arbitrary formula.)16

We shall come back to the importance of notation to achieve conciseness in the next 
section. This is a key factor for generality as well, since for Leibniz, there is an essential 
link, between a genuine conciseness and universality, where conciseness enhances, instead 
of limiting generality. This is what he recognizes is at stake, when in 1686, he characterizes 
his differential calculus in the following way:

Vix quicquam utilius, brevius, universalius fingi potest Calculo meo differentiali seu 
Analysi indivisibilium atque infinitorum. (Hardly anything can be imagined that is more 
useful, more concise, more universal than my differential calculus or analysis of indivisibles 
and of the infinite.)17

The number of divisors of a product is a good example to illustrate Leibniz’s search 
for a simpler and more general method. Shortly after 1676, Leibniz studies Frans van 
Schooten’s additive and recursive method of finding the number of combinations— in 
modern terms— the number of subsets of a finite set. Let be a b3 2 a product whose divisors 
are looked for. Van Schooten elaborates the following table:

a
a aa
a aaa

b ab aab aaab
b bb abb aabb aaabb

⋅
⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

Thus step by step the aliquot divisors can be found and counted: there are eleven. As van 
Schooten, Leibniz interprets the combinations of the elements as divisors of a product of 
numbers. After recognizing the multiplicative structure of van Schooten’s recursive law 
of formation, he deduces the result that the number of divisors of the number a5b4c3d2 is 
equal to 6⋅5⋅4⋅3 = 360.

He correctly remarks that van Schooten’s results regarding the numerical examples 
considered coincide with his own results and adds:

Sed non cognorat theorema tam pulchrum, breve et generale ususque est via illa prolixiore 
additionis. (But he had not known such a beautiful, concise, and general theorem and 
used that more cumbersome method of addition.)18

16 Knobloch (1972: 176).
17 GM V, 230; Leibniz (1989: 136f.).
18 LKK, p. 269.
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3.5  Generality and notation

Leibniz always emphasized the importance of an appropriate notation for the art of 
invention. The characteristic art, which lay at the center of his preoccupations, had to 
occupy itself with such notations. In 1678 he wrote to Tschirnhaus:

In signis spectanda est commoditas ad inveniendum, quae maxima est, quoties rei naturam 
intimam paucis exprimunt et velut pingunt, ita enim mirifice imminuitur cogitandi labor. Talia 
vero sunt signa a me in calculo aequationum tetragonisticarum adhibita, quibus problemata 
saepe difficillima paucis lineis solvo. (As far as signs are concerned one has to take care that 
they facilitate discovery. This facilitation is the greatest whenever they express, and so to speak 
paint, by little expenditure the intimate nature of a thing. Because the labor of thinking is 
wonderfully diminished. Now such signs have been used by me in the tetragonistic equations 
by means of which I often solve the most difficult problems in a few lines.)19

Leibniz thus makes here explicit the relationship between conciseness and ease of 
discovery. Leibniz refers to his differential calculus that is indeed the best known example. 
He explicitly said:

Idem autem est ac si dixisses opus esse characteribus nihil aliud enim est calculus quam 
operatio per characteres, quae non solum in quantitatibus, sed et in omni alia ratiocinatione 
locum habet. (But this is the same as if you would have said that characters are needed. 
Because the calculus is nothing else but the operation by characters that takes place not 
only in quantities but also in every other reasonable argument.)20

To understand better how Leibniz worked on such kinds of notations and oriented himself 
in the tension between generality and conciseness, I shall evoke other examples where 
one can recognize how he changed the notation in order to get the most concise notation 
(“paucis”) that nevertheless expresses the intimate nature of things.

3.5.1 The notation for determinants

We can identify four steps in Leibniz’s production of his notation (Knobloch, 2001):

a) Leibniz replaces the letters with double indices by the indices themselves:

a a a a10 21 11 20 0 10 21 11 20 0− = ⋅ − ⋅ =  leads to   

b)  The left indices do not change their order. Thus they play a minor role, they are 
written somewhat smaller than the right indices:

+ ⋅ ⋅1 2 1 20 1 1 0 0− =

19 A III, 2, 444f.
20 A III, 2, 452.
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c) The left indices are superfluous and can be left out: 0 . 1 –  1 . 0 = 0

d) Even this notation can be simplified:

0 1⋅ = 0

The notation 0 1⋅ ⋅ ⋅2 3 … n denotes a determinant. We have only to know the meaning of 
this symbol in order to write down the algebraic expression explicitly. Every step of the 
procedure of abbreviation can be reversed. The conciseness of the notation reflects the 
conciseness of the solution and consequently of its generality. For example (see Section 
3, 4, “Generality and conciseness/ simplicity”),

0 1 2 3 0 1 2 3 0 1 3 2 0 2 3 1 1 2 3 0
1 0 2 3 1 0 3 2

⋅ ⋅ ⋅ = + +
− +

– –
–

. . . . . . . . . . . .
. . . . . . 22 0 3 1 2 1 3 0

0 2 1 3 0 3 1 2 0 3 2 1 1 3 2 0
2 0 1 3 3

. . . . . .
. . . . . . . . . . . .
. . .

+
− + +
+

–
– .. . . . . . . . .

. . . . . . . . . . . .
.

0 1 2 3 0 2 1 3 1 2 0
1 2 0 3 1 3 0 2 2 3 0 1 2 3 1 0
2

+
+ +
−

–
– –

11 0 3 3 1 0 2 3 2 0 1 3 2 1 0. . . . . . . . . . .– + +

Terms which emerge from an odd number of transpositions from one another have 
different signs, and in the case of an even number, they have the same sign.

3.5.2 The products of power sums21

Let us assume that we have to multiply three power sums

a b c a

a b c a

a b c a

m m m m

n n n n

p p p p

+ + + =

+ + + =

+ + + =







..

..

..

,

,

.

Again, Leibniz uses three notations step by step.

a a a a a b a b c

a b

a

m n p m n p m n p m n p

m p n
.. .. .. .. .. .. .. .. ..

.. ..

= + +

+

+

+ + +

+

... ..

n p mb+

a)  First the sum am = am + bm + cm + dm + … is composed of a finite number of ele-
ments (of a sum)

21 LKK, pp. 236– 42.
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b) Then Leibniz leaves out the bases and writes only the exponents:

mnp mn p
mp n
np m m n p

+ |
         
          

|
|| |+

The vertical lines separate the different bases from each other.

c) Finally he describes these products by the partitions of the natural number that 
represents the number of power sums involved. In the case of 3, this yields

3 2 1 1 1 1+ + | | |

The encircled number 3 is a true number and indicates the different possibilities of putting 
three objects (in our case the exponents m, n, p) into two classes in such a way that every 
class contains at least one object.

This is the most concise representation of our problem which at the same time reveals 
the hidden relations between an algebraic problem and a problem of additive number 
theory.

The not encircled numbers indicate the numbers of objects contained in a class. The 
vertical lines separate the classes of one partition from each other. In other words the 
original multiplication problem of power sums has been reduced to a partition problem 
of additive number theory. The general partition problem can be explained as follows. 
One has to find the number of partitions of n objects in a set X into a certain number of 
classes of cardinal 1, 2, …, k.

Let k = 1r1 + 2r2 + … + krk be the type of the partition. k occurs on the right side of 
the equation if and only if r r rk1 2 1 0= = = =−  and rk = 1.

N = k
k r r rr r r

k
k

!
( !) ( !) ...( !) ! !... !1 21 2

1 2

will be the number of partitions of that type.

3.6  Generality and utility/ fecundity

In Leibniz’s view, the more general a theorem or a method, the more useful it is. The 
great value of generality is based on its utility, its fecundity. We have to remember that 
Leibniz always emphasized that theory has to be combined with practice, that is, theory 
with its applications. This explains why generality plays a key part for developing the 
theory.

In short, generality implies utility and fecundity.
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In 1673 Leibniz discovered the so- called transmutation theorem which we shall evolve 
in greater detail below. It can be interpreted in terms of integration by parts and enabled 
Leibniz to integrate large classes of curves. Consequently he said about it:

Arbitror unam esse ex generalissimis, atque utilissimis, quae extant in Geometria, isque 
adeo enim universalis est, ut omnibus curvis, etiam casu aut pro arbitrio sine certa lege 
ductis, conveniat…. Sed et inter foecundissima Geometriae theoremata haberi potest.  
(I believe that it is one of the most general and most useful (propositions) which exist 
in geometry. Because it is universal to such a degree that it is appropriate for all curves, 
even those that are drawn by chance or arbitrarily without a certain law…. But it can also 
be numbered among the most fruitful theorems of geometry.)22

The statement underlines the fact that the method deals with all curves in the same way. 
It is the same value that Leibniz prizes, when he emphasizes further the fruitfulness of 
his method of using infinitely small quantities:

Liberrimo mentis discursu possumus non minus audacter ac tuto curvas quam rectas 
tractare. Cujus specimen totus hic libellus erit si quis methodi fructum quaerit. (By the 
freest possible intellectual discourse we can no less boldly and securely handle curves 
than straight lines. This whole booklet will be an example thereof if one is looking for the 
fruit of the method.)23

In fact Leibniz always wanted to improve the art of invention by his methods. This is 
what is at stake when he later replaces the previous geometrical method by his differential 
calculus; we will come back to this issue. In 1691, he said:

Sed animadverti, fontes non satis adhuc patuisse et restare interius aliquid, quo pars illa 
Geometriae sublimior tandem aliquando ad analysin revocari posse, cujus antea incapax 
habebatur. Ejus elementa aliquot abhinc annis publicavi, consulens potius utilitati publicae, 
quam gloriae meae, cui fortasse magis velificari potuissem methodo suppressa. Sed mihi 
jucundius est, ex sparsis a me seminibus natos in aliorum quoque hortis fructus videre … 
methodos potius, quam specialia licet vulgo plausibiliora aestimavi. (But I noticed that the 
sources were not yet sufficiently clear and that something was lacking by which that higher 
part of geometry could sometimes finally be reduced to analysis, for which it was unsuitable 
in former times. Some years ago I published its elements caring more about public utility 
than about my glory that I presumably would have fostered more by suppressing the method. 
But for me it is more agreeable to see how the fruits grew up also in the garden of others 
after I had spread the seeds … I rated methods higher than special problems though they 
usually are more pleasing.)24

In 1694, he characterizes the new general method introduced referring to God:

Enfin notre méthode étant proprement cette partie de la Mathématique générale, qui 
traite de l’infini, c’est ce qui fait qu’on en a fort besoin, en appliquant les Mathématiques 

22 Leibniz (2004: 71).
23 Leibniz (2004: 185).
24 GM V, 257f.
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à la Physique, parce que le caractère de l’Auteur infini entre ordinairement dans les 
opérations de la nature. (Finally our method is that part of general mathematics which 
occupies itself with the infinite. For that reason one needs it very much if one applies 
mathematics to physics because the character of the infinite Author usually enters the 
operations of nature.)25

There we have again the theological basis of Leibnizian mathematics, which accounts 
for another of its features.

The transmutation theorem may serve as a model that illustrates how the highly 
esteemed generality of a theorem can lose this high esteem on a new level of abstraction.

While Leibniz praises this theorem in the context of infinitesimal geometry— we came 
across this point earlier— he changed this assessment after the invention of his differential 
calculus. In other words, generality depends on the method applied:  the geometrical 
method involved a certain level of generality while the calculus represented a new level 
of generality. But we must note that while every calculus, especially every algorithm, is a 
method, it is not true that, as the transmutation theorem illustrates, every method must 
be a calculus.

The transmutation theorem can be formulated as follows. Leibniz considers a curve 
through the points A, 1C, 2C, 3C, etc. (see Fig. 3.2). He constructs a new curve A, 1D,   
2D, 3D, etc. in such a way that the ordinate BD (which is a general way of referring to iBiD, 
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Figure 3.2 The transmutation theorem
(Credits: A VII, 6, 528)

25 GM V, 308.
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the same notation accounts for what follows) is equal to the segment AT on the y- axis: T 
is the point of intersection of the tangent in C with the y- axis AT. The theorem reads:

The area Q of the mixtilinear quadrilateral 1D1B3B3D2D1D is twice as large as the area 
R of the sector 1CA3C2C1C.

The theorem is a generalization of Cavalieri’s method: a restriction, a limit has been 
eliminated. Cavalieri decomposed figures only into parallelograms. Leibniz replaces the 
parallelograms by triangles. As Leibniz explains, rectangles or parallelograms are only a 
special case of triangles: one can consider the parallels as convergent straight lines whose 
point of intersection, or common center, is infinitely far away, much like the second focal 
point of a parabola:

Hinc jam ope theorematis hujus nostri feliciter evenit ut harum quoque novarum ordi-
natarum, nempe convergentium usus esse possit ad quadraturas, utque figurae non 
tantum per ordinatas parallelas in parallelogramma … sed et per ordinatas convergentes 
in triangula … resolvantur. (Thus thanks to our theorem it happily comes about that 
these new, namely convergent, ordinates are useful for quadratures, so that figures can 
be resolved not only by parallel ordinates into parallelograms … but also by convergent 
ordinates into triangles.)26

The principle of such a generalization can be described as follows: The earlier objects 
used in the method are interpreted as special cases of new objects. The same principle 
is to be found in Leibniz’s demonstration of his rigorous foundation of integration 
theory.

Instead of inscriptions and circumscriptions, in other words instead of extreme values 
of the integration interval, he takes an arbitrary intermediate value of such an interval. 
The extreme values that bound a certain interval are but intermediate values in that new 
interpretation.27

Such a method reminds us of the Leibnizian method of universality:  this method 
shows how to find by a single operation general analytical formulae and geometrical 
constructions for different subjects and cases while every of them would need a special 
analysis or synthesis without that method.

On peut juger par là que l’usage de la Méthode de l’universalité s’étend aussi loin que 
l’algèbre et l’analyse … Car il arrive tous les jours qu’un même problème est de plusieurs 
cas, dont la multitude embarrasse beaucoup, et nous oblige à des changements inutiles 
et à des répétitions ennuyeuses dont cette méthode nous garantira à l’avenir. (Thus one 
can conclude that the use of the method of universality extends so far as algebra and 
analysis … Because it happens every day that the same problem includes several cases 
the multitude of which is very embarrassing and forces us to make many changes and 
annoying repetitions. This method will protect us from them in the future.)28

26 Leibniz (2004: 72.f).
27 Leibniz (2004: 48– 51).
28 C, p. 123.
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In 1690, about 15  years later, Leibniz explained this transmutation theorem to 
Bodenhausen, first with the aid of Archimedean methods, then with the aid of the differ-
ential calculus. In the end, he concludes:

Fateor autem me Theorematis hujusmodi opus non habere, nam quicquid ex illis duci 
potest, jam in calculo meo comprehenditur; libenter tamen iis utor, quia calculum imagi-
nationi quodammodo conciliant. (But I confess that I do not need such theorems (that is, 
the transmutation theorem, note of the translator) because whatever can be deduced from 
them is already contained in my calculus; yet, I use them willingly, because they connect 
in a certain way the calculus to the imagination.)29

And somewhat later, again addressing the issue of understanding, he writes:

Sed haec omnia, ut verum fatear, non sunt nisi ad populum phalerae pro illis, qui analysin 
nostram non intelligunt; nam quadraturae talium figurarum ex nostro calculo inmediate 
deducuntur. (Truth to tell, all that is only a superficial popular ornament for those who 
do not understand our analysis. Because the quadratures of such figures are immediately 
deduced from our calculus.)30

In other words, the calculus makes possible the double aim of Leibnizian mathematics:

1. to liberate the arguments from an inspection of figures, that is, from recourse to 
the imagination (liberation);

2. to relieve the memory by a mechanization of the calculus, that is, by using an 
algorithm (mechanization).

3.7  Generality and the laws of formation

The regularity in the structure of an expression, the order of a series, the generality of a 
solution are mirrored by the general laws of formation that reveal their patterns and that 
are— according to Leibniz’s conception— combinatorial laws: these laws render the tables, 
formulas, explicit calculation superfluous. We need not write down the terms of 0 1 2 3⋅ ⋅ ⋅  
if we know the structure of this expression (a determinant). We need not write down the 
representation of an arbitrary symmetric function (in order to elaborate a table of such 
representations), if we know the law of formation regarding such a representation. We 
need not write down the expansion of f x x( ) sin=  into an infinite series if we know its 
law of formation. The existence of such laws manifests the generality, as we have seen 
above. In short: the laws imply generality:

Ars autem quaerendi progressiones, et condendi Tabulas formularum, est pure combi-
natoria …. Fateor interim nusquam pulchriora quam in algebra artis combinatoriae sive 

29 A III, 4, 637.
30 A III, 4, 639.
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characteristicae generalis specimina edita esse. (But the art of looking for progressions [note 
of the translator: that is, laws of formation] and of establishing tables of formulas is purely 
combinatorial…. In the meantime I confess that nowhere have more beautiful examples of 
the combinatorial or general characteristic art been published than in algebra.)31

Elaborating a general formula for the quotient (algebraic division) of two polynomials 
he concludes:

Et ces Loix étant trouvées, on n’auroit pas même besoin de la Formule, si ce n’est pour 
les mieux faire entendre (And if one has found these laws, one would not even need the 
formula unless it is to make them better understandable), he says in 1712.32

The expansion of the trigonometric functions like f x x( ) sin=  renders trigonometric 
tables superfluous. For that reason he calls his treatise Arithmetical quadrature of the 
circle, of the ellipse, and of the hyperbola. A corollary thereof is the trigonometry without 
tables (Leibniz, 2004). For the same reason the combinatorial art relieves the memory 
in another way than the calculus, while it is at the same time an essential instrument of 
the art of invention.

Let us consider two examples of the combinatorial art.

3.7.1 The general canon of division

Let us assume that we are looking for the quotient

20 21 22 26 27 10 11 12 137 6 2 5 6 7 3 2 2 3x ax a x a x a x ax a x a+ + + + + + + + :

The quotient reads as follows:
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31 A III, 2, 425.
32 LDK, p. 325.
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Leibniz enumerates four such combinatorial laws.33

a) The formal law of homogeneity
 The members of the coefficient of a term like a2x2, for example, 10.10.22, 10.11.23, 
etc. are always the product of three quantities. They are divided by 103 so that the 
result is always a quantity of four dimensions.

b) The virtual law of homogeneity
 The sum of the right figures of the factors of such a coefficient must always be the 
same in every number of the coefficient: 0 + 0 + 2 = 0 + 1 + 1 = 2.

c) The veritable number (that is prefixed to every number)
 This number is the number of permutations with repetitions of the quantities 11, 
12, 13, etc. For example, one gets: 3⋅10⋅11⋅11⋅12. (The factors 10, 20, 21, 22, etc. 
are left aside in this respect.)

d) The sign of such a combination

If the number of the dimension of a combination of quantities such as 11, 12, 13, etc. is 
even, then the sign is +, and otherwise −.

3.7.2 The determinants

In 1684, Leibniz developed his determinant theory. Theory means that he demonstrates/ 
deduces a set of general theorems, as he says in the title of his crucial treatise:

In hac scheda theoremata generalia exhibentur pro aequationibus simplicibus. (In this 
sketch general theorems for linear equations are presented.)

And he remarks:

Porro modus tollendi literas incognitas generalibus quibusdam Theorematibus ex arte 
combinatoria enuntiatis comprehendi potest. Itaque illis accurate constitutis, facilius 
ac distincta ratione expressis, maximam calculi algebraici partem abscindemus, ita ut 
desiderati valores sine calculo simplici quadam theorematum generalium ad exempla 
specialia applicatione statim scribi possint. (Furthermore, the method of eliminating 
unknown letters can be comprehended by some general theorems enunciated according 
to the combinatorial art. This is why, when those have been accurately established and 
expressed more easily and in a distinct manner, we will eliminate the greatest part of 
algebraic calculation, so that the values looked for can be at once written down without 
any calculation by a certain simple application of general theorems to special examples.)34

At the beginning of the twentieth century, determinant theory was indeed still a part of 
combinatorics. His studies of symmetric functions, of the polynomial theorem, of power 
sums, and related topics that all were related to the algorithmic solution of algebraic 

33 LDK, p. 325f.
34 Knobloch (1972: 168).
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equations led Leibniz to the conviction that the combinatorial art included algebra as a 
part of it.

As we have already pointed out, Leibniz invents a notation for a determinant by taking 
the product of the terms of the main diagonal:
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21
0 1= ⋅

or more generally
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a

a
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nn

He has full knowledge of the structure of such a determinant:

a. It consists of n! terms that are generated by the permutations of the right indices.

b. The signs obey a combinatorial law.

3.8  Epilogue: the order of the disciplines in view 
of their generality

From the previous analysis, Leibniz deduces the following consequence. The combi-
natorial art comprehends algebra, or algebra is subordinated to the combinatorial art. 
Algebra needs the combinatorial art in order to be perfected. The more general discipline 
comprehends the less general discipline.

In May 1678, when he wrote to Tschirnhaus emphasizing the importance of symmetric 
functions, he made clear how disciplines were in his view organized:

Quae alios maximos habet usus, continet enim Algebrae totius arcana; Combinatoriae 
vero applicationem egregiam. Nam ego Combinatoriae subordinatam puto Algebram quia 
combinatoriam non habeo pro arte inquirendi numeros possibiles variationum; sed pro 
arte formarum seu pro scientia generali de Simili et Dissimili. Cujus regulas Algebra ad 
magnitudinem in universum, Geometria ad figuras applicat. (It [note of the translator: the 
table of symmetric functions] has other most important applications because it contains 
the secrets of the whole algebra, in fact an excellent application of the combinatorial art. 
For I believe that algebra is subordinated to the combinatorial art because I do not consider 
the combinatorial art as the art of asking for the possible numbers of variations but as the 
art of forms, or as the general science of the similar and the dissimilar. Algebra applies its 
rules to magnitude in general, geometry to figures.)35

35 A III, 2, 425.
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Hence he wrote to Thevenot on 24 April 1689 on his algebraic studies on the solution of 
equations of the fifth degree:

Pour aller au cinquième il m’a fallu trouver la méthode générale pour toutes les autres 
je l’avois il y a longtemps, lors même que j’ay été en France … et à fin de l’abréger je 
meditois de dresser certaines tables d’une progression réglée…. Après cela on pourra dire 
que ce qui est proprement l’Algèbre, vu de la résolution des équations par leurs racines, 
est achevé. (In order to go to the fifth degree I had to find the general method for all the 
others that I disposed of a long time ago when I was in France … and in order to abridge 
it I thought of elaborating certain tables of an ordered progression …. After that one will 
be able to say that all that properly regards algebra as far as the solution of equations by 
means of their roots is concerned has been finished.)36

As we know today, Leibniz was too optimistic.
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4

The problem of a “general” theory 
in mathematics: Aristotle and Euclid

DAVID RABOUIN

4.1.  Introduction

Science is the knowledge of the general and there is no science in the perception of the 
particular (αἰσθάνεσθαι µὲν γὰ ρ ἀνάγκη καθ’ ἕκαστον, ἡ δ’ ἐπιστή µη τὸ τὸ καθό λου γνωρί- 
ζειν ἐστί ν).1 This famous Aristotelian motto is often considered as an essential ingredient 
in any definition of what “science” is: there is no science without generality. But what 
does generality mean? A simple (but not exclusive) criterion, proposed by Aristotle, is 
that any truly scientific demonstration should hold “for all” (κατὰ  παντὸϚ) the entities it 
concerns, exhibiting an attribute belonging “in itself” (καθ’ αὑτὸ) or “essentially” to these 
entities (Analytica Posteriora I, 4). To demonstrate that the sum of the interior angles of 
an isosceles triangle is equal to two right angles is correct. However, the demonstration 
would not satisfy the requisite for a truly scientific knowledge, since the property holds 
“for all” triangles and belongs to the triangle “in itself” (An. Post. I, 4, 73 b 38– 9). As 
is obvious from this kind of example, these criteria suppose a clear delineation of the 
“domains of objects” under study— what Aristotle often calls a “genus” delineated in 
some “species” and which he considers to be the foundation of any scientific knowledge 
(see Section 4.3.1).

At first glance, this general condition fits very well into the general framework of 
Euclidean mathematics. Indeed, in the first nine books of the Elements, we deal only with 
two distinct domains of objects: geometrical entities, sometimes called “magnitudes,” and 
“numbers.” The delineation is so neat that Euclid never transfers a demonstration from 
one of these fields to the other. But at the beginning of Book X, he suddenly permits a 

1 An. Post. 87 b 37. Unless otherwise stated, all translations are mine.
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comparison between magnitudes and numbers— more precisely, he sets a certain propor-
tion in which a ratio between magnitudes and a ratio between numbers are compared. 
How can this be, since ratios between magnitudes and ratios between numbers have been 
defined separately (and differently) in the preceding Books? Is there a “more general” 
point of view from which magnitudes and numbers might be treated without distinction? 
And if so, did Euclid violate the Aristotelian prescription by treating general features (typi-
cally the operative core of “proportions”) in specific cases in Book V (for magnitudes) 
and in Book VII (for numbers), where a more general treatment was possible? This will 
be the specific figure of what I will call the “problem of generality” in Euclid’s Elements.

In the first part of this chapter, I will scrutinize the general context of this problem and 
evoke some of the modern strategies proposed to solve it. These strategies, as I will explain, 
rely on historical reconstructions and often make use of evidence taken from Aristotle. But 
they usually have a purely utilitarian relationship to these sources. On the contrary, I will 
propose, in the second part of the chapter, to study these Aristotelian passages in their 
proper context. Indeed the problem of generality makes several appearances in Aristotle’s 
texts and these occurrences open up very interesting perspectives on the problem.

4.2  Euclid

4.2.1  The domains of objects in Euclidean mathematics

At first glance, the domains of objects in Euclid’s Elements are quite clearly delineated. 
Books I– IV deal with lines, triangles, rectangles, circles, polygons, etc., that is, what we 
would like to call “geometrical” objects. Books VII– IX deal with “numbers.” Book V 
occupies a particular situation in this setting, since it proposes a unified theory of ratios 
existing between any kind of geometrical objects (through the basic relation “having the 
same ratio,” usually rendered as “proportion”)— a theory which is then used to dem-
onstrate geometrical results (Book VI). On this occasion, a new term is introduced to 
designate geometrical objects (susceptible to enter in a ratio): “magnitude.” This term 
is not defined, but conditions are specified for something to be of such a “magnitude.”2

Contrary to “magnitude,” “number” is defined: it is a multiplicity composed of units 
(τὸ ἐκ µονάδων συγκεί µενον πλῆθοϚ VII.Def2). Hence number is not simply a mere multi-
plicity (πλῆθοϚ), but rather a multiplicity composed of units (µονάδων). This distinction is 
of tremendous importance when it comes to comparing magnitudes. For example, when 
Euclid says that a magnitude AB is “twice” another magnitude DC, he does not use a 
“number,” but a “multiple.” The language of “multiplicity,” contrary to that of “number,” 

2 See V.Def4: “Magnitudes are said to have a ratio to one another which are capable, when multiplied, of 
exceeding one another” (The English translation of Euclid that I use is Heath, 1908). There is a first problem 
of generality in the introduction of this concept, since it is not clear that it can really serve as a general designa-
tion for all the geometrical objects of Books I– IV. One classic counter- example is given by the notion of “angle” 
(horn angle, problem of division of an angle in an arbitrary part, etc.). I won’t engage with this discussion in 
this paper.

 

 



 4.2 Euclid 115

   115

is treated as primitive in Books V and VII.3 Another important aspect of the Euclidean 
definition of number is that a ratio between numbers is not a new kind of number and 
cannot be treated as such.4

There is absolutely no communication between these two blocks. Not only does Euclid 
not use “numbers” when dealing with “magnitudes,” he never transfers a demonstration 
from one field to the other. This is true to the point that he sometimes gives two different 
demonstrations for what appear to us as similar, if not identical, propositions. We will see 
one famous example of this later on (the fact that proportions can be “alternated”). The 
only “general” point of view (i.e., holding for magnitudes and numbers) is given at the 
very beginning of the treatise by what are called “common notions” (κοινὰ  ἐννοί α). But 
if we except these common notions, which are deliberately set up before we enter our 
blocks, there seem to be (at least) two completely separate fields of objects.

One could propose a simple explanation for this fact by saying that in Euclid the 
separation between what we call geometry and arithmetic, ultimately grounded on distinct 
“domains of objects,” “magnitude,” and “number,” could not be overcome. But this 
interpretation is challenged at the beginning of the third block (Book X). In this book a 
comparison between numbers and magnitudes is permitted. Moreover, it plays a crucial 
role in the characterization of a very important notion, that of “commensurability”:

X.5: Commensurable magnitudes have to one another the ratio which a number has to 
a number.

X.6: If two magnitudes have to one another the ratio which a number has to a number, 
the magnitudes will be commensurable.

These propositions make it clear that a “general” point of view, allowing for the compari-
son between the different domains of objects, is possible. We could even consider this point 
of view as “universal” since it encompasses any kind of mathematical object appearing in the 
treatise (we will see later that there is evidence in Aristotle of this possibility). One immediate 
difficulty, however, is that the relation “to have the same ratio” has been defined separately 
for magnitudes and numbers. Let’s recall these definitions to make the problem clear:

V.Def5: Magnitudes are said to be in the same ratio, the first to the second and the third to the 
fourth, when, if any equimultiples whatever be taken of the first and third, and any equimulti-
ples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal 
to, or alike fall short of, the latter equimultiples respectively taken in corresponding order.

VII.Def20: Numbers are proportional when the first is the same multiple, or the same 
part or the same parts, of the second that the third is of the fourth.

3 On the way in which one can use “multiple” without using “numbers,” see Vitrac (1990– 2001, Vol. 
2: 15–17). The basic term of comparison will be the relation of “equimultiple,” that is to say the relation “being 
the same multiple as.” Note that Heath’s translation of Euclid in English does not respect this vocabulary and 
regularly introduces numbers to express “multiples.”

4 As most recent commentators have emphasized, this goes against the modern tendency to consider rela-
tions as objects. See Mueller (1981), Caveing (1998), and Vitrac (1990– 2001, Vol. 2: 127– 34, “Sur les présup-
posés du livre V”).
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The definition in Book V is a very specific and complex treatment of “proportion” 
relying on the stability of comparison between magnitudes through the “equimultiple” 
relation. The definition of proportion for numbers is much more straightforward and is 
directly derived from the basic relationship of measure. Considering these definitions, 
the possibility of a common point of view seems at first inconsistent.5 There is no way to 
compare a ratio between magnitudes and a ratio between numbers, since to “have the same 
ratio” would not have the same meaning on both sides of the comparison. But still there is 
such a comparison in Book X. As will become clearer in what follows, this problem was 
of tremendous importance in the history of the modern commentaries to the treatise.6

4.2.2  Proportion and domains of objects

The independence of numbers and magnitudes is not solely grounded on the fact that 
Euclid treats them separately. He also seems to sometimes give separate demonstrations 
for the same property. This is precisely the case for the properties of proportions. One 
famous example, to which I will return later, is the case of permutability or, as the Greeks 
called it, “alternation” (ἐναλλάξ):7

V.16: If four magnitudes be proportional, they will also be proportional alternately.

VII.13: If four numbers be proportional, they will also be proportional alternately.

The propositions are here strictly identical in their formulation. This is a typical case 
where we moderns have the unfortunate tendency to ask ourselves: why doesn’t Euclid set 
this property as being a property of proportion in general? An immediate (and accurate) 
answer would be that he had no notion of “proportion in general.” But the real question 
is why? Is it because he does not “see” this level of generality, or because this level is not 
possible in his system?

To answer these questions, we have to take a closer look at the demonstrations. 
Demonstration of V.16 is a direct application of the tool introduced in V.Def5. But 
instead of taking equimultiples of the first and the third (resp. the second and the fourth) 
magnitudes, Euclid takes equimultiples of the first and the second (resp. the third and 
the fourth). These equimultiples remain of course in the same proportion as the given 
magnitudes. This means that “if the first be greater than the third, the second will also be 
greater than the fourth; if equal, equal; and if less, less.” But this is precisely the condition 
imposed on equimultiples (in V.Def5) for the ratio of the first to the third to be the same 
than the ratio of the second to the fourth. Hence, the conclusion.8

5 For the literature on this problem, see Vitrac (1990– 2001, Vol. 3: 106, n. 57 and 58).
6 In this paper, I will focus on the modern commentaries, but the problem of the expression of a “general 

theory” in Euclid’s Elements comes from a very ancient tradition. On that point, I refer the reader to Rabouin 
(2005) and Rabouin (2009).

7 In symbolic notations, permutability is expressed by the equivalence: (A : B :: C : D) ⇔ (A : C :: B : D), 
where “:” denotes a ratio between magnitudes and “::” the relation “having the same ratio.”

8 Here is the demonstration in Heath’s translation: “Let A, B, C, D be four proportional magnitudes, so that, 
as A is to B, so is C to D; I say that they will also be so alternately, that is, as A is to C, so is B to D.”
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The demonstration of VII.13 is completely different. It is, in fact, almost immediate 
since Euclid established in proposition VII.10 that the relation “being the same part or 
parts” can be alternated. He can then directly apply VII.Def20 to conclude: “since, as 
A is to B, so is C to D, therefore, whatever part or parts A is of B, the same part or the 
same parts is C of D also [VII.Def20]. Therefore, alternately, whatever part or parts A is 
of C, the same part or the same parts is B of D also [VII.10]. Therefore, as A is to C, so 
is B to D. Q. E. D.”

Even if the propositions seem identical in their form, the demonstrations are very 
different. The fact that number and magnitude could enter in a same proportion like in 
X.5 and X.6 is then more mysterious than ever.

A natural hypothesis to clear up this mystery is to appeal to an historical claim. It 
is largely plausible that Euclid was, in the Elements, collecting results that he did not 
discover all by himself. It is, therefore, possible that he put side by side (in Books V 
and VII) different stages of theories of proportion, a general and a particular one. 
The more “general” theory could then allow for a proportion holding for numbers 
and magnitudes like in X.5 and X.6, even if it was not explicitly stated for both types 
of objects.9

This hypothesis is quite easy to test. We need simply insert the objects of one theory 
into the other in order to see if it works. Let us first try inserting magnitudes instead of 
numbers in the theory of proportion of Book VII. This will, of course, mean to restrict 
ourselves to a particular case in which the notion of proportion given in VII.Def20 holds. 
We will thus work with magnitudes which are “the same part or the same parts” of each 
other, that is to say which are “commensurable” with one another. Since this is the frame-
work of X.5 and X.6, we can accept this restriction. We can then read proposition VII.13 
as saying: “If four magnitudes be proportional, they will also be proportional alternately” 
(“magnitudes” meaning here “commensurable magnitudes”). The demonstration will still 
be valid, as would be VII.Def20, since they only make use of the basic relationships: “being 
a part of” or “being some parts of,” which holds between magnitudes when they are 
commensurable. This conclusion is sometimes considered as supporting the existence of 
a kind of “general” theory of proportion (say, before one saw the importance of incom-
mensurable magnitudes or even before one actually “discovered” them: I’ll return to the 
context of this hypothesis later).

For of A, B let equimultiples E, F be taken, and of C, D other, chance, equimultiples G, H. Then, since E is the 
same multiple of A that F is of B, and parts have the same ratio as the same multiples of them, [V.15] therefore, 
as A is to B, so is E to F. But as A is to B, so is C to D; therefore also, as C is to D, so is E to F. [V.11] Again, 
since G, H are equimultiples of C, D, therefore, as C is to D, so is G to H. [V.15]. But, as C is to D, so is E to F; 
therefore also, as E is to F, so is G to H [V.11]. But, if four magnitudes be proportional, and the first be greater 
than the third, the second will also be greater than the fourth; if equal, equal; and if less, less. [V.14]. Therefore, 
if E is in excess of G, F is also in excess of H, if equal, equal, and if less, less. Now E, F are equimultiples of A, 
B, and G, H other, chance, equimultiples of C, D; therefore, as A is to C, so is B to D. [V.Def5] Therefore etc. 
Q. E. D.

9 Another natural hypothesis, which I will treat separately in the next section, is that there was a third, more 
general, theory of proportion allowing for X.5 and X.6 to be formulated.
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But the next occurrence of proportion in VII.19 suffices to ruin this hypothesis:

VII.19: If four numbers be proportional, the number produced from the first and fourth 
will be equal to the number produced from the second and third; and, if the number 
produced from the first and fourth be equal to that produced from the second and third, 
the four numbers will be proportional.

In this case, there is no way one can replace numbers by magnitudes, even if we restrict 
ourselves to magnitudes commensurable with each other. This is grounded on a very 
important feature of “magnitudes”: there is nothing like an internal multiplicative opera-
tion acting on them.10 In Greek classical mathematics, the product of a line by a line 
was seen as being an area (the Euclidean term, introduced in Def 1 of Book II, being 
not “product,” but “rectangle contained by two lines”). Hence this construction obeys 
constraints of homogeneity and dimensionality. For example, if we want to compare two 
ratios between surfaces in a proportion, there is no way to give sense to the “product” 
of the middle terms as in VII.19. We see clearly in these examples that the concept of 
“magnitude” involves specific features (“essential property,” as Aristotle would say) quite 
different from that of “number.”

Let us now try it the other way round and insert “numbers” into the theory of propor-
tion of Book V. Here, too, we will not have difficulties with the definition, but with the 
demonstrations. One famous example is given by prop. V.5: “If a magnitude be the same 
multiple of a magnitude that a part subtracted is of a part subtracted, the remainder will 
also be the same multiple of the remainder that the whole is of the whole.” Euclid calls 
AB and CD the given magnitudes, AE and CF the parts subtracted, and EB and DF the 
remainders. To achieve the demonstration, he introduces an auxiliary magnitude GC 
satisfying the following relation: EB is the same multiple of GC as AE is of CF. This relies 
on the possibility of taking an arbitrary part of any given magnitude— a postulate for mag-
nitude which is implicit in Euclid’s work and which is of course not true of “number.”11

We could pursue this inquiry more carefully, but these two counter examples suf-
fice to cast serious doubts on the simplistic view according to which “magnitudes” and 
“numbers” are in a relation of inclusion (in one way or the other). Our first idea of a 
separation is then stronger than before. It is not an external remark on the organization 
of the treatise: when we enter the particularity of the demonstrations, we see that they 
invoke “specific features” of their objects.

4.2.3  The reconstructive hypothesis

There is another way of approaching the problem. Instead of trying a direct comparison 
between Books V and VII, one can start directly from Book X and consider it as evidence 
of a third (hidden) theory of proportion. This strategy was, and still is, a very common 

10 There is, as we saw, an external operation given by the “multiple” relation (and the equivalence: “being 
the same multiple as”).

11 See Mueller (1981: 122).
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point of view shared by authors engaged in a “reconstructive approach.” Its origin can 
be traced back to the beginning of the last century when Zeuthen first published a recon-
struction in Danish in 1917, which was offered again independently by Oskar Becker and 
published in his Eudoxos Studien of 1933.12 The reconstruction is quite complex since it 
is grounded on internal and external evidence and can vary from one author to another, 
but we will focus first on their common basis.

As we saw earlier, one important step in Book X is to set a proportion between a 
certain class of (ratios between) magnitudes and (ratios between) numbers [X.5 and X.6]. 
Magnitudes in this kind of ratio will be called “commensurable.” When a ratio between 
magnitudes is not equivalent to a ratio between numbers, the magnitudes will be called 
“incommensurable” [X.7 and X.8].13 To enter this construction, we obviously need first to 
be able to recognize when some magnitudes are “commensurable” or “incommensurable.” 
This is precisely the purpose of the beginning of Book X. A nominal definition is given 
in Def. 1: “Those magnitudes are said to be commensurable which are measured by the 
same measure, and those incommensurable which cannot have any common measure.” 
But Euclid then proposes a criterion to distinguish the two cases: “If, when the less of 
two unequal magnitudes is continually subtracted in turn (ἀνθυϕαιρουµέ νου) from the 
greater, that which is left never measures the one before it, the magnitudes will be incom-
mensurable” (X.2). In the case of commensurable magnitudes, the same procedure would 
reach an end and could serve as a way of determining the greatest common measure of 
two or three magnitudes (Prop. X.3 and X.4). These propositions come just before the 
one considered before (5 and 6 about commensurability, 7 and 8 establishing conversely 
that incommensurable magnitudes do not have the ratio of a number to a number).

A striking fact is that the procedure used in these propositions is exactly the same as 
the one appearing for numbers at the beginning of Book VII and known today as the 
“Euclidean algorithm.” In Greek, the verb used to designate the reciprocal subtraction 
is anthyphairen and this procedure is often called anthyphairesis by historians (a word 
not used by Euclid). It appears in the very first proposition of Book VII: “Two unequal 
numbers being set out, and the less being continually subtracted in turn (ἀνθυϕαιρουµέ 
νου) from the greater, if the number which is left never measures the one before it until 
an unit is left, the original numbers will be prime to one another.”14 Not only are the 

12 Becker (1933) claims not to have been aware of Zeuthen’s interpretation. The Zeuthen– Becker hypoth-
esis has been taken over and modified by a great number of commentators such as Van der Waerden (1954) 
and Knorr (1975). Fowler (1999) has based a complete reconstruction of what he calls “The Mathematics 
of Plato’s Academy” on it. Indeed, as Mendell (2007) puts it, “all modern reconstructions start with Becker” 
(p. 5, n.3). A detailed criticism of this hypothesis can be found in Vitrac (2002).

13 It is very important to always keep in mind that “commensurability” is, according to Euclid, a relation and 
not a monadic property. It is also important not to confuse “incommensurable” (ἀσύ µµετρα) and “irrational” 
(ἂλογοι) magnitudes.

14 In modern notations, for any two numbers A, B (smaller than A), we subtract B from A a certain number 
of times (a certain “multiple”) Q, until a remainder smaller than B is found. Hence A = Q.B + R. If R is not 
equal to nothing (B measures A), we repeat the same procedure for B and R so that B = Q′R + R′, with R′ 
smaller than R. And so on and so forth until a null remainder is obtained. The proposition states that if the 
penultimate step gives a remainder equal to 1, the numbers are prime to one another.
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formulations of the propositions similar, as for alternation of proportion, but in this case 
the demonstrations follow exactly the same structure.15 This similarity led naturally to the 
hypothesis, that there could have been a stage at which mathematicians had a general 
procedure at hand allowing them to treat numbers and magnitudes in a unified way.

This hypothesis could certainly serve as a solution to our first difficulty, that is: how 
Euclid can compare magnitudes and numbers in Book X. But anthyphairesis does not 
intervene in the context of a definition or a comparison of ratios. It serves the formulation 
of a criterion allowing to distinguish incommensurable and commensurable magnitudes 
(depending on whether the algorithm reaches an end or not). So the reconstructive 
approaches need further evidence to support their view. These sources can vary from 
one author to another. With regards to external evidence, however, they all appeal to a 
very famous passage from Aristotle’s Topica, which relates anthyphairesis and proportion:

Many theses are not easy to argue about or tackle because the definition has not been 
correctly rendered …. It appears also in mathematics that the difficulty in constructing a 
figure is sometimes due to a defect in definition; e.g. in proving that the line which cuts 
the plane (τὸ ἐπί πεδον) parallel to one side, divides similarly both the line which it cuts 
and the area. If the definition be given, the fact asserted becomes immediately clear: for 
the areas have the same fraction subtracted from them (ἀνταναί ρεσιν) as have the sides 
and this is the definition of ‘the same ratio’ (ἒστι δ’ ὁρισµὸϚ τοῦ αὐτοῦ λό γου οὖτοϚ).” 
(Topica VIII 158 b 24- 35; transl. Aristotle 1984: 125)16

This piece of evidence, although very striking, is not as strong as it might seem. In fact, 
it gives rise to some difficulties, which I shall list briefly:

• First, the text does not present the definition as referring to ratios in general. It just 
presents an alternative definition, which could be useful in a particular situation. 
Bernard Vitrac proposes an interesting parallel.17 In the De Anima, Aristotle explains 
that a good definition is supposed to express not only the fact, but the cause of 
the fact (De An. II, 2, 413 a 13– 20). As an example, he proposes the definition of 
the squaring (τετραγωνισµό Ϛ) of a plane figure. “Squaring” could be defined as a 
procedure in which a square is found to be equal to a rectangle or another figure, 
but this, according to Aristotle, is a conclusion. To present it as the finding of a pro-
portional mean would better express the cause. Vitrac notices that the mathematical 
definition was certainly not the second: one can demonstrate that a squaring is 
equivalent to the finding of a proportional mean, but to define it this way would be 
very impractical in the context of Greek geometry.18 Considering this parallel, one 

15 See Appendix 1 and Vitrac (1990– 2001, Vol. 3:  103– 4) for a general description of the parallelism 
between the beginning of Book VII and that of Book X.

16 The fact that Aristotle is not using the term “anthyphairesis” (but “antanairesis”) is a difficulty here, but 
one which can be solved by recourse to a passage in Alexander of Aphrodisias (1891/ 1999) where he explains 
that what Aristotle calls antanairesis is what the Ancients used to call anthyphairesis (In Ar. Top. Com. 545, 
12– 17).

17 Vitrac (1990– 2001, Vol. 2: 518– 19).
18 See also Mendell (2007: 9).
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should be cautious before concluding that Aristotle is referring here to something 
like “the” mathematical definition of a proportion.19

• More importantly, it is very difficult to accept, especially if our only source is Aristotle, 
that the definition of proportion “in general” was based on the anthyphairetic pro-
cedure. The obvious reason is that it would lead, in the case of incommensurable 
magnitudes, to a comparison of infinite sequences (since a characterization of two 
incommensurable magnitudes, according to X.2, is precisely that their anthyphairesis 
does not reach an end). The most extreme “reconstructors” have no problem with 
this consequence.20 But many of them, since they want their solution to fit with 
Aristotle’s refusal of any use of an actual infinite in mathematics, are embarrassed by 
this objection. They thus try to find a way to escape the use of infinite sequences.21

• Notwithstanding the risk of anachronism, a last difficulty here is that the commenta-
tors referring to an “anthyphairetic” solution have to express the ratio between mag-
nitudes through a sequence of numbers (that is: the sequence of “partial quotients” 
in what would later be called a “continued fraction”). Indeed, in this interpretation, 
a ratio is identified with a certain sequence of numbers. But this is absolutely not 
the way Euclid proceeds. For reasons already explained, Euclid cannot take the 
“quotient” between two magnitudes to be a number (although it could be a multiple, 
like the “double,” the “triple,” and so on).22 He then has to tediously introduce a 
new magnitude for each step of the procedure of the “reciprocal subtraction” (see 
Appendix 1 for an example). Hence the problem is not only to find evidence for 
the use of anthyphairesis to define ratios, but for the particular way in which modern 
commentators render them as sequences of numbers.

4.2.4  General mathematics?

Suppose we pass over these difficulties, we will still have another problem to solve: why 
wouldn’t Euclid have made any reference to this alternative theory of ratios in the Elements? 
Why, more generally, do we not have any direct traces of it (or of the criticisms it could 
have received) in Greek mathematics? Here another crucial passage of Aristotle comes 
into play, where the link with the problem of generality is made explicit:

Alternation (ἐναλλάξ) used to be demonstrated separately of numbers, lines, solids, and 
times, though it could have been proved of them all by a single demonstration. Because 

19 One needs other arguments, allowing for a restricted characterization to be considered as a definition. 
See Mendell (2007).

20 See Gardies (1988).
21 This means that they will try to find a way of treating what would now be called an “infinite quotient” 

by finite means. Usually, they will reason on the rank of the “partial quotient,” using results discovered many 
centuries later by Euler and Lagrange. See Fowler (1999), especially  chapter 9 about the history of “continued 
fractions.”

22 Since a magnitude taken n- times is not considered as multiplied by a “number,” it is clear that the division 
of two magnitudes is not a “number” either.
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there was no single name to denote that in which numbers, lengths, times, and solids are 
identical, and because they differed specifically from one another, this property was proved 
of each of them separately. Now, however, the proof is universal (καθό λου), for they do 
not possess this attribute as lines or as numbers, but as manifesting this character which 
they are postulated as possessing universally. (An. Post. I, 5, 74 a 17– 25)

This text was Becker’s starting point. One of his greatest achievements was to succeed in 
showing that if one tries to demonstrate the properties of proportion by anthyphairetic 
means, following the order of Elements Book V, the first difficulties will occur precisely 
with proposition V.16 (i.e., alternation of proportion) where one would have to give a 
“case by case” demonstration. He could then conclude that the theory of Book V had two 
tremendous advantages over the anthyphairetic one: it gave a way of treating magnitude 
“in general,” without entering the distinction “commensurable/ incommensurable (but 
with a price to pay: a very complex definition of proportion by “equimultiples,” gener-
ally attributed to Eudoxus); and it permitted a unique demonstration for properties 
like alternation, in accordance with Aristotle’s declaration in An. Post. I, 5. This second 
advantage would explain, in Becker’s eyes, the eclipse of the “anthyphairetic” theory of 
proportion.

This type of demonstration being called “universal” by Aristotle gives us a natural 
paradigm for the discipline he refers to allusively elsewhere as being a “universal” or 
“common” mathematics:

For one might raise the question whether first philosophy is universal, or deals with 
one genus or nature; for not even the mathematical sciences are all alike in this respect, 
geometry and astronomy deal with a certain particular nature, while universal mathem-
atics applies alike to all (ἡ δὲ καθό λου πασῶν κοινή ). (Ar. Met. E1, 1026 a 20 sq.; transl. 
D. Ross modified)23

To this testimony, one could add that of Proclus (1992) who states in his commentary 
on Euclid that Eudoxus was the first to “increase the number of the universal theorems, 
as they are called (τῶν καθό λου καλουµέ νων θεωρηµάτων)” (In Eucl. 67.4). A scholium 
to Book V also presents its aim as that of giving a theory common to all of mathematics, 
and in particular to geometry and arithmetic.24

This interpretation supported a very nice (but potentially mythical) historical recon-
struction: first, there would have been a theory of proportion grounded on numbers 
and relying on the fact that magnitudes could be treated “like numbers” (magnitudes 
being then restricted to “commensurable magnitudes”), a theory sometimes attributed 
to the “Pythagoreans;” then the “anthyphairetic” approach allowing a first general 

23 The link between Metaphysics E 1 and An. Post. I, 5 is explicitly made by authors like Ross in his transla-
tion of Aristotle’s Metaphysics (Oxford, 1924). See also Heath (1949), who relates this passage, without further 
explanation, to the “eudoxean” theory of proportions. See also Cleary (1995: 289– 92).

24 Scholia in Euclidis elementa 5.1.1- 4: Ʃκοπόϛ τῶ̕ πέμπτῳ βιβλίῳ περὶ ἀναλογιῶν διλαβῖν͘  κοινὸν γὰρ τοῦτο τὸ 
βιβλὶον γεωμετρίαϛ τε καὶ ἀριθμητικῆϛ καὶ μουσικῆϛ καὶ πάσικηϛ ἁπλῶϛ τῆϛ μαηματικῆϛ ἐπιστήμηϛ.
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treatment including incommensurable ratios (sometimes attributed to Theaetetus), but 
leading to case by case demonstrations; finally the truly “universal” theory proposed 
in Book V (sometimes attributed to Eudoxus) and related to the possibility of a “uni-
versal mathematics.” My aim is certainly not to enter into the details of the complex 
arguments supporting this picture. What is of interest for us here is that the main 
thread of this reconstructive framework is clearly given by a search for a general theory, 
presumably forming the core of classical Greek Mathematics. Hence the question of 
“generality” is not a local problem emerging from the reading of Euclid’s Elements. It 
is the very ground on which a widespread picture of the development of ancient Greek 
mathematics is built and around which the majority of the debates were centered until 
very recently.

One immediate difficulty with this reconstruction is that even if we give full credit 
to Aristotle’s testimony, we have to keep in mind that according to him the καθό λου 
demonstration was supposed to hold, for “numbers, lines, solids, and times.” We saw 
previously that this is not the case in Book V (which applies to what Aristotle would 
designate as the proper subject of geometry alone: “magnitude”). Becker escaped the 
difficulty by saying, without much justification, that “magnitude” of Book V “inherited” 
the kind of unity occurring first in the comparison of anthyphairetic developments 
(hence its crucial role in the reconstruction). “Magnitude” was thus, according to him, 
a first figuration of our “real numbers” and “anthyphairetic developments” something 
like developments of our real numbers.25 This part of his argumentation is particularly 
weak: even if one can conceive “magnitude” as an abstract entity (and not only as a 
way of giving a collective name to geometrical entities), one can hardly go to the point 
of considering it as a “number.”26

Another weakness of this type of reconstruction is the use of Aristotle as a mere 
witness— a feature which has less called for attention than the technical difficulties 
attached to it. It led to a paradoxical situation in which the Stagirite was supposed to 
hold views completely opposed to some of his most famous philosophical theses. The 
obvious case is given by the argument in favor of anthyphairetic developments as holding 
“in general,” that is to say for incommensurable magnitudes too.27 But even the idea of a 
univocal general theory in mathematics seems directly opposed to Aristotle’s conceptions. 
That is why I would like to come back now to Aristotle theses and challenge the idea of 
what a “general” or “universal” point of view in mathematics may have been according 
to him. As I will try to show, this will give us a very nice context to understand many of 
the difficulties raised by the reading of the Euclidean text.

25 This is made explicit in Becker (1954: chap. II.C).
26 One could try to stay closer to the structure of the Elements, as proposed by Gardies (1988). Gardies 

refuses the idea that we can find a “universal mathematics” in the Elements, for the reasons already mentioned. 
His idea is that the anthyphairetic theory was the universal theory (which implies showing that alternation can 
be demonstrated without case by case demonstration— a task that Gardies fails to fulfill entirely) and that it 
was due to Eudoxus (misunderstood by Euclid).

27 The fact that we can reduce the problem to a consideration on the finite rank of the development is not 
an issue here, since it would still have been necessary to define comparison of ratios in general through these 
developments, be they finite or not.
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4.3  Aristotle

4.3.1  Aristotle’s conception of scientific knowledge

Aristotle’s epistemology is in large part directed against what he saw as an illusory posi-
tion of philosophy as a “science of everything” (ἐπιστή µη ἡ ἐκεί νων κυρί α πάντων, see 
An. Post. I, 9, 76 a 17– 20)— a program which is not difficult to recognize as being close 
to Plato’s “Dialectic.”28 His basic argument is that there is nothing like a universal and 
univocal sense of “Being.” According to Aristotle, a science is always based on a specific 
“subject matter” or “genus.”29 “Being” is not such a “genus,” but a way to refer to the 
diversity of domains of objects. The “science of being” is then a study of the different 
ways of expressing “what is.”

The important thing to retain is that principles proper to the “subject” considered will then 
occur in any truly “scientific demonstration.” According to Aristotle, the paradigm of this 
situation is precisely to be found in mathematics, where arithmetic deals with numbers 
and geometry with magnitudes:

Of the things they use in the demonstrative sciences some are proper (ἴδια) to each science 
and others common (κοινὰ )— but common by analogy, since things are useful in so far 
as they bear on the genus under the science. Proper: e.g. that a line is such and such, and 
straight so and so; common: e.g., that if equals are taken from equals, the remainders are 
equal. But each of these is sufficient in so far as it bears on the genus; for it will produce 
the same result even if it is not assumed as holding of everything but only for the case of 
magnitudes— or, for the arithmetician, for numbers.

Proper too are the things which are assumed to be, about which the science considers 
what belongs to them in themselves— as, e.g., arithmetic is about units, and geometry is 
about points and lines. For they assume these to be and to be this. As to what are attributes 
of these in themselves, they assume what each signifies— e.g., arithmetic assumes what 
odd or even or quadrangle or cube signifies, and geometry what irrational or inflection or 
verging signifies and they prove that they are, through the common items and from what 
has been demonstrated. And astronomy proceeds in the same way.

For every demonstrative science has to do with three things: what it posits to be (these 
form the genus of what it considers the attributes that belong to it in itself); and what are 
called the common axioms, the primitives from which it demonstrates, and thirdly the 
attributes, of which it assumes what each signifies. (An. Post. I, 10, 76 a 37– b 3; transl. 
Aristotle, 1984: 14)

This argument is particularly important for us, because it leads directly to the fact that 
one cannot transfer a demonstration from one science to the other. This gives us a very 
nice context for understanding the situation we began with in Euclid’s Elements:

28 Compare with the characterization of dialectic proposed in Resp. VII, 533 b 3/ 534 b- e.
29 The beginning of Analytica Posteriora is explicitly dedicated to a determination of what ἐπιστή µη is and, 

more precisely, ἀποσεικτικὴ ἐπιστή µη. I translate the first term by “science” and the second by “demonstrative 
science,” even if it is obviously in a different meaning than the modern one. I translate by “subject matter” or 
“subject” the Greek term ὑποκεί µενον and by “genus” the term γέ νοϚ.
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One cannot, therefore, prove anything by crossing from another genus— e.g. something 
geometrical by arithmetic. For there are three things in demonstrations: one, what is being 
demonstrated, the conclusion (this is what belongs to some genus in itself); one, the axioms 
(axioms are the things on which the demonstration depends); third, the underlying genus 
of which the demonstration makes clear the attributes and what is accidental to it in itself. 
Now the things on which the demonstration depends may be the same; but of things 
whose genus is different— as arithmetic and geometry, one cannot apply arithmetical 
demonstrations to the accidentals of magnitudes, unless magnitudes are numbers. (How 
this is possible in some cases will be said later).30

Arithmetical demonstrations always include the genus about which the demonstration 
is, and so also do the others. (An. Post. I, 7, 75 a 38– b 6; transl. Aristotle 1984: 12)

As is clear in the two passages, “common” principles certainly exist in science. But these 
common principles go along with proper principles characterizing the “subject matter” 
(ὑποκεί µενον) of each scientific domain. Of course, we can also study these principles 
for themselves and this will allow for a kind of “universal” knowledge. But to look at 
things at this level means giving up a certain kind of scientific knowledge. This is the 
basis of Aristotle’s position on what a “universal science” is (be it Metaphysics, Logic, 
or Dialectics):

All the sciences associate with one another in respect of the common items (I call com-
mon (κοινὰ ) those which they use as demonstrating from them— not those about which 
they prove nor what they prove); and dialectic associates with them all, and so would any 
science31 that attempted to prove universally the common items— e.g. that everything is 
affirmed or denied, or that equals from equals leave equals, or any things of the sort. But 
dialectic is not in this way concerned with any determined set of things, nor with any 
one genus. (An. Post. I, 11, 77 a 25– 35; transl. Aristotle 1984: 16)

4.3.2  The problem of the katholou

The passages quoted above give an overall clear image of the way generality is supposed to 
hold in mathematics. This is in concordance with a broader view of what makes a scientific 
statement general and the limits within which this generality is supposed to hold. The 
Posteriora Analytica explain at the very beginning that any “scientific knowledge” should 
rely on properties attributed to a subject “for every case, in itself and in general” (κατὰ  
παντὸϚ καὶ καθ’ αὑτὸ καὶ καθό λοὺ [73 a 26 – 7]). The first criterion expresses the fact that 
a scientific conclusion should hold “for all” the objects of the domain it refers to (and not, 
for example, to a particular species subsumed under a more general genus). But this is 
not enough since the correlation between this “subject” and the property involved could 

30 I will come back later to the mysterious exception “unless magnitudes are numbers.” The case mentioned 
of admissible transference is when one genus is included in another, giving rise to what Aristotle designates as 
a “subordinated” science— such as music with respect to arithmetic or optics with respect to geometry (An. 
Post. I, 9).

31 For parallel statements see Metaphysics Γ 3, 1005 a 19– 30 about ”Philosophy” and 1005 b 3– 7 about 
“Analytics.”
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happen by accident. Hence the two other criteria: the property demonstrated “for every 
case” should also belong “essentially” or “in itself” (καθ’ αὑτο) to the subject considered. 
Moreover, this essential relationship should occur through a kind of reciprocity between 
the property and the subject considered (ἦ‘ αύτό  says Aristotle: in itself and “as such”). 
When the property is attributed “for all” the objects (κατὰ  παντὸϚ), “in itself” (καθ’ αὑτο) 
and “as such” (ἦ’ αύτό ), it can truly be called “universal” (καθό λοὺ).

At first glance, this description nicely expresses the kind of “generality” needed in 
scientific knowledge. In the next chapter of Posteriora Analytica, however, it appears that 
the hierarchy between these criteria was not as clear as it first seemed. Aristotle explains 
in effect that there are many ways to miss universality in the demonstrations. However, 
these mistakes do not correspond exactly to the violation of the criteria proposed in the 
previous chapter: the first mistake, he says, occurs when one cannot grasp something 
apart from the particulars considered; the second, when there is something to grasp, but 
“which has no name” (ἀνώνυµον); the third, when one takes as a whole what is only a 
part (of a larger whole).32

There have been numerous debates around these passages since Antiquity. Not eve-
ryone agrees, for example, on the way in which the examples given by Aristotle can be 
related to the different kinds of errors he described. Fortunately for us, the link between 
the second kind of mistakes and the second example given (alternation of proportion) 
is the least controversial, since the idea of a “nameless” subject is taken up again in the 
example. As we have seen, the fact that proportion can be alternated, Aristotle explains, 
was first demonstrated separately for numbers, lines, solids, and times, because there was 
no name to designate what they have in common, although a single and “universal” dem-
onstration was possible. Here, the difficulty lies in the fact that the property in question 
and its demonstration are supposed to hold for different domains of objects or “genus.” 
As we saw earlier, the characterization of “scientific demonstration” in terms of principles 
“proper” to a subject does not seem to allow for a demonstration holding for different 
genus (except if a domain of objects is included or “subordinated” to another— which is 
not the case, according to Aristotle, for numbers and magnitudes).

I will not enter into the numerous debates around these passages, but take them as such 
to indicate first that generality functions here at the same time as a requisite for demonstra-
tion and as a problem. It is not enough to reach conclusions holding “essentially” “for all” 
the elements of a domain, since there is a more profound difficulty appearing in the very 
delineation of these domains. The example of the “universal” demonstration for alternated 
proportion expresses this clearly: it seems to directly contradict the clear cut delineation of 
mathematical kinds of objects which Aristotle himself has set up in the previous develop-
ment of the Posterior Analytics (I, 4). Another interesting aspect of these series of examples 
is that they rely on what is presented as existing mathematical demonstrations. This allows 
us to overcome the simplistic view according to which Aristotle would be fighting with 
paradoxes created by his own epistemological prescriptions. Quite to the contrary, Aristotle 
seems here to encounter the fact that the prescriptive view proposed at first fails to give an 

32 An. Post. I, 5, 74 a 2– 23.
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accurate view of the way generality actually works in some scientific demonstrations. This 
is where the comparison with Euclid will reveal itself particularly interesting.

4.3.3  Universal propositions

As we have seen, Aristotle mentions very clearly in An. Post. I, 5 the existence of universal 
demonstrations in mathematics.33 The demonstration of alternation, he says, holds for 
numbers, lengths, times, and solids. How can this be possible? How can a demonstration 
hold for different kinds of subjects if principles proper to the subject or genus are, as he 
explicitly stated, always required in any scientific demonstration? Things get even worse 
when one reads in the Metaphysics (E1) that one can oppose a kind of mathematics dealing 
with a particular genus and a “universal” one, “common to all!” What could this mean, 
considering that a mathêma like Arithmetics was said to be always attached to a specific 
subject (ἡ δ’ ἀριθµητικὴ ἀπό δειξιϚ ἀεὶ ἒχει τὸ γέ νοϚ περὶ ὃ ἡ ἀπό δειξιϚ, καὶ αἱ ἄλλαι ὁµοί ωϚ)?

There are many hypotheses proposed to solve this riddle. My own attempt will rely on 
a fact which has not received much attention: as emphasized above, the difficulties emerging 
in the Aristotelian text are strictly parallel to the one emerging in the Euclidean text. On the 
one hand, we had separate domains of objects (corresponding to the typical example of 
Aristotelian genera in Analytica Posteriora: magnitude and number) and demonstrations 
implying specific features (“essential properties”) of these objects; as we have seen, there 
was absolutely no communication (no demonstration “crossing” the borders) between 
these domains (except for “common notions,” paralleling the Aristotelian κοινὰ ); but, on 
the other hand, there was some sort of “general” point of view, provided from within the 
theory and allowing us to compare in one and the same relation the separated domains 
of objects in Elements X.5 and X.6. This might convince us that the usual strategy, which 
consists in trying to solve what looks to us like difficulties, could be called into question. 
The parallel between the two situations could indicate that there is not so much a problem 
to solve here, as a more complex and subtle conception of generality to understand. This 
is the path I will try to outline in what follows.

4.3.4  Aristotle on generality in mathematics

To set this hypothesis on more solid grounds, I propose not to consider isolated passages, 
as the “reconstructive approach” mentioned in the first section did, but rather the entire 
context of the treatment of “generality” in mathematics by Aristotle. Indeed, there are other 
important occurrences of this theme than the one considered by the “reconstructors” in the 
constitution of their corpus and these occurrences allow for a reading quite different from the 
one they emphasize. A first example is given by a passage from book M of the Metaphysics:

The universal [propositions and demonstrations]34 of mathematics deal not with some-
thing which exists separately, apart from magnitudes and from numbers; but they deal 

33 This example is mentioned again in An. Post. I, 24 and II, 17.
34 The Greek states here: τὰ  καθό λου ἐν τοῖϚ µαθή µασιν, but the second part of the passage makes it clear 

that the comparison is on the level of “propositions and demonstrations” (λό γουϚ καὶ ἀποδεί ξειϚ).
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with magnitudes and numbers, not however qua such as to have magnitude or to be 
divisible. It is clearly possible that in the same way there should also be both propositions 
and demonstrations about sensible magnitudes, not however qua sensible but qua having 
such and such characteristics. (Met. M 3, 1077 b 17- 23, transl. Ross modified)

What is Aristotle explaining here? That a universal point of view in mathematics is 
possible— and not only on the level of principles— but that it does not subsist outside of 
the given domains of objects, numbers and magnitude. This argument is directed against 
Plato’s conception. For the Platonists— at least in the way Aristotle pictures them— the 
universals were “Ideas” subsisting outside of the particular substances.35 In other words, 
the fact that there are universal propositions and demonstrations does not allow to posit in 
the same breath the existence of a separate, all- encompassing universal domain of objects. 
But it is also very interesting with respect to the expression of generality in mathematics to 
which Aristotle had access. As in the case of An. Post. I, 5, Aristotle is not saying here that 
we could interpret mathematics as being like this or that. He relies on what is presented 
as an existing mathematical situation, which can even be used as an objection to his 
opponent. The fact is, according to Aristotle, that generality is not expressed “separately” 
in mathematics. And this fact is apparently so obvious to everyone that it could serve to 
support his view on the role of “abstraction” in sciences against that of his master Plato.

Another important Aristotelian mention of the καθό λου in mathematics is linked to 
the debate about the “elements.” According to Aristotle, some philosophers (presumably 
Speusippus) defended the view that the “elements” in mathematics, the “One” and the 
“Point,” could hold as “general principles” (the Greek word is καθό λου).36 The counter- 
argument, developed in the Metaphysics relies on the fact that this type of generality 
is ultimately grounded on equivocity. There is no possibility of a universal theory in 
mathematics derived directly from these general principles, because “unity” does not 
function in a univocal way in the various domains of objects:

The one is indivisible because the first of each class of things is indivisible. But it is not in 
the same way that every ‘one’ is indivisible, e.g., a foot and a unit; the latter is absolutely 
indivisible, while the former must be placed among things which are undivided with 
respect to our perception, as has been said already— only to our perception, for doubtless 
everything, which is continuous, is divisible.

The measure is always homogeneous with the thing measured; the measure of magni-
tudes is a magnitude, and in particular that of length is a length, that of breadth a breadth, 
that of sound a sound, that of weight a weight, that of units a unit. (Met. I, 1. 1053 a 20– 7)

The situation described in these passages conforms once again to what we have found in 
Euclid. On the one hand, we clearly had a separate treatment of numbers and magnitudes, 
based on specific features of these domains of objects; on the other hand, there was a paral-
lel given by the anthyphairetic procedure. This treatment had no self- subsisting existence 

35 The passage was announced in M 2, 1077 a 10– 14 in which katholou occurs to support a reductio ad 
absurdum against the separation of “ideas.”

36 Metaphysics ∆ 3, 1014 b 6– 9.
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outside of the domains of objects. Each domain obeyed specific constraints as regards the 
status of measure and unity of measure. There was no way of bypassing these constraints. 
This will be a typical case of what Aristotle would describe as a unity “by analogy.”

But at this point, our main problem remains acute: if we do not accept the “anthyphairetic” 
solution as forming an autonomous theory, subsisting outside of the treatment of the given 
domains, we still need a “general” conception of ratio allowing for propositions, such as X.5 
and X.6, in which numbers and magnitude enter in one and the same proportion.

4.3.5  (Dis)solving the mystery

I shall begin with a side remark:  it is highly noticeable that Aristotle systematically 
considers “commensurable” as an attribute essential to number and not, as one would 
expect, to magnitude (“incommensurable” being symmetrically presented as an essential 
attribute of magnitude).37 From this point of view, if one had a way of distinguishing 
magnitudes behaving in a relation of “commensurability,” part of the mystery could be 
easily solved: these magnitudes would behave “like” numbers. This could be a way of 
understanding the curious exception to the “incommunicability” mentioned in An. Post. 
I, 7: “in the case of two different genera such as arithmetic and geometry you cannot 
apply arithmetical demonstration to the properties of magnitudes unless the magnitudes 
in question are numbers” (εἰ µὴ τὰ  µεγέ θη ἀριθµοί  εἰσι [75 b 5]). This would not imply any 
contradiction: Aristotle’s epistemology does not allow us to transfer a demonstration 
about number qua number to magnitude qua magnitude, but it does not prevent us from 
comparing a relation between magnitudes to a relation between numbers.38 It seems that 
this is precisely what we find in Euclid.

To support this view, one might first note that the demonstrations of X.5 and X.6 rely 
on arguments based on the whole/ parts relation and not on the treatment of equimultiples. 
But one should also recall that, whereas modern commentators were puzzled by X.5 and 
X.6, we do not possess even one Greek testimony concerning difficulties in the reading 
of these propositions (Vitrac, 2002)— as if it were obvious that “commensurable” magni-
tudes could enter in a proportion with numbers. This is no mystery to us since we already 
know that anthyphairesis allows precisely such a comparison. Moreover, we saw that a 
famous passage from Aristotle’s Topics mentions this procedure as a way to define ratio.

As we said earlier, there is no reason to move too quickly from this result to the 
conclusion that it serves as a definition of proportion in general. This is where we have 
to be cautious. In Euclid’s approach, anthyphairesis is not used to express ratios, but to 
discriminate two classes of magnitudes, one which we can treat like numbers and another 
which we cannot.39 What this means is that we can establish a partial equivalence between 
the way we treat ratios between magnitudes and the way we treat ratios between numbers. 
This is exactly the result demonstrated in X.5 and X.6. It does not contradict Aristotle’s 

37 See, for example, Metaphysics ∆ 15, 1021 a 3– 8; Γ 2, 1004 b 10– 13.
38 Compare with Physics 220 a 27– 32, where a line is considered “qua multiplicity.”
39 Note here than when we say that we can treat magnitudes like numbers, it can’t be in the “Pythagorean” 

sense whereby magnitudes are numbers (like everything else) since some magnitudes are not in this class.
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theses since it allows for a comparison on the level of relationships, but not directly on 
the level of the domains of objects themselves.

We saw that the reconstructive approaches went much further and conjectured a “hid-
den” theory based on an extended use of anthyphairesis. Moreover, anthyphairesis was used 
in this hypothesis to justify the possibility of a treatment of incommensurable magnitudes 
in a general theory of proportion. As Knorr puts it: “We can conceive of only one reason for 
the Ancients’ invention of the anthyphairetic definition of proportion: to extend the former 
numerical definition so that proportions of incommensurable magnitudes may be included. 
That is argued by Becker, who proceeds to reconstruct the material of Book V in accordance 
to the alternative definition. But the fact that the necessity of the alternative definition derived 
from the existence of incommensurable magnitudes makes inherently plausible that the con-
text of its origin was the theory of incommensurability” (Knorr, 1975: 258, my emphasis).

As can be inferred from such a statement, a large use is often made in these discussions 
of Plato’s famous (and isolated) testimony about a first treatment of incommensurability 
in the Theaetetus (147 d- 148 e). The interpretation of this highly allusive passage is a 
matter of controversy amongst scholars and I do not want to go into its interpretation here. 
I shall limit myself once again to a very simple remark: the Theaetetus makes no mention of 
anthyphairesis at all. However, one can certainly assert uncontroversially that Theaetetus’ 
strategy, as described by Plato, consisted of treating incommensurable magnitudes via the 
surface one can build on them. Fortunately, we do not need more to pursue our inquiry.

Indeed, this general strategy, other important differences notwithstanding, is precisely 
the one used in Euclid. As we saw earlier, the first distinction presented in Book X is between 
commensurable and incommensurable magnitudes. We can then consider lines com-
mensurable “in square only,” that is to say when the square built on them are measured 
by the same area. Now, take a given magnitude, represented by a line segment, build the 
square on it and consider all the rectangles commensurable to this square: this constitutes 
a class of comparable magnitudes which Euclid calls “rhete” (“expressible”). When a 
magnitude is not “rhete,” it will be called “alogos.”40 Book X consists for a large part in 
understanding the behavior of these classes of objects.41

As should be obvious from this very brief description, we simply do not need the hypoth-
esis of a general “anthyphairetic” treatment to consider that this strategy would lead to “case 
by case” demonstrations: the very principle of this theory is in effect to dispatch objects into 
classes which do not exhibit the same behavior under the basic operations. To demonstrate 
a general property of proportion between these “magnitudes,” say “alternation,” would 
amount to demonstrating that it holds for each class. The basic case will be given by propor-
tion between numbers, our point of comparison, then ratios of magnitudes which we can 

40 It is important to keep in mind that these properties are not attributed to magnitudes per se, but to mag-
nitudes compared to one another (in this case, considering an arbitrary given line segment taken as reference).

41 If we take the basic operations (sum, difference, and product) on “rhete” lines, the result is “stable” when 
the lines are commensurable in length (i.e., it will always lead to “rhete” magnitudes), but not necessarily when 
they are “commensurable in square only.” This gives rise to three kinds of “irrational” lines corresponding to 
the sum, the difference, and the proportional mean of two “rhete” lines commensurable in square only (what 
Euclid calls: binomial, apotome, and mesos). The aim of Book X is to give a general classification of irrational 
lines by reasoning about the way one can combine these various types of magnitudes. For a presentation, see 
Vitrac (1990– 2001, Vol. 3: 51– 63).
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compare to a ratio of numbers (“commensurable in length”), then lines commensurable 
in square only42 (the a- logoi being that which is out of this realm of magnitudes having 
“expressible” ratios and that we want to describe with them). In each of these cases, we 
will have to specify the proper way to treat the “commensurability” between the objects 
considered (between numbers, between magnitudes, between squares built on lines).

4.3.6  The universal theory

Now, it is clear that a theory of proportion like the one presented in Book V is more general 
in the sense that it allows for a unified treatment for commensurable and incommensurable 
ratios between magnitudes. But how can we say that the “universal” demonstrations will 
in this case hold for “numbers, lines, solids, and times”? As I explained earlier, to consider 
that Aristotle’s description of “universal” demonstrations holds on the level of the domains 
of objects will contradict not only what we find in Euclid, but the very basis of Aristotle’s 
epistemology. However, if we pursue the same strategy as for the “unity by analogy” given 
by anthyphairesis— which may have led, as we saw, to a first general theory embarrassed by 
“case by case” demonstrations— it works quite well. Indeed, commensurable ratios between 
magnitudes are the one equivalent to ratios between numbers, so in a sense the properties 
of proportions involving this type of ratios could be considered as holding for numbers. As 
we saw earlier, this kind of unity will not have any subsistence outside of the domains of objects 
considered, as an autonomous theory (in accordance with Metaphysics M2 and 3). It will be given 
from within the theory of geometric magnitudes as a universal point of view in the following 
sense: the properties holding for commensurable ratios can be transferred to ratios between 
numbers by the very definition of what commensurable magnitudes means. Contrary to what 
happens in the case of anthyphairetic procedure, the unity will not rely here on equivocity. 
This is the crucial point if we want to distinguish “unity by analogy” from “universality.”

To support this last point, I would like to mention another text from Aristotle about 
the καθό λου, which has received less attention. At the end of Analytica Posteriora, the 
example of alternated proportion is taken up again in a passage about the question of 
the unity of causality in a scientific problem: “Why can we alternate proportion (ἐναλλὰ ξ 
ἀνάλογον)?,” asks Aristotle, “The cause is different for lines and for numbers, but it is also 
the same: as lines, it is different, but as involving a determinate increase (αὔξησιν τοιανδί ), 
it is the same” (An. Post. II, 17 99 a 2– 10). Against interpretations defending anthyphairetic 
theory as being the “universal” one (J.- L. Gardies) or as being the basis for a first objective 
unity between numbers and magnitudes upon which Book V would rely (O. Becker and 
his followers), we can first note that anthyphairesis could hardly be called a “determinate 
increase” (it is rather a “decrease”). Symmetrically, we should notice that this description 
fits Book V.Def5 very well. What are we doing in this very intricate definition? Instead of 
trying to directly compare magnitudes (through a relation of “measure”)— which might 
seem natural, but which will lead to tremendous problems when the said magnitudes are 

42 Surfaces are not mentioned in An. Post. I, 5 by Aristotle, but appear in An. Post. I, 24, 85 a 30– b 3. The 
“solid” case is not treated by Euclid, but is mentioned in Theaetetus (148 b 2- 3).
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not commensurable with one another— we treat them through a “determinate increase,” 
using only the universal relations of multiplicity and order: we take the same (arbitrary) 
multiple of the first and the third; the same (arbitrary) multiple of the second and the 
fourth, and we ask that the order relations between magnitudes be preserved under this 
transformation.

Hence the theory of proportion in Book V is not only general in the sense that it holds 
for commensurable and incommensurable magnitudes (commensurable magnitudes 
being the one having the ratio of a number to a number). It is general in the sense that its 
basic definition gives us the reason or the cause of proportion between any quantities, be 
they numbers or magnitudes. This relation is not based on measure (like VII.Def20)— 
hence subject to equivocity whether we deal with commensurable or incommensurable 
magnitudes— but on the stability of order relations under the truly universal relationship 
of multiplicity. This is in accordance with the intriguing statement of Metaphysics M3, in 
which magnitudes and numbers were supposed to be considered “not however qua such 
as to have magnitude or to be divisible.” This level does not operate on the ground of the 
properties (divisibility, that is, the consideration of “parts” and “measure”), which allow 
defining and distinguishing between the two genera of quantity (discrete and continuous). 
But it is not accidental either. It exhibits a universal structure of mathematical objects as 
stability of the comparison relation (equality/ inequality) under (equi)multiplicity. This 
will also conform nicely to another very famous passage from Aristotle about the category 
of “quantity.” At the end of the Categories, chapter VI, where he describes the different 
types (genus) of quantities (discrete and continuous), Aristotle offers in effect a unified 
description in terms of a proprium common to all quantities: “what is really proper to 
quantities is to be said equal or unequal.” From the equality relation derives that of 
multiplicity and from the inequality that of order, so that V.Def5 uses characteristics at 
the same time proper and common to all quantities.

4.4  Conclusion

As a conclusion, I shall first emphasize the fragility of a certain image of rationality, 
sometimes seen as inherited from “The Greeks,” and which supports a picture of 
the way “generality” is supposed to hold in science. A very quick glance at Aristotle’s 
Analytica Posteriora should convince anyone that behind the clear criteria exposed in 
 chapter 4, all kinds of difficulties are lurking. As is obvious in  chapter 5, “generality,” 
in the guise of the καθό λου criterion, is precisely one locus where these difficulties 
appear. Moreover, Aristotle is very clear about the fact that these difficulties emerge 
from some irreducible mathematical facts. As I have tried to show, this leads him to a 
very complex and subtle description of what “generality in mathematics” (καθό λου ἐν 
τοῖϚ µαθή µασιν) is. The striking point is that this description concords very well with 
what modern commentators have considered as important mysteries in the structure 
of Euclid’s Elements.

My second point will be more reflexive. If I am right in my reconstruction of what 
“generality in mathematics” means for Aristotle, a large part of the “defaults” found 
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in the Elements could be seen as linked to our expectations about the way “generality” 
is supposed to hold in science. This teaches us two lessons: first, we have criteria for 
“generality” which do not necessarily coincide with what was at stake in ancient Greek 
mathematics; second, the kind of generality which is to be found in these mathematics 
may be not less, but indeed more subtle than the one which we project on the texts today.

appendix 1

Here are, in Heath’s translation, the first part of the “parallel” demonstrations of X.3 and VII.2 
(determination of a common measure):

X.3
Let the two given commensurable magnitudes be 
AB, CD, of which AB is the less; thus

it is required to find the greatest common meas-
ure of AB and CD.

Now the magnitude AB either measures CD or 
it does not.

If then it measures it— and it measures itself 
also— then AB is a common measure of AB, CD. 
And it is manifest that it is also the greatest, for 
a greater magnitude than the magnitude AB will 
not measure AB.

Next, let AB not measure CD. Then, if the less is 
continually subtracted in turn from the greater, 
that which is left over will sometime measure 
the one before it, because AB, CD are not 
incommensurable.

Let AB, measuring ED, leave EC less than itself, 
let EC, measuring FB, leave AF less than itself, 
and let AF measure CE.

Since, then, AF measures CE, while CE measures 
FB, therefore AF also measures FB. But it meas-
ures itself also, therefore AF will also measure 
the whole AB.

But AB measures DE, therefore AF will also 
measure ED. But it measures CE also, therefore 
it also measures the whole CD.

Therefore AF is a common measure of AB, CD.

VII.2
Let AB, CD be the two given numbers not prime to 
one another; thus

it is required to find the greatest common measure of 
AB and CD.

If now CD measures AB— and it also measures itself— 
then CD is a common measure of CD, AB. And it 
is manifest that it is also the greatest, for no greater 
number than CD will measure CD.

But, if CD does not measure AB, then, the less of the 
numbers AB, CD being continually subtracted from the 
greater, some number will be left which measures the 
one before it. For a unit will not be left, otherwise AB, 
CD will be prime to one another, which is contrary 
to the hypothesis. Therefore some number will be left 
which measures the one before it.

Now let CD, measuring BE, leave EA less than itself, 
let EA, measuring DF, leave FC less than itself, and let 
CF measure AE.

Since then, CF measures AE, and AE measures DF, 
therefore CF also measures DF. But it also measures 
itself, therefore it also measures the whole CD.

But CD measures BE, therefore CF also measures BE. 
And it also measures EA, therefore it will also measure 
the whole BA. But it also measures CD, therefore CF 
measures AB, CD.

Therefore CF is a common measure of AB and CD.
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5

Generality, generalization, and 
induction in Poincaré’s philosophy

IGOR LY

This chapter develops some remarks about, and suggestions for interpretation of, 
Poincaré’s philosophical conceptions of generality in mathematics and physics. First, we 
will try to explain what constitutes, according to Poincaré, the specificity of the mathemati-
cal way of thinking, that is, of reasoning and constructing concepts. While doing so, we 
will notice that generality and generalization are necessarily implied in these issues. We 
will then show that generality in mathematics and physics is construed by Poincaré in a 
very specific way. Finally, we will illustrate these issues in greater detail by examining the 
way that Poincaré analyzes empirical induction in physics. To do so, we will focus on the 
main form that, according to Poincaré, induction takes in physics: a curve- fitting— or 
interpolation1— operation. One of the aims of this paper is to give some hints for inter-
preting the following claim of Poincaré, when he wonders why, “in physical science, 
generalization so readily takes the mathematical form.”2

To carry out this program, four main topics will be considered. We will consider the 
relationship among generality, generalization, and the infinite, showing why, when one 
analyzes Poincaré’s philosophy, these topics cannot be studied independently from each 
other. This point will lead us to examine the contrast between actual and potential infinity. 
We will also see that mathematical generality must be distinguished from what we will call 
“predicative generality.” The latter concept can be coarsely defined as follows: according 
to “predicative generality,” a generality judgement consists either in asserting a prop-
erty common to individuals or in grouping individuals together in a class. According to 
Poincaré, mathematical and consequently, physical, generality3 has a form which differs 

1 In accordance with Poincaré’s vocabulary, we will use “interpolation” rather than “curve- fitting.”
2 Poincaré (1952: 158). The text in which this sentence occurs is quoted below. In all the quotations from 

Poincaré (1952) and Poincaré (1958), we have made some changes in the translation.
3 The indispensable use of mathematics in physics is one of Poincaré’s main philosophical claims. It follows 

from this claim that several specific features that Poincaré attributes to mathematics have direct consequences 
in physics. This is the case, as we shall see, for generality and generalization.
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from that. On this basis, the bulk of this chapter will be a comparison between Poincaré’s 
concern regarding empirical induction and Goodman’s “new riddle of induction.”

In several texts, Poincaré claims that there are links among science, infinity, and general-
ity. For instance, Poincaré writes about mathematical induction:

In this domain of Arithmetic we may think ourselves very far from the infinitesimal 
analysis, but the idea of mathematical infinity is already playing a preponderating part, 
and without it there would be no science at all, because there would be nothing general 
(Poincaré, 1952: 11).

This remark reveals that Poincaré establishes two important relations:  (1) a relation 
between science and generality; (2) a relation between infinity and generality. The first 
relation looks like an Aristotelian claim. However, it differs from Aristotle’s idea in that 
Poincaré means that knowledge about particulars is not yet science, whereas Aristotle 
claims that there is no possible knowledge about particulars as such. A statement of the 
same relation can be found in Poincaré’s writings about interpolation, which is the main 
example of physical induction chosen by Poincaré:

I require to determine an experimental law; this law, when discovered, can be repre-
sented by a curve. I make a certain number of isolated observations, each of which may 
be represented by a point. When I have obtained these different points, I draw a curve 
between them as carefully as possible, giving my curve a regular form, avoiding sharp 
angles, accentuated inflections, and any sudden variation of the radius of curvature. 
This curve will represent to me the probable law … Why, then, do I draw a curve 
without sinuosities? Because I consider, a priori, a law represented by a continuous 
function (or function the derivatives of which to a high order are small), as more 
probable than a law not satisfying those conditions. But without this conviction, the 
problem would have no meaning; interpolation would be impossible; no law could be 
deduced from a finite number of observations; science would cease to exist (Poincaré, 
1952: 204– 6).

One can notice that the issue here is generalization rather than generality, if one under-
stands the former as an operation which leads to the latter. We will try to show in the next 
section that this distinction is not relevant in Poincaré’s philosophy: according to Poincaré, 
generalization is not a means to reach generality, since generality is instead defined in terms 
of generalization. For that purpose, it is necessary to understand the link between infinity 
and generality in Poincaré’s thought.

5.1  Infinity, generality, and generalization

As was mentioned above, Poincaré never speaks about generality independently from 
generalization: in his view, mathematical generality must be understood as meaning gen-
eralization. The idea is that generality does not refer to an assertion about a collection 
of objects which have already been given; the term generality refers to sequences of 
operations which can be understood as generalizations. Generality is not the result of a 
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generalization, but rather the operation of generalization itself, conceived in a way that 
will be explained in this section.

Poincaré often refers to the opposition between the idea of a collection of objects already 
given and the idea of a sequence of operations, which can consist of the construction 
of such objects, when he distinguishes actual infinity and potential infinity. Several texts 
show that Poincaré considers the idea of actual infinity to be irrelevant in mathematics:

There is no actual infinity, and when we speak about an infinite collection, we mean a 
collection to which one can always add new elements (similar to a subscription list which 
will never be closed waiting for new subscribers).4

When I speak of all the integers, I mean all the integers that have been invented and 
all those which will be invented one day; when I speak of all the points of space, I mean 
all the points the coordinates of which can be expressed either by rational numbers, or 
by algebraic numbers, or by integrals, or in any other way that we will be able to invent. 
And it is this “we will be able” which is the infinity.5

The latter quotation shows that Poincaré links together the issue of infinity and the theme 
of generality: it is an issue related to generality which is introduced when one raises the 
problem of the meaning of the word “all” in mathematics. In a way, Poincaré’s position 
here is close to constructivism or intuitionism; but one should say instead that Poincaré 
meets those positions while developing his own and original philosophical conception of 
mathematics. In this conception, not only do constructions take a central place, but so 
does the infinite, in a specific way that we now turn to examine.

For this purpose, it is convenient to start by reading the first chapter of La science et 
l’hypothèse. In it, Poincaré (1902) analyzes the principle of mathematical induction in 
order to show that mathematical reasoning differs from logical reasoning. Here again, it is 
the link between generalization and the infinite which is at the core of Poincaré’s analysis. 
According to him, the principle of mathematical induction allows both generalization and 
the introduction of the infinite in mathematical reasoning. By contrast, logical operations 
(from which “analytical verifications” are constituted) cannot achieve these operations:

If, instead of proving that our theorem is true for all numbers, we only wish to show that it 
is true for the number 6, for instance, it will be enough to establish the first five syllogisms 
in our cascade [i.e., the cascade of syllogisms that lead from the theorem stated for the 
number 1 and the statements of the theorem for the subsequent integer when one knows 
it for an integer to the theorem for 6, see below]. We will require 9 if we wish to prove 
it for the number 10; for a greater number we will require more still; but however great 

4 “Il n’y a pas d’infini actuel, et quand nous parlons d’une collection infinie, nous voulons dire une collection 
à laquelle on peut sans cesse ajouter de nouveaux éléments (semblable à une liste de souscription qui ne serait 
jamais close dans l’attente de nouveaux souscripteurs)” (Poincaré, 1913: 104).

5 “Quand je parle de tous les nombres entiers, je veux dire tous les nombres entiers qu’on a inventés et tous 
ceux qu’on pourra inventer un jour; quand je parle de tous les points de l’espace, je veux dire tous les points 
dont les coordonnées sont exprimables par des nombres rationnels, ou par des nombres algébriques, ou par 
des intégrales, ou de toute autre manière que l’on pourra inventer. Et c’est ce ‘l’on pourra’ qui est l’infini” 
(Poincaré, 1913: 131).
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the number may be we will always reach it, and the analytical verification will always be 
possible. But, however far we went we should never reach the general theorem applicable 
to all numbers, which alone is the object of science. To reach it we should require an 
infinite number of syllogisms, and we should have to cross an abyss which the patience 
of the analyst, restricted to the resources of formal logic, will never succeed in crossing.

I asked at the outset why we cannot conceive of a mind powerful enough to see at 
a glance the whole body of mathematical truth. The answer is now easy. A chess- player 
can combine for four or five moves ahead; but, however extraordinary a player may be, 
he cannot prepare for more than a finite number of moves. If he applies his faculties to 
Arithmetic, he cannot conceive its general truths by direct intuition alone; to prove even 
the smallest theorem he must use reasoning by recurrence, for that is the only instrument 
which enables us to pass from the finite to the infinite. This instrument is always useful, 
for it enables us to leap over as many stages as we wish; it frees us from the necessity of 
long, tedious, and monotonous verifications which would rapidly become impracticable. 
However, when we take in hand the general theorem it becomes indispensable, for other-
wise we should ever be approaching it, thanks to the analytical verification, without ever 
actually reaching it (Poincaré, 1952: 10– 11).

The idea is that mathematical induction consists of an indefinite succession of syllogisms, 
each of them being a logical operation. The infinity thus introduced cannot be reduced to 
any logical procedure: that is why mathematical induction belongs to mathematics and 
not to logic. Poincaré introduces this idea in the following way:

The essential characteristic of reasoning by recurrence is that it contains, condensed, so to 
speak, in a single formula, an infinite number of syllogisms. We will see this more clearly 
if we enunciate the syllogisms one after another. They follow one another, if one may use 
the expression, in a cascade. The following are the hypothetical syllogisms: The theorem 
is true of the number 1. Now, if it is true of 1, it is true of 2; therefore it is true of 2. Now, 
if it is true of 2, it is true of 3; hence it is true of 3, and so on. We see that the conclusion 
of each syllogism serves as the minor of its successor. Further, the majors of all our 
syllogisms may be reduced to a single form. If the theorem is true of n –  1, it is true of n.

We see, then, that in reasoning by recurrence we confine ourselves to the enunciation 
of the minor of the first syllogism, and the general formula which contains as particular 
cases all the majors. This unending series of syllogisms is thus reduced to a phrase of a 
few lines (Poincaré, 1952: 9– 10).

It is worth noting that the method of achieving generality for the theorem thus obtained 
differs from the way in which one gives the generality of the theorem underlying the 
major premise of each syllogism, that is: “∀ → +nP n P n( ) ( )1 ” As a matter of fact, the 
latter theorem can be proved by applying the logical generalization rule:

F a( )
( )∀x xF

,

once F(a) has been proved for any a. Now, it is precisely when such a method of reasoning 
for the theorem P(n) is not available that a proof by mathematical induction is required. 
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The specificity of the latter is that it is a generalization which cannot be reduced to the 
use of a formula like the one above:  in contrast to the generalization rule, a proof by 
mathematical induction cannot be reduced to a formula written in a finite number of 
symbols.6 Poincaré stresses the non- logical nature of the mathematical induction principle 
by considering the way that we get convinced by it:

Why then is this principle imposed upon us with such an irresistible weight of evidence? It 
is because it is only the affirmation of the power of the mind which knows it can conceive 
of the indefinite repetition of the same act, when the act is once possible. The mind has a 
direct intuition of this power, and experiment can only be for it an opportunity of using 
it, and thereby of becoming conscious of it (Poincaré, 1952: 13).

The point is that the intuition which makes the principle obvious differs from the intui-
tions that are brought into play in logical operations.7 The latter allow us to admit and 
use logical rules such as modus ponens while the former makes us aware of our faculty 
to conceive the indefinite repetition of acts such as the analytical operations allowed by 
logical rules. In the case of mathematical induction, we conceive of the indefinite repetition 
of logical acts, each of them being a modus ponens. What is of importance for the question 
of generality is that the “power of the mind” described here is a capacity for conceiving 
a kind of generality that is specific, according to Poincaré, to mathematical thought. Two 
points must be noted. First, the “power of the mind” is put into play not only within 
mathematical induction but also for the construction of some fundamental mathematical 
concepts. Secondly, Poincaré’s approach to mathematical activity allows us to understand 
why Poincaré develops considerations about generality, generalization, and the infinite 
conjointly, without studying them independently. Let us make these two points explicit.8

Poincaré refers to the text quoted above at several points in his philosophical writ-
ings, noticing that the same conceptual capacity— “the power of the mind”— occurs in 
the construction of some fundamental mathematical concepts. These concepts include 
the concept of natural number, the concept of infinite set, the concept of mathematical 
continuum, and the concept of continuous groups in geometry. Natural numbers are 
constructed by conceiving of the indefinite repetition of the act which consists in adding 
a unit to a finite collection of units. Such an act is linked to the operation of counting. 
An infinite set is constructed by conceiving of the indefinite addition of new elements 
to a finite set. The first- order continuum (which corresponds to the power of rational 
magnitudes9) is constructed by conceiving of the indefinite repetition of the act which 
consists in measuring an empirical given (which is composed of sensations) with devices 
of increasing precision. As a result, that repetition corresponds to the operation consist-
ing of intercalating a sensible element between two others, which, at a lower degree of 

6 This point is developed in Heinzmann (1988).
7 As a matter of fact, according to Poincaré, the acceptance and use of logical rules are due to a specific kind 

of intuition, as he claims in the first chapter of La valeur de la science.
8 The following section does not go into all the details of the philosophical reconstructions of the natural 

numbers, the mathematical continuum, and geometric groups. It only sketches the idea which governs them.
9 In modern mathematical terminology, we speak of the density of rational numbers in the set of real num-

bers, and not of a continuum. However, Poincaré refers to any set formed in the same way as the rational 
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measurement precision, would be indistinguishable by our senses. A continuous group 
in geometry is constructed, on the one hand, by conceiving of the indefinite composi-
tion of displacements and, on the other hand, by conceiving of the indefinite division of 
“physical” displacements in the same way in which a continuum is constructed. (These 
displacements are also given as sensations whose properties are, roughly speaking, those 
of mathematical groups.) The following texts show the implication of the power of the 
mind in this repeated use of the operations. The first of these texts concludes a discussion 
on the various kinds of intuition used in mathematics. Poincaré states:

Finally, we have the intuition of pure number, whence arose the second of the axioms 
just enunciated, which is able to create real mathematical reasoning (Poincaré, 1958: 20).

Since the axiom mentioned here is the mathematical induction principle, this text shows 
that it is the same capacity of the mind which enters into the construction of the concept 
of natural number. The first chapter of La science et l’hypothèse shows that this capacity is 
the “power of the mind,” understood as the capacity of conceiving the indefinite repetition 
of an act.

In the following text, from chapter II of La science et l’hypothèse, the description of 
the way natural numbers are conceived confirms that point. In addition, the text draws 
a parallel between the construction of the integers and the construction yielding the 
first- order continuum:

But it is not only to escape this contradiction contained in the empirical data that the mind 
is led to create the concept of a continuum, formed of an indefinite number of terms.

All happens as in the sequence of whole numbers. We have the faculty of conceiving 
that a unit may be added to a collection of units. Thanks to experience, we have occasion 
to exercise this faculty and we become conscious of it; but from this moment we feel that 
our power has no limit, and that we can count indefinitely, though we have never had to 
count more than a finite number of objects.

Just so, as soon as we have been led to intercalate means between two consecutive terms 
of a series, we feel that this operation can be continued beyond all limit, and that there is, 
so to speak, no intrinsic reason for stopping (Poincaré, 1952: 24– 5).

Once again, it is the conception of the indefinite repetition of an act which gives rise to a 
mathematical concept. This act consists of “intercalating means between two consecutive 
terms of a series”10— the terms mentioned are elements of a “physical continuum.”11 
This analysis of the mathematical continuum is important with regards to the question 
of the necessary use of mathematics in physics: the reconstruction made by Poincaré 
can be understood as a way to understand how the mathematical concept of continuous 

numbers as a continuum of the first order. He writes: “As an abbreviation, let me call a mathematical con-
tinuum of the first order every aggregate of terms formed according to the same law as the scale of commen-
surable numbers” (Poincaré 1952: 25).

10 “Intercaler des moyens entre deux termes consécutifs d’une série.”
11 By “physical continuum,” Poincaré does not mean the continuum as it would be conceived by physicists, 

but the sensible given. The latter is characterized by the fact that, at one level of measurement precision, there 
are always sensible elements which cannot be distinguished. However, they could be distinguished if we used 
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magnitude can be applied to sensible givens. Such a given cannot be, as such, directly 
considered as a magnitude (either intensive or extensive). The reason for this is that it is 
governed by the “formula of the physical continuum” (Poincaré, 1952: 22):

A = B; B = C; A < C,

in which the symbol “=” means the sensible indiscernibility between two sensible elements 
observed at a certain level of measurement precision, and “<” means a sensible difference 
of intensity. It is in order to solve the contradiction inherent in that formula and to be able 
to apply the concept of magnitude to the sensible given that, according to Poincaré, the 
mathematical concept of continuum is constructed as described above:

Do we find [mathematical magnitude] in nature, or have we ourselves introduced it? 
And if the latter be the case, are we not running a risk of coming to incorrect conclusions 
all round? Comparing the rough data of our senses with that extremely complex and 
subtle conception which mathematicians call magnitude, we are compelled to recognize 
a divergence. The framework into which we wish to make everything fit is one of our own 
construction; but we did not construct it at random, we constructed it by measurement so 
to speak; and that is why we can fit the facts into it without altering their essential qualities 
(Poincaré, 1952: XXV).

As a matter of fact, Poincaré stresses the use of the mathematical continuum both in 
relation to measurement and for the elaboration of physical laws. Thus, the specific way 
by which the mathematical concept is constructed has important consequences in physics, 
notably concerning the generality of physical laws. We will come back to an aspect of 
that issue below.

As it is well known, the concept of group is at the core of Poincaré’s analysis of geom-
etry. In the following text, Poincaré refers to the same passage in chapter I of La science et 
l’hypothèse to talk about the “homogeneity law” which is related to the main property of 
groups, that is, the closure property. The text shows that Poincaré also understands this 
property in relation to the “power of the mind”:

We may also say that a movement which is once produced may be repeated a second and a 
third time, and so on, without any variation of its properties. In the first chapter, in which 
we discussed the nature of mathematical reasoning, we saw the importance that should 
be attached to the possibility of repeating the same operation indefinitely. The virtue of 
mathematical reasoning is due to this repetition; hence it is thanks to the law of homogene-
ity that mathematical reasoning applies to geometrical facts (Poincaré, 1952: 64).

Let us notice that the case of geometry suggests that the “power of the mind” is not 
only the capacity of conceiving the repetition of one act but must be extended to the 
capacity of conceiving the indefinite composition of similar acts. Another text describes 

a more precise measurement device. The mathematical continuum is constructed in order to have a concept 
which allows us to deal with that property of the sensible given. The expression “physical continuum” is cho-
sen by Poincaré because the phenomena studied in physics are given in sensible experiences.
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the conception according to which studying a geometrical space consists in studying a 
continuous group. What is important for us in this is that it draws a comparison between 
that situation and the construction of the concept of mathematical continuum. Poincaré 
writes:

The group of displacements as it is given to us directly through experience is something 
of a coarser nature. We may say that it is to continuous groups, strictly speaking, what 
the physical continuum is to the mathematical continuum. We first study its form in 
accordance with the physical continuum formula, but since there is something in this 
formula which is offensive to our reason, we reject it and replace it with the continuous 
group formula that potentially pre- exists in us, but that we initially know by its form.12

In the case of the mathematical continuum, the idea was to conceive the indefinite repeti-
tion of the act which corresponds to that of intercalating terms between two consecutive 
sensible terms of a physical continuum. In the case of continuous groups, similarly, the idea 
is to conceive the indefinite repetition of the act which corresponds to that of dividing a 
physical displacement into smaller displacements. “Dividing” here is understood accord-
ing to the composition law which defines the group law: a displacement A is divided into 
two smaller displacements B and C when A is obtained by composing B and C.

To summarize, the “power of the mind” described in La science et l’hypothèse, chapter 
I, appears at the core of the construction of the main mathematical concepts studied 
by Poincaré— natural numbers, infinite sets, the continuum, space— as well as in the 
“raisonnement mathématique par excellence,” namely mathematical induction.13 Thus, 
according to Poincaré, a mathematical concept or reasoning is a twofold instance: on 
the one hand, it implies the intuition14 of some acts; on the other hand it implies the 
conception of the indefinite repetition of those acts. This conception is made possible by 
a capacity of the mind, of which we also have an intuition.15

12 “Le groupe des déplacements tel qu’il nous est donné directement par l’expérience est quelque chose 
d’une nature plus grossière; il est, pouvons- nous dire, aux groupes continus à proprement parler ce que le 
continu physique est au continu mathématique. Nous étudions d’abord sa forme conformément à la formule 
du continu physique et comme il y a quelque chose qui répugne à notre raison dans cette formule, nous la 
rejetons et nous y substituons celle du groupe continu qui en puissance préexiste en nous, mais que nous ne 
connaissons initialement que par sa forme” (Poincaré, 2002: 30).

13 One can note that in those cases the “power of the mind” is applied to acts which are not mathematical 
ones: they are logical or sensible (“physical”) acts. It is only when their indefinite repetition is put into play 
that we deal with mathematics. This remark allows us to understand in which sense Poincaré speaks about 
foundations in his philosophy of mathematics: looking for foundations means, according to Poincaré, under-
standing the acts which are at the origin of a mathematical concept. In other terms, it means determining acts, 
the conception of the indefinite repetition of which produces a mathematical concept. It is worth noting that 
this philosophical inquiry is not a mere historical or psychological one about scientific discovery. Rather, it 
deals with the true meaning of the concepts studied: the acts in question as well as the conception of their 
indefinite repetition must be grasped in order to understand the mathematical concept itself. In other words, 
for instance, one cannot truly understand the concept of the mathematical continuum without making use of 
sensible intuition.

14 The intuitions concerned can be of different natures: they can be a logical intuition, a symbolic intuition, 
or a sensible intuition. We will not develop this point here.

15 “The mind has a direct intuition of this power” (Poincaré, 1952: 13).



 5.2 Generality in mathematical physics 143

   143

On this basis, let us now study the link between that special characterization of math-
ematics, on the one hand, and the notions of the infinite, of generality, and of generaliza-
tion, on the other.

The way Poincaré describes the “power of the mind” allows us to understand why 
Poincaré claims that the mathematical infinite is a potential infinite and not an actual 
infinite. As a matter of fact, actual infinity deals with things already given. Such cannot 
be the case of acts that are indefinitely repeated or combined. The intuitions by which 
these sequences of acts are given do not allow us to consider them as an already given 
whole, because these intuitions would then be limited to the finite. About sets, for instance, 
Poincaré writes:

No proposition concerning infinite collections can be made obvious by intuition.16

In other words, the acts by means of which mathematical concepts are constructed 
through applying the “power of the mind” are given by intuitions which deal only with the 
finite. That does not mean, for example, that we cannot deal with infinite sets. However, 
these sets are only conceived and cannot be given as a whole which would be grasped by 
intuition. That is why the way Poincaré understands the construction of mathematical 
concepts and reasoning— namely, in terms of acts indefinitely repeated or combined— 
implies that mathematical infinity is a potential infinity.

Now, we have seen that Poincaré connects considerations about generality and con-
siderations about the infinite. From the fact that the mathematical infinite is a potential 
infinite, it follows that mathematical generality cannot be understood independently 
from the operation of generalization. As a matter of fact, Poincaré describes the con-
ception of the indefinite repetition of an act as a kind of generalization, specific to 
mathematics:  it follows that the generality involved in mathematical reasonings and 
concepts thus conceived cannot be understood independently from that special kind 
of generalization.

5.2  Generality in mathematical physics

This point has important consequences regarding generality in mathematical physics. We 
will now examine this point, by going back to the text in which Poincaré makes the state-
ment about generalization in physics which we started with. Indeed, in this important text 
in which Poincaré stresses the role of mathematics in physics, Poincaré relates generaliza-
tion in physics to the specificity of mathematical generalization which we have examined 
above and which Poincaré relates to “the power of the mind.” The full text reads:

Origin of Mathematical Physics— Let us go further and study more closely the conditions 
which have assisted the development of mathematical physics. We recognize at the outset 

16 “Aucune proposition concernant les collections infinies ne peut être évidente par intuition” (Poincaré, 
1913: 138).
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that the efforts of men of science have always tended to resolve the complex phenomenon 
given directly by experiment into a very large number of elementary phenomena …

The knowledge of the elementary fact enables us to state the problem in the form of an 
equation. It only remains to deduce from it by combination the observable and verifiable 
complex fact. That is what we call integration, and it is the province of the mathematician. 
It might be asked, why, in physical science, generalization so readily takes the mathematical 
form. The reason is now easy to see. It is not only because we have to express numerical 
laws; it is because the observable phenomenon is due to the superposition of a large 
number of elementary phenomena which are all similar to each other; and in this way 
differential equations are quite naturally introduced. It is not enough that each elementary 
phenomenon should obey simple laws; all those that we have to combine must obey the 
same law; then only is the intervention of mathematics of any use. Mathematics teaches 
us, in fact, to combine like with like. Its object is to divine the result of a combination 
without having to reconstruct that combination element by element. If we have to repeat 
the same operation several times, mathematics enables us to avoid this repetition by 
telling the result beforehand by a kind of induction. This I have explained before in the 
chapter on mathematical reasoning. But for that purpose all these operations must be 
similar; in the contrary case we must evidently make up our minds to work them out in 
full one after the other, and mathematics will be useless. It is, therefore, thanks to the 
approximate homogeneity of the matter studied by physicists, that mathematical physics 
came into existence. In the natural sciences the following conditions are no longer to be 
found: homogeneity, relative independence of remote parts, simplicity of the elementary 
fact; and that is why the student of natural science is compelled to have recourse to other 
modes of generalization (Poincaré, 1952: 153, 158– 9).

This text can be interpreted by referring to the way Poincaré characterizes differential 
equations in other texts. For instance, he writes:

Newton has shown us that a law is only a necessary relation between the present state of 
the world and its immediately subsequent state. All the other laws since discovered are 
nothing else; they are in sum, differential equations (Poincaré, 1958: 87).

Poincaré describes here the infinitesimal transformations corresponding to what we now 
call the flow of a differential equation.17 Thus, the elementary phenomena can be under-
stood as conceived from observed phenomena, which are finite transformations, in the 
same way that continuous groups are conceived from sensible displacements in geometry. 
The elementary phenomena are mathematical concepts— infinitesimal transformations 
of the flow— conceived from observed phenomena in that way. The reference to the 
“power of the mind” in the text quoted above confirms that remark. It also allows us to 
understand why Poincaré speaks of mathematical generalization, since, as we have seen, 

17 The flow of a differential equation is the group of transformations defined as follows: 

Suppose F: Rn → Rn is a C1 vector field.
Then for each initial condition X0 ∈ Rn, the ordinary differential equation X′ = F(X) has a unique solu-

tion, which we denote by X(t).
Thus X(0) = X0 and X′(t) = F(X(t)).
The flow φ: R × Rn → Rn of X′ = F(X) is defined by φ (t,X0) = X(t).
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the generalization or idealization allowed by that faculty is specific to mathematics. In 
the text quoted above, mathematical generalization is explicitly distinguished from those 
generalizations used by “naturalists”: Poincaré does not develop this point, but one can 
try to characterize further the difference between these two kinds of generalization.

5.3  Mathematical generalization versus  
“predicative generality”

We have seen above that mathematical induction gives rise to generalizations which must 
be distinguished from the one expressed by the logical generalization rule:
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This allows us to propose an interpretation of the distinction suggested by Poincaré 
between generalizations used in mathematical physics and generalizations used by “natu-
ralists.” We have seen that in the same text Poincaré refers to the “power of the mind,” 
namely the capacity to conceive the indefinite repetition of an act. Now, it is precisely 
the fact that repetition means the successive combination of the same act or of similar 
acts which prevents mathematical reasoning by induction from being reduced to such a 
logical rule. In the text that we are analyzing, that is precisely how Poincaré characterizes 
mathematics. Let me repeat his words:

It is not enough that each elementary phenomenon should obey simple laws; all those 
that we have to combine must obey the same law; then only is the intervention of math-
ematics of any use. Mathematics teaches us, as a matter of fact, to combine like with like 
(Poincaré, 1952: 159).

It follows from this that the specificity of that kind of generalization rests on the idea of 
combining acts. This idea does not appear in the logical generalization rule. We can extend 
this remark to all the cases in which the “power of the mind” is involved and thus suggest 
that it characterizes the specificity of mathematical generalization.

The idea which arises then is that mathematical generalization differs from what we 
will call “predicative generality.” The latter appears in the case of the logical generalization 
rule but it is a very general logical form. It can be described in two ways, namely in terms 
of properties or predicates, or in terms of classes. In this sense, a general proposition 
corresponds to the statement that some property is common to several individual things or 
cases, or to the grouping of several individual things or cases into one class. Generalization by 
abstraction, for example, belongs to the domain of predicative generality, for it consists in 
not taking into account differences among several cases or things in order to group them 
instead into a class or to subsume them under a generic concept which corresponds to a 
common property that they possess. One can suggest that Poincaré refers to generaliza-
tions of that kind when he speaks about naturalists, referring to zoological or botanical 
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classifications. We can notice that predicative generality belongs to the logic of the subject/ 
predicate18 logical form or to the logic of classes. This does not mean that, for instance, 
zoological classifications should be reduced to logic, but that they are conceived using 
logical forms which, according to Poincaré, belong to logic and differ from mathematical 
thinking. Indeed, as we have suggested above, the generalization implied by the “power of 
the mind” is very different from that, notably due to the fact that operations of successive 
combinations of the acts implied play a central role. Predicative generality has no place 
for the idea of combining individuals subsumed under a genus or grouped into a class, if 
“combining individuals” had a meaning. Combining acts has nothing to do with grouping 
of things or cases in a class or asserting a common property.

As a matter of fact, Poincaré links up predicative generality with formal logic, including 
finite set theory. This fact appears clearly in the following description which he gives of 
formal logic:

Formal logic is nothing but the study of properties common to all classifications. It teaches 
us that two soldiers who belong to the same regiment thereby also belong to the same 
brigade, and consequently to the same division. The whole theory of syllogism is reduced 
to that.19

The classifications described here are obviously linked with predicative generality. The 
analysis made above thus allows us to discover a link between Poincaré’s opposition to 
logicism and his claim that mathematics is necessary for physics. The idea is that the 
nature of physical phenomena calls for kinds of generalizations which differ from the 
kind of generality conveyed by formal logic. A physical law is not a general proposition 
by which we assert that a common property belongs to individual cases or things; such 
a property being possibly a polyadic predicate relating individual cases or things. It is 
rather a mathematical equation by which phenomena are understood as a combination 
of transformations governing magnitudes.

5.4  Generality in experimental physics: Poincaré  
and the “new riddle of induction”

As we will see below, the idea that mathematical (and correlatively physical) generality dif-
fers from what we have called predicative generality can be confirmed by an examination of 
the way Poincaré analyzes empirical induction. In this respect, we will reach, in the present 
section, a conclusion similar to the one drawn above. We will not stress here the “power 
of the mind.” However, it is clear that the mathematical concepts involved in Poincaré’s 

18 These must be understood in a broad sense, including polyadic predicates.
19 “La logique formelle n’est autre chose que l’étude des propriétés communes à toute classification; elle 

nous apprend que deux soldats qui font partie du même régiment appartiennent par cela même à la même 
brigade, et par conséquent à la même division, et c’est à cela que se réduit toute la théorie du syllogisme” 
(Poincaré, 1913: 102).

 

 



 5.4 Generality in experimental physics: Poincaré and the “new riddle of induction”  147

   147

analysis of interpolation— continuity, differentiability, smoothness of a function— can be 
construed, in his philosophy, as depending upon that faculty.

As the quotation made at the beginning of this paper shows, Poincaré refers to inter-
polation when he speaks about empirical induction: by this operation a physical law 
appears as a generalization of empirical data, namely of a finite set of measurements. After 
mathematics and physical mathematics, we thus tackle experimental physics, and more 
precisely Poincaré’s analyses of the way empirical data are generalized into a physical law. 
This kind of generalization belongs to the operation of induction, but we will show that, 
as understood by Poincaré, induction cannot relevantly be described as the extension of 
a property to a whole set of individuals from the observation of the fact that this property 
belongs to some of these individuals, which is the way to understand induction within 
the logic of predicative generality.

First, one must emphasize that Poincaré does not set mathematical physics and experi-
mental physics in opposition: in both domains, according to Poincaré, mathematics plays a 
central role and a genuine physical law is characterized by the fact that it must be empiri-
cally confirmed in order to be considered true. Nevertheless, the way Poincaré analyzes 
the way a law is constructed within those domains differs, even if general conclusions 
drawn from these analyses tally with each other, notably regarding the specificity that 
the use of mathematics gives to generalizations. In mathematical physics, we have seen 
that Poincaré emphasizes the differential form of the laws; this is not exactly the case in 
his considerations about experimental physics, where laws, which are generalizations of 
empirical data, are merely described as mathematical functions or curves (which represent 
mathematical functions). The link between those two ways of describing physical laws 
can be seen when one notices that, for a given phenomenon, the empirically constructed 
function must be a solution of a differential equation whose study belongs to mathematical 
physics.

If, as we will present it, induction in experimental physics cannot be described in a 
relevant way as “ordinary induction,” that is, extension of the domain of a predicate, it is 
because the former consists in interpolation, an operation which Poincaré refers to each 
time he mentions empirical induction. Let us start by making some comments about the 
texts in which Poincaré describes that operation. These comments will allow us to bring 
to light the specificity of generalization in experimental physics.

5.4.1  Interpolation

In accordance with the way Poincaré describes objective reality as constituted by math-
ematical relations expressed by laws, empirical construction of laws brings to light relations 
among empirical data by using mathematical concepts. After a geometrical frame is 
instituted— which defines the measurement operation— the construction of an empirical 
law consists in setting relations among measurement results, that is, among observed 
values of mathematical magnitudes which are associated with sensible data by means 
of the geometric frame. It follows from this that a law is a mathematical function which 
expresses relations among magnitudes. Now, this empirical construction of a law consists in 
a generalization and thus falls under induction, if induction is understood as the operation 
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which consists in generalizing the results of an empirical observation. That is the reason 
Poincaré mentions interpolation in the main texts in which he considers induction, since 
interpolation consists in constructing a mathematical function (a curve) from a scatter 
plot obtained by measuring correlated values of different magnitudes. Let us read some 
texts in which interpolation appears as the main instance of induction in experimental 
physics. Here is the first one:

However timid we may be, there must be interpolation. Experiment only gives us a certain 
number of isolated points. They must be connected by a continuous line, and this is a true 
generalization. But more is done. The curve thus drawn will pass between and near the 
points observed; it will not pass through the points themselves. Thus we are not restricted 
to generalizing our experiment, we correct it; and the physicist who would abstain from 
these corrections, and truly content himself with experiment pure and simple, would be 
compelled to enunciate very extraordinary laws indeed (Poincaré, 1952: 142– 3).

In this text, the expression “true generalization” must be underlined, for it is the one 
Poincaré uses to designate physical laws. By this use, associated with interpolation, 
Poincaré stresses the empirical nature of physical laws as he often does. On the other hand, 
this expression suggests that other kinds of generalizations would not be genuine ones. 
According to one interpretation, these other kinds of generalizations refer to hypotheses 
which are not empirical laws (i.e., conventional principles, heuristic principles, or meta-
physical assumptions). According to another interpretation, Poincaré refers to empirical 
generalizations that are not the ones specifically used in physics. In what follows, we 
develop this latter interpretation, which is by no means incompatible with the former.

We choose not to comment directly on those texts but to do so in the context of a 
comparison between Poincaré’s analysis and Goodman’s third chapter of Facts, fictions, 
and forecast, in which Goodman (1973) develops what he calls “the new riddle of induc-
tion,” for this comparison allows a fruitful presentation of Poincaré’s thought. Here, 
the reference to Goodman’s book is only a starting point for analyzing Poincaré’s texts, 
which are the main object of this paper: thus we will not develop a detailed analysis of 
Goodman’s thought.

Let us start by making some remarks about the texts quoted in this section.
As mentioned above, Poincaré’s considerations about interpolation are in line with a 

general reflection about induction in physics, that is, about the operation of generalizing 
empirical data which leads to a law. Thus those texts about interpolation have a large 
philosophical scope and importance in spite of their apparently narrow subject. This 
scope and importance are underlined by Poincaré in the last sentence of the following 
text, which we have already partly quoted above:

Let us pass on to an example of a more scientific character. I require to determine an 
experimental law; this law, when discovered, can be represented by a curve. I make a 
certain number of isolated observations, each of which may be represented by a point. 
When I have obtained these different points, I draw a curve between them as carefully as 
possible, giving my curve a regular form, avoiding sharp angles, accentuated inflexions, 
and any sudden variation of the radius of curvature. This curve will represent to me the 
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probable law, and not only will it give me the values of the functions intermediary to those 
which have been observed, but it also gives me the observed values more accurately than 
direct observation does; that is why I make the curve pass near the points and not through 
the points themselves.

Here, then, is a problem in the probability of causes. The effects are the measurements 
I have recorded; they depend on the combination of two causes— the true law of the 
phenomenon and errors of observation. Knowing the effects, we have to find the prob-
ability that the phenomenon shall obey this law or that, and that the observations have 
been accompanied by this or that error. The most probable law, therefore, corresponds 
to the curve we have drawn, and the most probable error is represented by the distance 
of the corresponding point from that curve. But the problem would have no meaning 
if before the observations I did not have an a priori idea of the probability of this law or 
that, or of the chances of error to which I am exposed. If my instruments are good (and 
I knew whether this is so or not before beginning the observations), I shall not draw the 
curve far from the points which represent the rough measurements. If they are inferior, 
I may draw it a little farther from the points, so that I may get a less sinuous curve; much 
will be sacrificed to regularity.

Why, then, do I draw a curve without sinuosities? Because I consider a priori a law 
represented by a continuous function (or function the derivatives of which to a high order 
are small), as more probable than a law not satisfying those conditions. But without this 
conviction the problem would have no meaning; interpolation would be impossible; no 
law could be deduced from a finite number of observations; science would cease to exist 
(Poincaré, 1952: 204– 6).

In other words, the existence of science itself depends upon the possibility of carrying out 
interpolation. Consequently, according to Poincaré, interpolation is not only an instance of 
induction but the main form of induction, at least in physics. Additionally, the affirmation 
quoted above also occurs in the following text:

I do not at all wish to investigate here the foundations of the principle of induction; I know 
very well that I shall not succeed; it is as difficult to justify this principle as to get on without 
it. I only wish to show how scientists apply it and are forced to apply it.

When the same antecedent recurs, the same consequent must likewise recur; such is 
the ordinary statement. But reduced to these terms, this principle would be of no use. 
For one to be able to say that the same antecedent was reproduced, it would be necessary 
for the circumstances all to be reproduced, since no one is absolutely indifferent, and 
for them to be exactly reproduced. And since this will never happen, the principle could 
have no application.

We should therefore rephrase the statement and say:  if an antecedent A once 
produced a consequent B, an antecedent A′ a little different from A, will produce a 
consequent B′ a little different from B. But how can we recognize that A and A′ are “a 
little different?” If any of the circumstances can be expressed by a number, and if in 
both cases this number has nearly the same value, the meaning of “a little different” is 
relatively clear; the principle then means that the consequent is a continuous function 
of the antecedent, and as a practical rule we are led to believe that interpolation is 
allowed. It is in fact what scientists do every day and no science would be possible 
without interpolation.
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However we notice something. The law we are looking for can be represented by a 
curve. Experiment made us aware of some points on this curve. According to the principle 
we have just stated, we believe that these points can be connected by a continuous line. 
We draw this line with the naked eye. New experiments will provide new points on the 
curve. If those points are outside the line drawn in advance, we will have to modify the 
curve, but not abandon our principle. Any points, as numerous as they may be, can be 
joined by a continuous curve. Of course, if this curve is too irregular, we may be shocked 
(and even suspect experimental mistakes), but the principle won’t be directly faulted.20

Another topic of those texts is the continuity and smoothness of functions or curves 
occurring in interpolation. These characteristics are described by Poincaré in terms of 
simplicity and by referring to the principle of sufficient reason. It is worth noting that 
continuity is not only mentioned by Poincaré when discussing interpolation, but also 
when discussing the principle of empirical induction directly. He reformulates the latter 
principle, in the text above, in terms of continuity while associating to it the topic of 
approximation,21 which also occurs in those texts.

The text we have just quoted is an excerpt of the eleventh chapter of La science et 
l’hypothèse, which deals with probability. Poincaré’s considerations regarding probability 
within his reflections about induction and interpolation differ considerably from concep-
tions like those of Carnap and Reichenbach. According to the conceptions of the latter, 
induction rests upon probability theory in the following way:  induction would consist 
in choosing the most probable hypothesis. In the following paragraph, we will show that, 
according to Poincaré, induction and probability are related in a completely different way.

Finally, it is important to note that Poincaré claims that his goal is not to seek a foun-
dation of the induction principle, that is, to try to prove that induction, under certain 
conditions, leads to generalizations whose truth is guaranteed a priori. His philosophical 
concern about induction is not, in that sense, a foundational concern. That is the reason 
that it is interesting to compare Poincaré’s and Goodman’s conceptions: as a matter of 
fact we claim that both deal with the same question.

5.4.2  “The new riddle of induction” in Poincaré’s 
philosophy

We are going to try to show that “the new riddle of induction,” to quote the title of the 
third chapter of Goodman’s book Facts, fictions, and forecast, was not new in 1954, when 
it was first published, since it had been formulated by Poincaré half a century earlier. 

20 “… si un antécédent A a produit une fois un conséquent B, un antécédent A′ peu différent de A, produira 
un conséquent B′ peu différent de B. Mais comment reconnaîtrons- nous que les antécédents A et A′ sont   
« peu différents »? Si quelqu’une des circonstances peut s’exprimer par un nombre, et que ce nombre ait dans 
les deux cas des valeurs très voisines, le sens du mot « peu différent » est relativement clair; le principe signifie 
alors que le conséquent est une fonction continue de l’antécédent. Et comme règle pratique, nous arrivons 
à cette conclusion que l’on a le droit d’interpoler. C’est en effet ce que les savants font tous les jours et sans 
l’interpolation toute science serait impossible” (Poincaré, 1905: 177).

21 As mentioned above, approximation of measurements plays a central role in Poincaré’s philosophical 
reconstruction of the mathematical concept of continuum.
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Nevertheless, if the question raised by Poincaré and Goodman is the same, their answers 
differ considerably. Examining Poincaré’s answer and the reasons that it differs from 
Goodman’s answer enables us to present the main characteristics of Poincaré’s conception 
of induction in experimental physics.

Goodman’s formula for the “new riddle of induction” refers, not to the search for a 
foundation of induction (which is the “old” problem of induction), but to the search for 
a way of distinguishing a hypothesis which can legitimately be induced from a hypothesis 
which cannot, in the case where both hypotheses are confirmed by the same set of empirical 
data. The point is that this problem does not deal with the truth of the hypothesis which is 
legitimately induced. It is not the truth (the success) of an induction which is the concern, 
but its legitimacy. As a matter of fact, it may be legitimate to induce a hypothesis from a set 
of empirical data even if that hypothesis is wrong— which can be established by a subse-
quent empirical observation. In addition, given a set of empirical data, all the hypotheses 
confirmed by these data are not construed as legitimate generalizations and are not actually 
taken into account. Goodman’s construction of the “grue” predicate aims to establish the 
existence of that problem and at proving that the criterion to distinguish a hypothesis which 
can be legitimately induced (a “lawlike” hypothesis) from one which cannot does not rest 
upon a formal or syntactic22 difference between the hypotheses which are compared (or 
between the predicates which are projected23). In Goodman’s work, the riddle is related 
to the topic of projection and can be expressed by means of different equivalent formulas:

• search for a difference between “lawlike statements” and “accidental statements”

• search for an answer to the question: “which hypotheses are confirmed by their 
positive instances?”

• search for a definition of the predicate “projectible” based upon the predicate “pro-
jected,” which is equivalent to project the predicate: “projected.”

Goodman’s analysis of the predicate “grue”24 leads him to a solution of the riddle that 
is a rule of induction which rests upon the concept of entrenchment: the idea is to say 
that a predicate or a hypothesis are more entrenched when they have actually been more 
induced. According to Goodman, the determination of a lawlike hypothesis is extrinsic: it 
can never rest upon intrinsic characteristics of the hypotheses. The fact that a hypothesis 
is more entrenched than another hypothesis is indeed independent from any of their 
intrinsic characteristics. Goodman’s rule of induction is formulated as following:

Among [supported, unviolated, and unexhausted] hypotheses, H will be said to override 
H′ if the two conflict and if H is the better entrenched and conflicts with no still better 
entrenched hypothesis (Goodman, 1973: 101).

22 One of Goodman’s concerns is to criticize the idea of an inductive logic.
23 We prefer to speak in terms of hypotheses rather than in terms of predicates, in order to keep a larger 

generality. Indeed, we will see that it is not relevant, in Poincaré’s philosophy, to describe physical laws— which 
are the induced hypothesis— as consisting of associating a predicate to a subject.

24 Goodman defines “grue” in the following way:

“Suppose that all emeralds examined before a certain time t are green. At time t, then, our observa-
tions support the hypothesis that all emeralds are green; and this is in accord with our definition of 
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It is worth noting that Goodman underlines the fact that his solution consists in saying that 
what distinguishes a legitimate induction and an illegitimate induction is only the deeper 
entrenchment of the former and nothing else. That is the reason why authors who have 
tried to refute Goodman’s argument have sought to show that something else, other than 
mere entrenchment, enables us to make that distinction. As we will see, precisely such a 
“something else” enables us to make the distinction in Poincaré’s philosophy.

After Goodman’s book was published, several authors— Hempel, Priest, and Hullett 
and Schwartz— noticed that the “new riddle of induction” can be raised in a natural way 
within the context of interpolation. Here is how Hullett and Schwartz present that point:

If, as Goodman sees it, the “old riddle” of induction asked the question, “Why does a 
positive instance of a hypothesis give any grounds for predicting future instances?” and the 
“new riddle” asks instead, “What hypothesis are confirmed by their positive instances?” 
then much of the “new riddle” is not so new after all. Consider the interpolation situ-
ation: given a set of data points on a graph, which might be connected by countlessly 
many different curves, which is the best curve that might be drawn through these points, 
recognizing that each point in the curve selected (other than those points originally 
obtained as data points) constitutes a prediction about unexamined cases? (Hullett and 
Schwartz, 1967: 109).

Now, about the use of the principle of induction in physics, Poincaré raises the problem 
in very similar terms, as can be read in the following text:

… those who do not believe that natural laws must be simple, are still often obliged to act 
as if they did believe it. They cannot entirely dispense with this necessity without making 
all generalization, and therefore all science, impossible. It is clear that any fact can be 
generalized in an infinite number of ways, and it is a question of choice. The choice can 
only be guided by considerations of simplicity. Let us take the most ordinary case, that 
of interpolation. We draw a continuous line as regularly as possible between the points 
given by observation. Why do we avoid angular points and inflexions that are too sharp? 
Why do we not make our curve describe the most capricious zigzags? It is because we 

confirmation. Our evidence statements assert that emerald a is green, that emerald b is green, and so on; 
and each confirms the general hypothesis that all emeralds are green. So far, so good.

“Now let me introduce another predicate less familiar than ‘green.’ It is the predicate ‘grue’ and it 
applies to all things examined before t just in case they are green but to other things just in case they are 
blue. Then at time t we have, for each evidence statement asserting that a given emerald is green, a paral-
lel evidence statement asserting that that emerald is grue. And the statements that emerald a is grue, that 
emerald b is grue, and so on, will each confirm the general hypothesis that all emeralds are grue. Thus 
according to our definition, the prediction that all emeralds subsequently examined will be green and the 
prediction that all will be grue are alike confirmed by evidence statements describing the same obser-
vations. But if an emerald subsequently examined is grue, it is blue and hence not green” (Goodman, 
1973: 73– 4).

Obviously, only the first of these two incompatible predictions is a lawlike (legitimate) hypothesis. The new 
riddle of induction consists in asking how one can distinguish such a hypothesis from a hypothesis like the one 
which contains “grue,” which is not legitimate and lawlike in spite of the fact that all the observations made in 
the past are positive instances of it.
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know beforehand, or we think we know, that the law we have to express cannot be so 
complicated as all that (Poincaré, 1952: 145– 6).

The question asked by Poincaré is the same as the one asked by Goodman. As a matter 
of fact, the choice he refers to in that excerpt is not the choice of the right hypothesis 
(i.e., the hypothesis which will be confirmed by any future measurement). The reason 
for this is that nothing guarantees that an induced hypothesis will never be refuted by a 
future experiment. In other words, the remark implies that there is no point searching for 
a foundation of induction. Consequently, the choice is the choice of the most legitimate 
hypothesis. Let us confirm that point by answering two objections to that interpretation 
of Poincaré’s texts. These objections derive from Goodman’s remarks about the search 
for a foundation of the principle of induction.

About such a search, Goodman writes: “Nor does it help matters much to say that 
we are merely trying to show that or why certain predictions are probable” (Goodman, 
1973: 62). The texts quoted above, as well as Poincaré’s general philosophical conceptions 
about probabilities, show that Poincaré’s conceptions would not be similar in any way to 
what Goodman dismisses here. Indeed, Poincaré claims that all probability consideration 
implies that the probability of some candidates must be asserted “a priori.”25 Now, that 
is precisely what is at stake when Poincaré refers to smooth26 curves in interpolation. Far 
from seeking to show that the confirmation of the hypothesis of a smooth curve would be 
more probable, Poincaré claims that we assert a priori that such a curve is more probable 
when we make a interpolation. This point is expressed clearly in the following part of the 
statement already quoted above:

25 Just before a text quoted above, Poincaré explains in terms of conventions the necessity of asserting a 
probability a priori:

First of all, I recall that at the outset of all problems of probability of effects that have occupied our atten-
tion up to now, we have had to use a convention which was more or less justified; and if in most cases 
the result was to a certain extent independent of this convention, it was only the condition of certain 
hypotheses which enabled us a priori to reject discontinuous functions, for example, or certain absurd 
conventions. We shall again find something analogous to this when we deal with the probability of causes. 
An effect may be produced by the cause a or by the cause b. The effect has just been observed. We ask 
the probability that it is due to the cause a. This is an a posteriori probability of cause. But I could not 
calculate it, if a convention more or less justified did not tell me in advance what is the a priori probability 
for the cause a to come into play— I mean the probability of this event to someone who had not observed 
the effect. To make my meaning clearer, I go back to the game of écarté mentioned before. My adversary 
deals for the first time and turns up a king. What is the probability that he is a sharper? The formulae 
ordinarily taught gives 8/ 9, a result which is obviously rather surprising. If we look at it closer, we see 
that the conclusion is arrived at as if, before sitting down at the table, I had considered that there was one 
chance in two that my adversary was not honest. An absurd hypothesis, because in that case I should cer-
tainly not have played with him; and this explains the absurdity of the conclusion. The function on the a 
priori probability was unjustified, and that is why the conclusion of the a posteriori probability led me into 
an inadmissible result. The importance of this preliminary convention is obvious. I shall even add that if 
none were made, the problem of the a posteriori probability would have no meaning. It must be always 
made either explicitly or tacitly (Poincaré, 1952: 203– 4).

26 In what follows, smoothness doesn’t mean infinite differentiability, but refers to characterizations given by 
Poincaré in terms of reinforcement of the first derivative or slow change in the curvature of the curve.
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The most probable law, therefore, corresponds to the curve we have drawn, and the most 
probable error is represented by the distance of the corresponding point from that curve. 
But the problem has no meaning if before the observations I did not have an a priori idea 
of the probability of this law or that, or of the chances of error to which I am exposed.

…
Why, then, do I draw a curve without sinuosities? Because I consider a priori a law 

represented by a continuous function (or function the derivatives of which to a high 
order are small), as more probable than a law not satisfying those conditions (Poincaré, 
1952: 205– 6).

In other words, it is not because the smoothest curve is the most probable that we choose 
it; it is the choice of the smoothest curve which institutes, a priori, its probability. Thus, 
Poincaré’s position is in no way similar to the one which is discarded as useless by 
Goodman in the excerpt quoted above.

The second objection is directed toward attempts at solving the old problem of induc-
tion by making it rest upon a principle of uniformity of nature. Poincaré refers to such a 
principle in the following text:

Induction applied to the physical sciences is always uncertain, because it is based on 
the belief in a general order of the universe, an order which is external to us (Poincaré, 
1952: 13).

It is important here to note that the principle of a general order of the universe is not a 
principle asserted by Poincaré to justify or to found induction, but a belief or a hypothesis 
which is stated to be coextensive to induction. In other words, Poincaré only says that 
we believe in a general order of the universe when we make inductions, without trying to 
justify such a belief and found induction upon it. Here again, Poincaré’s position differs 
from that which Goodman’s objection takes as its target.

In conclusion, the question raised by Poincaré regarding interpolation is thus similar 
to the “new riddle of induction” as it is set by Goodman: the point is to understand why 
we give priority to a certain kind of hypothesis when we make inductions— namely the 
smoothest curve which passes through or close to the points of the scatter plot— without 
asserting anything a priori about the truth of that hypothesis.

Let us examine the answer given by Poincaré to that question, which enables us to 
compare his position to Goodman’s. Poincaré’s answer can be read in the texts quoted 
above. For him, the criterion which characterizes hypotheses which are legitimately 
induced from a set of measurements is not entrenchment. Rather, it is related to the 
simplicity or smoothness of the function which is chosen. Once again, let us stress that 
by “smoothness” of a function or a curve, Poincaré means the property of having small 
high- order derivatives, or a slow change of the curvature. Without going into the details 
of the mathematical definition of smoothness, one can note that the properties mentioned 
by Poincaré mean that the function’s behavior is not so different from a polynomial 
function’s behavior.

To justify the criterion for selection used in interpolation, Poincaré refers to the principle 
of sufficient reason and to a belief in simplicity. Because the latter criterion raises problems 



 5.4 Generality in experimental physics: Poincaré and the “new riddle of induction”  155

   155

of definition, we will try to understand how the former occurs in that context. The point is 
to answer the following question: in the context of induction, do we have reasons to choose the 
smoothest function, regardless of the success of the induction (i.e., the fact that our hypothesis will 
be confirmed by future measurements)? A form of the principle of sufficient reason occurs 
in the last part of the text quoted above. In it, Poincaré claims that it is meaningless to 
ask about the probability of an induced hypothesis unless we have already stated, a priori, 
that the curve which represents the real phenomenon is probably the smoothest one. 
Indeed this can be formulated as follows: without having stated that probability a priori, 
we would have no reason not to choose any curve which passes close to the given points, 
in which case interpolation would make no sense. In other words, interpolation would 
be meaningless if we had no reason to choose, a priori, between the possible hypotheses 
which fit the empirical data (the finite set of points).

A way to confirm that interpretation and to examine Poincaré’s solution more closely 
is to start by paying attention to his rephrasing of the principle of induction in which a 
reference to interpolation occurs. Let us read again the passage quoted above:

… if an antecedent A once produced a consequent B, an antecedent A′ a little different 
from A, will produce a consequent B′ a little different from B. But how can we recognize 
that A and A′ are “a little different?” If any of the circumstances can be expressed by 
a number, and if in both cases this number has nearly the same value, the meaning of 
“a little different” is relatively clear; the principle then means that the consequent is a 
continuous function of the antecedent, and as a practical rule we are led to believe that 
interpolation is allowed. It is in fact what scientists do every day and no science would be 
possible without interpolation.

However we notice something. The law we are looking for can be represented by a 
curve. Experiment made us aware of some points on this curve. According to the principle 
we have just stated, we believe that these points can be connected by a continuous line. 
We draw this line with the naked eye. New experiments will provide new points on the 
curve. If those points are outside the line drawn in advance, we will have to modify the 
curve, but not abandon our principle. Any points, as numerous as they may be, can be 
joined by a continuous curve. Of course, if this curve is too irregular, we may be shocked 
(and even suspect experimental mistakes), but the principle won’t be directly faulted.27

As we will see, the consideration of empirical data in terms of continuous magnitudes 
(which result from a measurement operation) plays a crucial role. It must also be noted 
that in using the expression “continuous function,” Poincaré refers to smooth functions. As a 
matter of fact, however one defines that A and A′ are “not so different,” it is always possible 
to find a continuous (in the modern meaning of the word) function f which fits the scatter 

27 “… si un antécédent A a produit une fois un conséquent B, un antécédent A′ peu différent de A, produira 
un conséquent B′ peu différent de B. Mais comment reconnaîtrons- nous que les antécédents A et A′ sont 
‘peu différents’? Si quelqu’une des circonstances peut s’exprimer par un nombre, et que ce nombre ait dans 
les deux cas des valeurs très voisines, le sens du mot ‘peu différent’ est relativement clair; le principe signifie 
alors que le conséquent est une fonction continue de l’antécédent. Et comme règle pratique, nous arrivons 
à cette conclusion que l’on a le droit d’interpoler. C’est en effet ce que les savants font tous les jours et sans 
l’interpolation toute science serait impossible” (Poincaré, 1905: 177).
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plot and such that f(A) and f(A′) are very different. Now, since induction— interpolation— 
aims at allowing predictions, one must notice that a criterion that would demand only 
continuity (as distinguished from smoothness) would not be enough. Indeed, one can 
always find continuous functions passing by the same point P and taking very different 
values for another point located inside any neighborhood of P’s abscissa. If we have no 
reason to choose one or another of these functions when fitting a curve, then induction 
loses all meaning since it does not enable predictions at all. Consequently, restricting the 
choice of the function induced to mere continuous functions is not enough. Otherwise, 
one could find among them two functions which fit the scatter plot and which are to 
each other what “grue” is to “green” in the case of Goodman’s emeralds. This difficulty 
vanishes if one adopts the stronger criterion of smoothness as suggested by Poincaré: if, 
given a margin of error,28 several different functions fitting the data are chosen among 
the smoothest ones, these functions give “not- so- different” predictions and, contrary to 
“grue” and “green,” are thus not in conflict with each other. That is precisely the require-
ment for the operation of induction to enable predictions and to have a meaning. So, the 
smoothness criterion is such that, even if it allows several different hypotheses which fit 
the empirical data, these hypotheses lead to not- so- different predictions. In that way, it is 
not possible, within the limits imposed by that criterion, to construct hypotheses fitting 
the empirical data which lead to incompatible predictions, contrary to what “grue” and 
“green” do. By reason of the approximate nature of every measurement in experimental 
physics, two predictions that are not- so- different are not incompatible. Let us repeat again 
here that the point is not to know whether the prediction will be right, but only to have a 
criterion for choosing a hypothesis which enables predictions. To summarize, the choice 
of the smoothest curves as a legitimate (lawlike) hypothesis in the context of interpolation 
corresponds exactly to the principle of induction as it is rephrased by Poincaré.29

Thus, the criterion of choice proposed by Poincaré seems to be the only one which 
gives a meaning to interpolation itself, regarding the aim of this operation, namely predic-
tion. The principle of sufficient reason occurs in the following way: if there is no reason 
to make a choice between two hypotheses which lead to very different predictions, there 
is no point making an induction. This is a way to understand Poincaré’s claim according 

28 This margin depends upon the precision of the measurement device:

If my instruments are good (and I knew whether this is so or not before beginning the observations), 
I shall not draw the curve far from the points which represent the rough measurements. If they are infer-
ior, I may draw it a little farther from the points, so that I may get a less sinuous curve; much will be 
sacrificed to regularity (Poincaré, 1952: 205– 6).

29 In the text about the principle of induction, why does Poincaré mention only continuity and not smooth-
ness though he obviously refers to the latter? It can be answered that he uses an old meaning of “continuity,” 
which occurs in Euler’s writings, for instance, according to which the continuity of a function means its dif-
ferentiability and smoothness. As a matter of fact, in Science et méthode, Poincaré distinguishes two meanings 
of the continuity of a function— continuity “according to the analytical meaning of the word” and “continuity 
understood in a practical sense” (here, the remark is made about some law of probability):

There is, then, no means of representing the law of probability of the effects by a continuous curve. 
I do not mean to say that the curve may not remain continuous in the analytical sense of the word. To 
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to which, without the “belief in continuity” (made precise in terms of smoothness of the 
functions induced), induction would not be possible, would be meaningless. In other words, 
the smoothness of the induced hypothesis and the possibility of prediction (regardless of 
the success of it) are one and the same thing.

The idea can be presented in another way. What we expect from a law is that a case 
observed in the future is not so different from the prediction that we can make using the 
law. Thus, distance between magnitudes measured plays a central role. Now, the smoothest 
curve (among the curves which fit the scatter plot) is the one which “changes the most 
slowly.” If we take into account the approximate character of measurement, the faster 
a curve varies at a point, the less predictive the law (represented by the curve) is in the 
neighborhood of that point. Consequently, the smoothest function induced is the one 
which accomplishes the best predictability.30

The relevance of Poincaré’s criterion lies in the fact that it rests directly upon one 
central aim of induction, namely prediction:  this criterion enables us to choose, not 
necessarily the hypothesis which will lead to the best predictions, but the one which is the 
most likely to achieve that. Thus that criterion can be construed as expressing a condition 
of possibility of induction itself.

Thus it seems that the remarks above show that the smoothness criterion is an intrinsic 
criterion by which legitimate hypotheses can be distinguished from illegitimate ones. 
Once again, this criterion does not ensure at all that the hypothesis chosen according to 
it is true (in which case it would solve the old problem of induction). The setting of this 
criterion does not rest upon any successful induction: the issue here is not the success of 
induction but its meaning. This criterion rests upon neither a metaphysical principle nor 
future observations. Consequently it fulfills the conditions for solving Goodman’s riddle. 
By examining what amounts to the “new riddle of induction” in the context of interpola-
tion, Poincaré suggests an answer to the riddle that is opposed to Goodman’s answer. 
For, according to Goodman, there are no intrinsic criteria which enable us to understand 
why some induced hypotheses are viewed as legitimate and why some other hypotheses 
are not. Still, according to Goodman, only an extrinsic characteristic of the hypotheses 
enables that, namely entrenchment. Indeed, as Poincaré claims it, the smoothness criterion 
enables us to choose not the “true” function, that is, the function which actually describes 
the phenomenon, but legitimate induced functions (lawlike hypotheses):

According to the principle we have just stated, we believe that these points can be con-
nected by a continuous line. We draw this line with the naked eye. New experiments will 

infinitely small variations of the abscissa there will correspond infinitely small variations of the ordinate. 
But practically it would not be continuous, since to very small variations of the abscissa there would not 
correspond very small variations of the ordinate. It would become impossible to trace the curve with an 
ordinary pencil: that is what I mean (Poincaré, 1908: 73– 4; 1914: 82– 3).

This text shows that the continuity referred to in the rephrasing of the principle of induction is the continuity 
understood in a practical sense, which is described in other texts quoted above as smoothness.

30 But not necessarily the true prediction! That is not the issue here: the problem is not to determine the 
induced hypothesis which will be confirmed by future measurements (the old problem of induction) but to 
determine the one which is the most legitimate (the new riddle of induction).
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provide new points on the curve. If those points are outside the line drawn in advance, we 
will have to modify the curve, but not abandon our principle. Any points, as numerous as 
they may be, can be joined by a continuous curve. Of course, if this curve is too irregular, 
we may be shocked (and even suspect experimental mistakes), but the principle won’t 
be directly faulted.31

Nevertheless, one objection to that solution of the “new riddle of induction” must be 
taken into account. In the papers mentioned above, the authors,32 contrary to Poincaré, 
do not claim that criteria such as the smoothness criterion solve the riddle. They do not 
always refer to that criterion exactly but also to similar criteria expressed in terms of 
simplicity, against which they raise a single objection which can be summed up saying that 
a mere change of variables leads to another choice of the simplest curve for the function. 
In doing so, they try to show that one can “goodmanize” (we take this neologism from 
Hacking, 1993) simplicity (or smoothness) criteria, that is, that even within the scope of 
such a criterion, one can always construct hypotheses fitting empirical data which are 
incompatible with each other because they lead to very different predictions. Here is how 
Hullett and Schwartz explain that idea:

Here, it may seem that the analogy between the “new riddle” and the curve- fitting situ-
ation breaks down. For it might be claimed that in the latter case what is projectible is the 
smoothest curve … since it would seem possible to construct a mathematical definition of 
“smoothest curve,” which would give us the correct results in our intuitively clear cases, it 
would seem that we have a purely syntactical way of distinguishing bizarre or unprojectible 
from projectible curves. However, the problem with this proposal is that in each case 
the curve that is the smoothest curve is smoothest only with respect to some particular 
plotting of data points, i.e., with respect to some representation of our evidence. But in 
the plotting of our data, there are no fixed points. How we plot our data to begin with 
depends on the sorts of properties or units of measurement we have available. By changing 
the units of measurement or the properties we plot along either or both our x and y axes, 
we can always construct alternative graphs whose smoothest curves gives us projections 
that are incompatible with those of our original graph. Thus, our definition of “smoothest 
curve” is not enough. We would need, in addition, some means for choosing from among 
competing graphs that differently represent our data (Hullett and Schwartz, 1967: 112).

Similarly, Priest writes:

We can summarize the general situation thus: if f is the curve from the simplest family 
which fits the data S and if θ is virtually any transformation of the Cartesian plane into 

31 “En vertu du principe que nous venons d’énoncer nous croyons que ces points peuvent être reliés par 
un trait continu. Nous traçons ce trait à l’œil. De nouvelles expériences nous fourniront de nouveaux points 
de la courbe. Si ces points sont en dehors du trait tracé d’avance, nous aurons à modifier notre courbe, mais 
non pas à abandonner notre principe. Par des points quelconques, si nombreux qu’ils soient, on peut toujours 
faire passer une courbe continue. Sans doute, si cette courbe est trop capricieuse, nous serons choqués (et 
même nous soupçonnerons des erreurs d’expérience), mais le principe ne sera pas directement mis en défaut” 
(Poincaré, 1905: 177).

32 None of them seem to have noticed that Poincaré sets the riddle in the case of interpolation exactly as 
they do.
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itself, then the image of f under θ will not in general be the curve from the simplest family 
which fits the image of S under θ. Thus an appeal to simplicity will not help us with this 
problem of induction (Priest, 1976: 155).

In the same paper, Priest gives an example by using this simple mathematical development 
(Priest, 1976: 153– 4):

Let a set of data be S = = − ∈{( , ), , }.x y i n n Ni i 1

The point is to predict the value y0 of y which corresponds to the value x0 of x, with 
x0 ∈ S.

Let us call f1 the simplest curve (for example the smoothest curve) which fits the data S.

Then our prediction is: y x0 1 0= f ( ).

 Let us call f2 another curve which also fits the data S and such that f f2 1≠  and f2 0( )x ≠  
for any x.

We have: y xi i= f1( ), for any i

and      y xi i= f2( ), for any i

 Now let us suppose that we do not deal with the variables x and y but with x and y′, 
with y y x′ = / ( )f2  (here is the change of variables)

Then for any i, ′ ( )=y y xi i i/ f2

So:        y x xi i i′ = f f1 2( )/ ( )

and         y x xi i i′ = =f f2 2 1( ) / ( )

Consequently, the following curves fit the data S:

y x x′ = f f1 2( ) / ( )

y′ = 1

Since the second one is simpler (or smoother) than the first one, it will be chosen.

With that choice, the prediction is:   y0 1′ =

It follows that:         y x0 2 0 1/ ( )f =

Thus y x0 2 0/ ( )f  and not y x0 1 0/ ( )f  as was the case before the change of variables.

 To sum up, depending on the variables which are correlated, the choice of the simplest 
curve leads to arbitrary different predictions.

In other words, with an appropriate change of variables, any curve or function fitting the 
data can be made the simplest one and thus fulfills the criterion by which we choose the 
most legitimate hypothesis induced.

Let us argue against that objection.
One must notice first that the objection introduces an asymmetry. For it is x and y 

that are measured, and not y′. To make the objection symmetric, let us consider that 
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the change of variables is a change of measurement device; then the objection can be 
formulated as follows: if we measured y′ instead of y, we would induce another hypothesis 
from the data, even though using the same criterion to choose the curve. As a matter of 
fact, we would choose f2 and not f1, which are incompatible since the predictions f2 0( )x  
and f1 0( )x  are different.

Our claim is that this objection can be answered within Poincaré’s philosophy. The 
example developed by Priest can be used to present the main idea governing that 
answer: since in both cases (first case: the data are measurements of x and y; second 
case: the data are measurements of x and y′) we choose the simplest or the smoothest 
curve, we can say that we do not induce two competing hypotheses but one and the same 
hypothesis, namely the simplest or smoothest curve fitting the data. Therefore the objec-
tion is not valid because it rests upon a misleading link between the use of the criterion 
and the predictions made by hypotheses chosen in different measurement contexts. The 
idea consists in showing that the fact that f1 and f2 compete regarding their predictions 
does not imply that the criterion used to choose them does not solve the new riddle of 
induction. The fact that future measurements will show that one of the two hypotheses is 
right and the other wrong (since they lead to different predictions, such measurements 
are necessarily possible, provided that one of the two hypotheses is right) does not change 
anything about the fact that f1 is the most legitimate hypothesis if the data are given by 
measurements of x and y, and that f2 is the most legitimate hypothesis if the data are given 
by measurements of x and y′.

Let us develop that answer. The objection could be valid only if the choice of the 
measurement framework were indifferent or irrelevant, that is, only if the measurements 
were merely representations of physical magnitudes which do not depend upon them. That is 
precisely what Priest presupposes: “which description is best [i.e., the simplest] depends 
not on the situation but on how you describe it” (Priest, 1976; 152). The point is that, in 
Poincaré’s philosophy, “the situation” can in no way be considered independent from the 
measurement framework, because one cannot define physical magnitudes independently 
from a measurement framework, which therefore cannot be reduced to a mere descriptive 
system. According to Poincaré, a set of measurements is not a representation or a descrip-
tion of an independent reality constituted of physical magnitudes which are themselves 
independent from the measurement framework— a reality which would be represented or 
described by physical laws. Such a view is presupposed by Priest. It is not Poincaré’s view. 
According to Poincaré, objective reality— which we have a knowledge of thanks to physical 
laws— consists in mathematical relations between measured physical magnitudes, in such 
a way that this reality depends upon these magnitudes which themselves depend upon the 
choice of the measurement framework.33 As a matter of fact, according to Poincaré, the 
choice of a framework for measuring lengths coincides with the choice of a geometry: it 
would have no meaning to speak about “lengths” independently of a geometry, and 

33 One must recall that this view is not a nominalist view, as Poincaré underlines it. The reason is that, even 
if we choose the measurement framework— and therefore the definition of the magnitudes —  the values of the 
magnitudes which are measured do not rest upon our choice. They are imposed by sensible data which con-
stitute experience.
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therefore independently of a measurement framework. Moreover, it is only after such a 
geometric/ measurement framework is chosen that physical magnitudes can be defined. 
Poincaré’s geometric conventionalism means exactly this: there are no independent phys-
ical magnitudes which would be measured in different ways depending on the choice of 
geometry. It is the chosen geometry which institutes both the measurement framework 
and the definition of physical magnitudes. Now, because of the dependence between 
physical magnitudes and measurement/ geometrical framework, there is no meaning in 
asserting that y and y′ are two different representations or descriptions of one physical 
magnitude whose values would not depend upon that framework.

Therefore, the situation in experimental physics is the following one: the starting point 
is a set of measurements which presupposes the choice of a geometrical/ measurement 
framework from which physical magnitudes are defined; from the set of measurements, 
the relations between physical magnitudes— the physical laws— are induced. Physical laws 
do not predict phenomena which could be arbitrarily measured, but the results of meas-
urement operations whose nature and application are not independent from the way the 
laws are induced. Thus f1 and f2 compete only within a same framework and not outside 
measurement frameworks. And we are right to induce f1 if x and y are measured, and we 
are also right to induce f2 if x and y′ are measured: in both cases, the same hypothesis is 
induced, namely the smoothest curve or function fitting the data on which we work. If a 
future measurement of y0 confirms one of the hypotheses and refutes the other one, then 
it will only show that induction led to a wrong law in one of the two cases, but not that it 
was illegitimate to induce that law. Now, the new riddle of induction deals with the latter 
issue and not with the former. That is the reason that the objection raised by Priest and 
Hullett and Schwartz is not valid within Poincaré’s philosophy.

From this point one can ask the following question: if we admit that Goodman’s and 
Poincaré’s arguments about the new riddle of induction are both valid, how can one 
explain that their solutions differ? We suggest that this difference rests upon the logi-
cal forms according to which Goodman and Poincaré analyze the induced hypothesis. 
Goodman’s argumentation about “grue” takes place within a logical framework governed 
by the relation [individual subject/ predicate]. It implies that the world is already divided 
into fixed individual entities (here: emeralds). Now, one concern of Poincaré’s— notably 
within his critics of ontological commitments— is to challenge the relevance of that logical 
framework in philosophy of mathematics and physics; more precisely, Poincaré objects to 
the idea that mathematical objects and operations could be relevantly described according 
to the distinction between subject and predicate.34 The whole discussion above consists 
precisely in underlining the idea that it is not relevant to construe a physical law as an 
independent reality (i.e., as a logical subject, namely as a set of related values independ-
ent from a measurement framework) whose properties, such as the form of the curves 
describing it, would depend upon a system of representation or description, which is 
presupposed by Priest. We have tried to show that such a view is incompatible with 
Poincaré’s philosophy. Now, the argument of a change of variables, as well as Goodman’s 

34 We have already suggested this point about the way Poincaré analyzes generality and generalization.
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reflections about “grue,” necessarily implies that one logically distinguishes given entities 
on one hand, and some of their properties on the other hand, respectively: “real” law and 
emerald on the one hand, and representative curves and colors on the other hand. Without 
that logical independence, there is no possibility of predicating different properties (which 
depend upon the framework of representation) to a same subject. That is precisely what 
Priest does: he considers a logical subject— the “physical magnitude”— and constructs two 
frameworks of representation (which can be understood as measurement frameworks) 
such that the properties that we predicate to that logical subject— the functions or the 
curves chosen by interpolation within each of these frameworks— are incompatible in spite 
of the fact that their choice rests on the same criterion. According to Poincaré’s conception 
of physical laws, the situation is very different: sensible experience is structured by the 
choice of a geometrical space which institutes both a measurement framework and physi-
cal magnitudes. Objective reality consists in mathematical relations between the latter. 
These relations are curves or functions which are induced from actual measurements 
according to smoothness criterion. We have tried to show that only this criterion gives a 
meaning to induction (to interpolation) and that one cannot “goodmanize” that criterion 
for there is no relevant way to describe objective reality and physical laws according 
to a [subject/ predicate] logical form, such as the one occurring in what we called ‘the 
predicative generality’ in the previous sections. Therefore, here again, empirical induc-
tion in experimental physics (interpolation) is a generalization which cannot relevantly, 
according to Poincaré’s philosophy, be understood within the logical context of predicative 
generality. One can notice that Goodman, on the contrary, understands statements such 
as “All emeralds are green” in terms of predicative generality.

To summarize, according to Poincaré, induction in experimental physics does not 
consist in extending the domain of a predicate. In other words, a mathematical function 
should not be understood as a predicate. In that case, interpolation could be understood 
as a projection (in the sense Goodman uses this word) of a predicate. That is what authors 
quoted above do to apply Goodman’s analysis to interpolation. But this is relevant only if 
one can logically distinguish a reality and the function expected to represent or describe 
it:  the function is then construed as a predicate of that reality, which depends upon 
the representation framework. We tried to show that Poincaré’s conception of objective 
reality and physical laws is completely different from that view and doesn’t allow such a 
philosophical argumentation. Therefore we can draw a conclusion similar to the conclu-
sion of the previous section: due to the use of mathematics in physics and similarly in 
the case of generalization in mathematical physics, empirical induction in physics differs 
from induction understood as the extension of the domain of a predicate, which occurs 
in other empirical sciences.
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the formulation of the general

 



166



   167

Section II.1

Developing a new kind 
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6

Elaboration of a statement  
on the degree of generality of  
a property: Poincaré’s work on  
the recurrence theorem

ANNE ROBADEY*

6.1  Introduction

If ABC is a right- angled triangle at A, then BC AB AC2 2 2= + .

This statement of Pythagoras’s theorem is formed of two parts: a hypothesis and the 
ensuing conclusion. Many theorems are constructed in such a manner. A set of hypotheses 
defines a set of situations for which a property is satisfied. However, these hypotheses 
may be stated in different forms, which are not always interchangeable. Therefore, one 
can of course state:

If a ≠ 0, then the equation ax b+ = 0 admits a unique solution.

But one might also readily say:

Equation ax b+ = 0 admits a unique solution, unless a = 0.

* This chapter was prepared by Anne Robadey on the basis of her Ph.D. Dissertation (Robadey, 2006), 
before she entered the Cistercian Abbey Notre Dame d’Igny, in which she now lives. She could not revise the 
translation carried out by Théodora Seal and prepared for publication by Karine Chemla, Renaud Chorlay, 
and Jonathan Regier. We refer the reader to her dissertation for a French version and further developments of 
the ideas presented in this chapter (http:// tel.archives- ouvertes.fr/ tel- 00011380/ ).

 

 

http://tel.archives-ouvertes.fr/tel-00011380/


170 Elaboration of a statement on the degree of generality of a property

170

On the contrary, barring a very particular context, the following statement seems 
incongruous:

In the triangle ABC, BC AB AC2 2 2= + , unless ABC is not right- angled at A.

Thus, there is a difference between the two conditions “if a ≠ 0” and “if ABC is 
right- angled at A.”

In view of these simple examples, the difference between the two kinds of hypotheses 
seems clear. The case where a = 0 constitutes a particular case, an exception; in general, 
equation ax + b = 0 admits a unique solution. By contrast, the fact that a triangle is not 
right- angled is not exceptional, on the contrary. Therefore it is essential to specify in the 
statement of Pythagoras’s theorem that the triangle must be right- angled.

No doubt, this difference has been perceived by mathematicians for a long time. This 
can be seen from the fact that Pythagoras’s theorem has always been presented as stating 
a property of right- angled triangles, whereas the limits of validity of statements such as 
“equation ax + b = 0 admits a unique solution” have not always been given such attention.

But it seems that it is at the end of the nineteenth century that a new type of statement— 
today widespread in many areas of mathematics— appears. It states that a property is true 
for “almost all” considered objects, in a precise mathematical sense. Several characteristics 
of such a proposition deserve further development. First, the property is not necessar-
ily satisfied by all the objects, it may admit exceptions. Further, a mathematical tool is 
introduced in order to quantify these exceptions and characterize their rarity. Finally, no 
attempt is made to find a criterion allowing identification of the exceptions.

The history of the theorem commonly known today as the “recurrence theorem”1 
bespeaks Poincaré’s conception of such a statement— probably one of the first. For certain 
systems of differential equations, this theorem ensures the existence of recurring solutions 
(or trajectories):2 for any region of the studied domain, as small as it might be, there exist 
trajectories that return to it infinitely often. But Poincaré also studied solutions that do 
not have this property. Therefore, there are recurring trajectories and others that are not. 
Poincaré states that the first are more general. But in what sense?

Poincaré progressively clarifies his answer to this question through a series of texts.
The theorem appears in Poincaré’s memoir Sur le problème des trois corps et les équa-

tions de la Dynamique, which competed for the prize offered in 1888 by King Oscar 
II of Sweden. The original manuscript has not been found;3 however, there are two 
printed versions of the memoir. Following the discovery of an important error, the first, 
(Poincaré, 1889; hereafter: [Pa]), was not distributed. The corrected memoir, (Poincaré, 
1890; [Pb]), was published in Acta mathematica the next year. It was in this amended 
version of the text that Poincaré added a corollary to the recurrence theorem. He created 
a statement that gives a precise mathematical meaning to the comparison between the 

1 Poincaré does not himself give it this name. This term is introduced by Birkhoff to designate a slightly 
stronger property than that studied by Poincaré (but very similar).

2 Rather, Poincaré considers them as “stable” trajectories, or “stable in the sense of Poisson.”
3 See Barrow- Green (1997).
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degrees of generality of the two types of trajectories. The non- recurring trajectories are 
“exceptional” and this term is defined using a concept built on probability theory. By 
this, Poincaré means that the probability is equal to zero for a trajectory randomly chosen 
not to be a recurring one.

The 1890 memoir is soon followed in 1891 by two summaries without proofs. In 
1894, Poincaré again mentions the recurrence theorem, still without proof, in a very 
different context: the kinetic theory of gases. Finally the theorem, with a proof, is inte-
grated into the third volume of Poincaré’s master work on celestial mechanics Méthodes 
nouvelles de la mécanique céleste.4 The following table gives an overview of this corpus.

Sur le problème des trois corps et les équations de la Dynamique

1888— original version (not found) manuscript
[Pa] 1889— first printed version, with appended notes not published
[Pb] 1890— corrected version of [Pa], including   

appended notes
published

January 1891— Two summaries of [Pb], without proof:
(Poincaré, 1891b) Bulletin astronomique
(Poincaré, 1891a) Revue générale des sciences

1894— Sur la théorie cinétique des gaz
(Poincaré, 1894) Revue générale des sciences

1899— Méthodes nouvelles de la mécanique céleste
(Poincaré, 1892– 99)

(volume III)

Why does Poincaré feel the need in 1890 to thematize the exceptional character of non-
recurring trajectories? What makes this thematization possible?

The comparison between the successive versions of the memoir gives access to 
the context in which Poincaré introduces this new statement. We shall study more 
particularly the relations between the addition of the corollary and the other altera-
tions of the text following the discovery of the error. This will allow us to identify 
the motivations which render Poincaré’s reflections on the generality of recurring 
trajectories necessary.

The existence of successive texts will also help us to better understand Poincaré’s 
work. Indeed, the progressive improvements of the text shed light on the questions, 
which drive Poincaré’s reflection and on which he concentrates his efforts. We shall 
see that this piece of work focuses, of course, on proving the result, but also on the 
formulation of the statement itself and the means set forth to formulate it. In particular, 
Poincaré adapts the calculus of probability so as to make it a tool corresponding to the 
encountered problem. To highlight this part of Poincaré’s work, alongside the study of 
the group of texts on the recurrence theorem, we shall also consider Poincaré’s course 
on probabilities, given in 1894 at the Sorbonne and published in 1896. The latter will 

4 I shall abbreviate this title as Méthodes nouvelles.
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be compared to Bertrand’s work (1888); Bertrand’s text is a source of inspiration for 
Poincaré, although he disagrees on several points, in particular, those related to his 
research on the recurrence theorem.

6.2  “Exceptional” trajectories: introduction of a new 
language and concept into the formulation of  
the recurrence theorem

The recurrence theorem concerns the trajectories of a system of differential equations 

of the form 
dx

dt
Xi

i= , in dimension three (i = 1, 2, 3). In other words, let us suppose 

that the motion of a point P is governed by these equations and consider the different 
curves, which are described by this point according to its initial position. The theorem is 
identically given in both memoirs [Pa] and [Pb]:

Theorem 1. Let us suppose that the point P remains at finite distance and that the volume 

dx dx dx1 2 3∫  
is an integral invariant; if any region r0 is considered, as small as this region 

might be, there will be trajectories which pass through it infinitely many times.5

It is then extended to the case of a point P moving in a space which is of any dimen-
sion, and where there exists an integral invariant (not necessarily the volume), the point 
P remaining at finite distance. In other words, as Poincaré announces himself in both 
memoirs, this theorem states that, given the above hypotheses, there are an infinity of 
trajectories, which are stable in a way named “stability in the sense of Poisson”6 by 
Poincaré in [Pb].

From [Pa] onward, Poincaré claims a stronger result, which concerns the nature of this 
infinity: “I shall even add that the trajectories which have this property are more general 
than those that do not, precisely just as incommensurable numbers are more general than 
commensurable numbers.” But this assertion is given without proof.

6.2.1  Explicit choice of a specific vocabulary

The idea of comparing— from the standpoint of their generality— recurring trajectories with 
those that are not can again be seen in the later texts. But the formulation of this compari-
son changes. By taking one by one the successive statements of the recurrence theorem, 
I shall point out an interesting process. Starting in 1890, not only does Poincaré develop  

5 [Pa, p. 31] and [Pb, p. 314] (Œuvres). The statement, identical, is entitled “Theorem 1” in both texts. Only 
the typography presents slight variations.

6 In the third memoir Sur les courbes (Poincaré, 1885, p. 94), Poincaré already had defined a very similar 
notion of stability.
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a stable terminology to state the contrast between the two types of trajectories; he also 
insistently emphasizes the technical meaning given to the terms he introduces. The mak-
ing of statements expressing the results is also part of the mathematician’s work. I shall 
first examine the formulation of the comparison between the recurring and non- recurring 
trajectories, before considering secondly the mathematical tools used by Poincaré. This 
analysis will then allow us to highlight the correlation between the development of results 
and that of statements.

In [Pb], Poincaré announces, right at the beginning of the sections that interest us, 
the reinforcement of the theorem: “I shall add that the first [the trajectories that are not 
stable in the sense of Poisson, AR] can be regarded as exceptional and I shall seek later 
on to clarify the precise meaning I give to this word” [Pb, p. 314].

The formulation has changed in comparison to [Pa]. The accent was placed on trajecto-
ries that are “more general” than others. The emphasis is now placed on the “exceptional” 
character of the latter. We shall soon see that this change of standpoint is related to what 
Poincaré’s proof establishes in [Pb]. Further, right from this introductory announcement, 
Poincaré draws the reader’s attention to the “word” he is using. The notion of precision 
that was already present in 1889 is found again “precisely just as.” But, in that case, 
mathematical objects were being directly compared. In [Pb], it is a word that is going to 
receive a precise mathematical specification. Therefore, in 1890, Poincaré thematizes a 
mathematical notion by attaching to it a vocabulary.

Following the statement of Theorem 1 and its proof, which were kept unchanged in 
relation to [Pa], it is in the form of a corollary that Poincaré introduces the announced 
clarification [Pb, p. 316]:

Corollary 1. It follows from what precedes that there exist an infinity of trajectories that pass 
through the region r0 infinitely many times; but others may exist that only pass through this 
region a finite number of times. I now intend to explain why the latter trajectories can be 
regarded as exceptional.

Poincaré immediately points out that “this expression does not have any precise meaning 
in itself,” and gives a “definition” of it in probability terms. Moreover, Poincaré mentions 
that he takes a term from everyday language and gives it a technical meaning. In the rest 
of the memoir, he reserves the term “exceptional” for this precise meaning. Besides, on 
occasion he recalls how the term is defined: “if initial conditions are not exceptional in 
the sense given to this word in the corollary of Theorem 1” ([Pb, p. 323]; emphasis added).

If alerted by the author’s insistence on this term, one reads the introduction of [Pb] 
again, it appears that Poincaré already uses the same word, although not yet insisting 
on the technical meaning he will give to it in the main part of the memoir. Indeed, he 
describes his work in the following way: “I studied more particularly a particular case of 
the three- body problem, that in which one of the masses is zero and the motion of the 
other two is circular; I recognized that in this case the three bodies pass infinitely many 
times as close as one wants to their initial position, unless the initial conditions of the 
motion are exceptional” [Pb, p. 264].
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In the texts that interest us, the vocabulary of “exceptions” is simultaneously used in 
other senses. However, it can be shown that from 1890 Poincaré systematically uses this 
terminology when referring to the corollary of the recurrence theorem. Further, we shall 
see that, almost always, he carefully points out the technical meaning in which he uses it, 
referring to probability calculus.

Therefore, in the summary (Poincaré, 1891b) of the results published in the memoir 
[Pb] written for the Bulletin astronomique, one reads:

Thus, from this point of view, one can say that there are an infinity of unstable particular7 
solutions and an infinity of stable particular solutions.

But there is more: one can say that the first are the exception and the latter are the 
rule, just as rational numbers are the exception and incommensurable numbers are the 
rule (Poincaré, 1891b, p. 490).

The sentence is built on the same pattern as the one in [Pa]: the distinction between 
the two types of trajectories is compared to that between commensurable and incom-
mensurable numbers. But Poincaré now uses the term of “exception,” according to 
the convention he defined in [Pb], rather than the expression “more general” found 
in [Pa]. He then clarifies the meaning taken by the term of “exception,” which he 
has just used:

I prove, indeed, that the probability that the initial circumstances of the motion are those 
corresponding to an unstable solution, I say, that this probability is equal to zero. This 
word has no meaning by itself: I give in my Memoir a precise definition that I do not think 
useful to reproduce here […] (Poincaré, 1891b, p. 490).

Therefore, even without the intention of going into any details, Poincaré takes care to 
use the vocabulary introduced in [Pb]. Further, even though he does not go over it again 
in 1891, he insists on the fact that he gave a proof of this statement. Finally, let us note 
that the word of which Poincaré announces the definition is that of “probability” rather 
than “exception.”

The same phenomenon can be observed in the article written for the Revue générale 
des sciences (Poincaré, 1891a). The formulation is similar, with the same insistence on the 
technical character of the terminology:

I shall add that the first [the unstable solutions, AR] are exceptional (this allows to say 
that in general there is stability). Here is what I mean by this, because by itself this word 
has no meaning. What I want to say is that there is a probability equal to zero that the 
initial conditions of the motion are those corresponding to an unstable solution (Poincaré, 
1891a, p. 68).

Here again the term “exceptional” is found with its definition in probability terms. The 
parenthesis inserted by Poincaré explains the main reason which makes him clarify 

7 That is, non- recurring (AR).
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the meaning of the term and prove the resulting theorem, on the probability of unstable 
trajectories. The purpose is to go further than the result proved since [Pa], which only 
establishes the existence of an infinity of stable trajectories in any region, or, in modern 
terms, the density of stable trajectories. The characterization of unstable trajectories as 
“exceptional” allows us to establish mathematically the assertion of stability “in general.” 
We will come back to this point in Section 6.4.2.

In 1894, Poincaré again refers to the recurrence theorem in another article for the same 
journal (Poincaré, 1894), where he reminds the reader of his results in celestial mechanics 
for his argumentation on the kinetic theory of gases.

Finally, in Méthodes nouvelles, Poincaré again employs the same terms. In this work, 
he states and proves the recurrence theorem by using a language with more imagery. He 
compares the trajectories of a system of differential equations to those of molecules, the 
motions of which are defined by the equations.8 Here is how he announces the corollary 
of the recurrence theorem:

We have seen in no291 that there are molecules which pass through U0 infinitely many 
times. On the other hand, in general, others only pass through U0 a finite number of times. 
I propose to show that the latter must be regarded as exceptional or, to be more precise, 
that the probability that a molecule passes through U0 only a finite number of times is 
infinitely small, if one admits that this molecule is inside U0 at the origin of time (Poincaré, 
1892– 99, t. III, p. 151).

The term “exceptional” is used many times in the rest of the Méthodes nouvelles, always 
with the same technical meaning, and often accompanied by the words “in the sense that 
I gave to this word above.”

Therefore, a clear contrast can be observed between [Pa], on the one hand, and [Pb] 
and all the later texts on the other.

In 1889, Poincaré merely makes a brief remark, without proof, on the greater general-
ity of recurring trajectories. The reader must himself deduce what led Poincaré to such 
an affirmation. The very meaning of the remark is not obvious. The comparison with 
“incommensurable numbers” is supposed to shed light on the nature of the generality 
of recurring trajectories, but it can be understood in several manners. Is Poincaré con-
sidering a characterization of recurring trajectories by the irrationality of a parameter? 
Is he referring to the opposition, proved a few years earlier by Cantor, between the 
set of rational numbers, which is countable, and the set of irrational numbers, which 
is uncountable? Or is he already thinking of the proof he gives in [Pb]? The question 
remains open.

From 1890, Poincaré introduces a new vocabulary. He uses it systematically when 
talking about non- recurring trajectories, and he insists on the technical character of 
this terminology. Further, he almost always mentions the definition, in terms of zero 

8 This image was most certainly suggested by the comparison between the recurrence theorem and ques-
tions of kinetic theory of gases.
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probability, that he gives to the word “exceptional,” even if he does not go into the details 
of the probability definition.

6.2.2  The mathematical content of this terminology

Poincaré does not merely create a technical vocabulary to address the generality of certain 
trajectories; he explicitly associates with this terminology a precise mathematical definition.

This remark might seem at first sight tautological. However, it is not: in Poincaré’s 
work, there are other expressions of a technical nature, which are not accompanied 
by a definition. This is the case for “the most general polynomials of their degree.” 
This expression appears, several times, in italic characters in two successive memoirs, 
without any variation— not even small— in the words composing it, that is, Poincaré 
(1878) and Poincaré (1881). Thus, the way in which this expression is used in these 
texts leads to the same conclusion as the one for the term “exceptional”: this is an 
expression that seems to come from everyday language, but its stable use and the 
emphasis placed on it by the author— via, in this case, the use of italic characters— 
reveal its technical nature.

But Poincaré, in these texts, does not define what he means by “the most general 
polynomials of their degree.” To me, it seems that the difference between Poincaré’s 
attitude toward “the most general polynomials of their degree” and that toward “excep-
tional trajectories” shows the novelty of his characterization of the latter. Poincaré could 
rely on his reader’s mathematical education for the understanding of “the most general 
polynomials of their degree.” However, he draws the reader’s attention to the new defin-
ition he gives to the exceptional character of non- recurring trajectories.

Let us now consider the definition of the term “exceptional” such as it is given in [Pb]:

Let us adopt the convention that the probability that the initial position of the moving 
point belongs to a certain region r0 is to the probability that this initial position belongs 
to another region ′r0  in the same ratio as the volume of r0 to the volume of  ′r0 .

The probabilities being defined in this way, I propose to establish that the probability 
that a trajectory coming from a point of r0 does not pass through this region more than k 
times is equal to zero, however large k  is and however small the region r0 is. This is what 
I mean when I say that the trajectories that only pass through r0 a finite number of times 
are exceptional [Pb, p. 316].

Poincaré thus chooses a probabilistic characterization to clarify what he means by 
“exceptional trajectories.” This invites us to study the relation between the memoir 
on the three- body problem and Poincaré’s work on probability. It is a fact that all of 
Poincaré’s texts specifically on probability calculus come after [Pb]. Therefore, the 
memoir on the three- body problem is the first witness of Poincaré’s reflections in this 
area. This circumstance however does not deprive us of means of investigation. Indeed, 
one can compare the manner in which probability calculus is employed in the work 
on the three- body problem with Poincaré’s presentation of the subject in the following 
years. The continuity that we shall point out shows that the use of probabilities, in 1890 
and 1891, is the opportunity for Poincaré to develop his own conception of this area of 

 



 6.2 “Exceptional” trajectories 177

   177

mathematics. Therefore, the issue at stake in this project is not only the emergence of 
a new type of statement. The project also sheds light on Poincaré’s development of 
probability calculus. This is the reason I shall devote an entire section to this topic (see 
Section 6.6).

Our interest will concern, in particular, Poincaré’s first work on probability calculus 
(Poincaré, 1896). It contains the lectures given during the second semester of 1893– 94 
at the Sorbonne. Poincaré then published articles with a more philosophical aim and, in 
1912, an augmented new edition of Calcul des probabilités.9

I would like to now show that the way in which Poincaré defines probability in [Pb] 
follows the theoretical requirements set out in Poincaré (1896). Therefore, this already 
is a technical use of probabilities. The first words of the technical definition of [Pb], “let 
us adopt the convention10 that the probability […]” indeed find a clear echo in the first 
of the Leçons sur le calcul des probabilités: “The complete definition of the probability is 
therefore some kind of petitio principii: how can one recognize that all the cases are equally 
probable? Here, a mathematical definition is not possible; we must define conventions11 
for each application, specify that we consider such- and- such a case equally probable. 
These conventions are not entirely arbitrary, but they are concealed from the mind of 
the mathematician, who will not have to examine them once they are acknowledged” 
(Poincaré, 1896, p. 5). In 1890, Poincaré indeed gives a convention, which clarifies the 
cases assumed to be equally probable: the belonging of the initial position to two regions 
is assumed to have the same probability whenever the regions have the same volume.

In both summaries of the results of [Pb] published in 1891, Poincaré adds a remark 
concerning the validity of the corollary. For us, it is interesting, because he insists on the 
fact that the choice of how the probability is defined is free, to a large extent:

One might object that there is an infinity of manners to define this probability; but this [the 
probability that the initial conditions of the motion correspond to a non- recurring solution 
is equal to zero, AR] remains true whatever the definition one takes, provided: let x and 
y be the coordinates of the third mass [this is in the context of the three-body problem, 
AR], x′ and y′ the components of its speed. I call P dxdydx dy′ ′ the probability that x lies 
between x0 and x dx0 + , y between y0 and y dy0 + , x′ between ′x0 and ′ +x dx0 ′, y′ between ′y0 
and ′ + ′y dy0 . We can define the probability as we want and, consequently, arbitrarily give 
P as a function of x0, y0, ′x0, and ′y0. Well, the result I stated above remains true, whatever 
this function P, as long as it is continuous (Poincaré, 1891a, p. 537).

The formulation is briefer in Poincaré (1891b), but it concerns the same idea (p. 490). 
The summary for the Bulletin astronomique (Poincaré, 1891b) and the article in the Revue 
générale des sciences, which has been examined above, are texts that were mainly intended 

9 As both editions, dated 1896 and 1912, show few differences with regard to the main body of the text and 
as the second is much easier to consult, I shall quote the lectures with reference to the pagination of the second 
edition, that of 1912, except for the passages which were altered by Poincaré in between the two editions. The 
major changes consist in the addition of a long introductory chapter and a supplementary final chapter.

10 Emphasis added.
11 Here, the italic characters are due to Poincaré. Poincaré often used this term in his philosophical texts 

(see, for example, Poincaré, 1902). I shall only consider Poincaré’s use of it in the field of probabilities.(AR).
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for the popularization of the ideas in [Pb]. In fact, these texts are much shorter and it 
might seem a priori that precision was not the most sought- after value. And yet, it is in 
these texts that a supplementary detail appears in comparison with the 1890 analysis, 
namely that the result remains unchanged even if the definition of the probability is 
changed.

This point is extremely revealing. On the one hand, it can be concluded: Poincaré 
realized that the probability definition could be given a large scope precisely between the 
writing of [Pb] and the writing of the 1891 articles. On the other hand, this property is 
significant for Poincaré, since he mentions it in short summary articles.

This fact is confirmed in Méthodes nouvelles, where this addition is inserted from the 
moment Poincaré defines what he means by probability.

[…] First, I must explain the meaning I give to the word probabilities. Let ϕ( , , )x y z  be 
any positive function of the three coordinates x, y, z; I shall say that the probability that at 
instant t = 0 a molecule is inside a certain volume is proportional to the integral

J x y z dxdydz= ∫ϕ( , , )

extended to this volume. It is therefore equal to the integral J divided by the same integral 
extended to the entire vase V.

The function ϕ can be arbitrarily chosen, and the probability is thus completely 
defined: as the trajectory of a molecule only depends on its initial position, the probability 
that a molecule behaves in such- and- such a manner is an entirely defined quantity from 
the moment the function ϕ is chosen (Poincaré, 1892– 99, t. III, pp. 151– 2).

He then proves the corollary of the recurrence theorem for the case where ϕ = 1, which 
corresponds to the convention adopted in [Pb] where the probability is proportional to 
the volume. Finally, he returns to the case of any function ϕ, and announces that “the 
same results remain when, instead of taking ϕ = 1, an entirely different choice is made 
for the function ϕ.” He then proves this remark: this is its first proof, since in the 1891 
articles he merely stated the results of [Pb]. Let us point out that it is in the proof that he 
assumes ϕ continuous.

Poincaré will mention in his 1894 lecture the existence of similar problems, in which 
the probability of an event does not depend on the adopted definition of the probability, 
as long as it is given by a continuous function ϕ. We shall come back to this point in more 
detail in Section 6.6; already this shows that, in Poincaré’s eyes, the addition introduced 
in 1891 belongs to a technical use of probabilities.

6.2.3  The proofs of the recurrence theorem and 
the corollary

So far our interest was focused on the vocabulary introduced by Poincaré to formulate 
the corollary added in 1890, and then on the probabilistic concepts, which Poincaré uses 
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to define this terminology. We now must examine the proof of the affirmation according 
to which the trajectories that are not stable in the sense of Poisson are exceptional, that 
is, of probability equal to zero. Thus, we shall consider precisely what the tools are that 
Poincaré uses to establish this property. The comparison of the proof with that of the 
recurrence theorem will allow a better understanding of the relations between the initial 
theorem and the corollary.

Let us first consider the proof of the recurrence theorem proper, as it is given in [Pa], 
and again, almost given word for word in [Pb].

Poincaré first notes the first hypothesis of the theorem, namely that there exists, in 
the phase space, a region R containing the trajectories and of finite volume V. He then 
considers “a very small region” r0 in R, of volume υ. Arbitrarily setting a time scale τ, he 
considers the images r1, r2, …, rn of the region r0 under the flow of the differential equa-
tions at times τ τ τ, , , .2  n  He names rn the nth consequent of the region r0. Conversely, r0 
is called the nth antecedent of rn.

The second hypothesis stipulates that the volume is an integral invariant. It follows 
that a region and its consequents have the same volume.

From this, Poincaré deduces that any region r0 has a part in common with one 

of its consequents r1, r2, …, rn, from the moment that n
V

>
u

. Indeed, r0, r1, …, rn are 

all of equal volume υ, and in the interior of R of volume V. If they had no common 
point, their total volume would satisfy the two incompatible conditions of being 
greater than nv, but smaller than V, the total volume of the region R containing 
them. Therefore, at least two of these regions have a common part when n is large 
enough. If rp and rq are these two regions (with q > p), if follows that their (q − p)th 
antecedents, r0 and rq−p, also have a common part: r0 indeed shares a common part 
with one of its consequents.

Poincaré then notes a generalization of this property that he had not used in 1889, 
but which will be of use in [Pb] for the proof of the corollary: for any k, there exists a 
common part to at least k regions r0, r1, …, rn, from the moment that n is large enough. 
The proof is similar to the previous one.

Thanks to the first property, Poincaré builds two sequences of nested regions 
r r r rn
0 0 0 0, , , , ,′ ′′  and ′ ′′s s sn

0 0 0, , , ,  in the following way. Let rp0  be the first consequent 
of r0 which has a part in common with r0. Poincaré writes ′r0  this common part, and ′s0

 the 
p0th antecedent of ′r0 . Then ′s0  is included in r0, similarly to ′r0 , which is its p0th consequent. 
′′r0  and ′′s0  are then built in the same way from  ′r0 .

By induction hypothesis, let us suppose rn
0  and sn

0  built such that s
n
0  is included in r0, 

just as all its consequents of orders p0, p0 + p1, …, p0 + p1 + · · · + pn−1.
Let rp

n

n
 be the first consequent of r

n
0  that has a common part with rn

0 . rn
0

1+  is defined as 
this common part, and sn

0
1+  as the antecedent of order p0 + p1 + · · · + pn of r

n
0

1+ . Then sn
0

1+  
is included in r0 just as all consequents of order p0, p0 + p1, …, p0 + p1 + · · · + pn.

Poincaré then considers the non- empty intersection— Poincaré states it without 
justification— of all regions sn

0 , that he writes σ. By construction, σ and all its consequents 
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of order p0, p0 + p1, …, p0 + p1 + · · · + pn, … are in r0. Therefore, the trajectory coming 
from a point of σ goes through r0 infinitely many times.

Let us now consider the proof of the corollary in [Pb]. Poincaré seeks to calculate the 
probability that a trajectory coming out of a point of r0 does not go k + 1 times through 
the region r0 between time zero and time nτ. He uses the property proved above, which 

ensures that if n
kV

>
υ

, then we can find k + 1 regions r r r
k0 1

, , ,α α  that share a common 

part s
kα . Let s0 be the antecedent of order αk of s

kα . One can see that the trajectory coming 
from a point of s0 passes through the region r0 at least k + 1 times between time zero and 
time nτ. In other words, Poincaré shows here that if the volume υ of a region r0 satisfies 

the inequality n
kV

>
υ

, then there exist points in r0 (that it suffices to take in the region s0) 

such that the trajectory coming from it goes through r0 at least k + 1 times between time 
zero and time nτ.

Poincaré is now interested in the region σ0 of r0 defined by the following property: the 
trajectories coming from the points of σ0 do not go through the region r0 more than k 
times between time zero and time nτ. Let us remark that this region can be defined from 
r0 and its n first consequents by a finite number of unions and intersections. Moreover, 
Poincaré indicates how to do it: all the “analogous” regions to the region s0 just defined 
are considered, that is, for each combination α α α= ( , , )1  k  of k indices α α1 < < k 
between 1 and n, one considers s0

α, the αkth antecedent of the intersection of regions 
r r r

k0 1
, , ,α α  (some of the s0

α can be empty, but Poincaré showed that there exist some that 
are non- empty). Then σ0 is obtained by removing from r0 the union of these s0

α, which are 
in finite number. Thus, to consider the volume of σ0 does not require having a measure 
of volume that is countably additive.

The volume of the region σ0 is denoted by w. The previous reasoning, applied to σ0 

instead of r0, shows that w
kV
n

< , since no trajectory coming from σ0 passes through r0, 

nor a fortiori σ0, k + 1 times between time zero and time nτ.
It follows that the probability that a trajectory coming from r0 does not pass through 

this region more than k times between these two times— probability given, by definition, 

by the ratio w
υ

— is upper bounded by kV
nυ

. This bound can be made as small as one 

wishes by taking n large enough. If one no longer limits oneself to time nτ, we see that the 
probability that a trajectory coming from r0 does not pass through it more than k times 

is smaller than kV
nυ

, whatever n is. Therefore, it is equal to zero.

In other words, the key property, which allows one to prove the theorem as well as the 
corollary, is the following remark: when a region has a large enough volume, it can be 
deduced that it has a non- empty intersection with some of its consequents. The property 
is used in this form to prove the theorem, and in the contrapositive form to prove the 
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corollary: an upper bound of the number of intersections of a region with its consequents 
is rewritten as an upper bound of its volume.

6.3  A piece of explanation for this novelty: the change 
of status of the recurrence theorem

6.3.1  How to interpret the changes 
between [Pa] and [Pb]?

The above analysis highlighted that a continuity exists in the formulation of the corollary 
of the recurrence theorem in [Pb] and in all the following texts. Indeed, the develop-
ment of the concept of “probability equal to zero,” which Poincaré uses to characterize 
“exceptional” trajectories, goes on after the publication of [Pb]. But, the 1891 and 1899 
additions only deepen what was already present in [Pb], and they are expressed by means 
of the same technical vocabulary.

On the other hand, the formulation between [Pa] and [Pb] undergoes a mutation, 
and in [Pa] Poincaré does not explicitly explain what is covered by his remarks. 
Therefore, the question arises whether the development of a vocabulary associated 
with a precise mathematical definition, in [Pb], is only the clarification that came 
with the rewriting of the memoir— in order to detail what had only been outlined— or 
whether Poincaré really deepened his understanding of the phenomenon in reworking 
his memoir.

One might be tempted to tend toward the first interpretation and point out that, from 
the first version, Poincaré claimed the existence of a precise characterization, although 
without saying so explicitly: “I could even add that the trajectories that have this property 
are more general than those that do not, just as much as incommensurable numbers are 
more general than commensurable numbers.”12

It is difficult to know what Poincaré was aiming at when he wrote “just as much.” 
We saw that the proof of the corollary is built on the same kind of considerations as the 
proof of Theorem 1 itself, namely the study of a region and its consequents at times 
τ τ τ, , ,2  n . If the trajectories remain in a bounded region, some of these consequents 
will have a non- empty intersection; this is the central idea of the proof of Theorem 1, 
as well as that of the corollary. Moreover, we have seen that Poincaré shows from 1889 
that not only every region has a non- empty intersection with one of its consequents, but 
that one can even find a common intersection to k consequents. Therefore, it is not by 
introducing a new technique in the proof that Poincaré gives a precise meaning to the idea 
that certain types of trajectories are more general than others. In [Pb], Poincaré merely 
develops techniques already present in [Pa]. The real novelty is the formulation, in terms 

12 Poincaré (1889, p. 31). Emphasis added.
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of probability, of the generality of stable trajectories in the sense of Poisson and the care 
brought to giving a proof of it.

Further, Poincaré is known to have used, at times, quite an allusive style of writing.13

Another fact can be added to this point: Poincaré himself mentions, in the introduc-
tion to [Pb], the clarification of a number of things that he had not had the time to make 
sufficiently explicit in the first version of his text [Pb, p. 263].

These considerations all lead to the indication that the corollary, added in 1890, might 
be part of the results, given without proof in 1889, that Poincaré completes in 1890.

To me this answer seems insufficient. Indeed, this “result” was “stated” in a rather 
vague manner in the first version of the memoir, where it had more the form of a com-
mentary in the course of the discussion than that of an important corollary. So it should be 
further understood why Poincaré did not consider it useful, in 1889, to formulate it more 
precisely, even without a proof. The thesis I propose to defend is that the introduction 
of the corollary to the recurrence theorem is the consequence of a crucial modification 
which led this theorem, in 1890, to play a new role in the memoir.

Following questions raised by Phragmén, who was preparing the publication, Poincaré 
became aware, at the end of year 1889, of an important error. At that time, [Pa] was 
already printed— with notes given in the appendix to ease the reading. But the scope of this 
error required a fairly important reshaping of the memoir14. Poincaré and Mittag- Leffler’s 
correspondence shows that it is the latter who suggests to the author to integrate the notes, 
as he makes the necessary corrections, and to announce these two modifications in the 
introduction, by first pointing out the former (Poincaré and Mittag- Leffler, 1999, letter 
92, 5/ 12/ 1889). It is quite obvious that Mittag- Leffler suggests this behavior to minimize 
the importance of the error. Indeed, he was in a delicate position: the memoir had won a 
prize without the inaccuracy of its contents being noticed. Mittag- Leffler imagined, in his 
first letter to Poincaré after the discovery of the error, the “scandal” which his “adversaries, 
gained by the success of the Acta,” might cause “because of this case” [letter 91, 4/ 12/ 
1889]. As a result, he did everything in his power to surround the modifications of the 
memoir with great discretion. This context invites to read carefully what Poincaré says, 
in consultation with Mittag- Leffler, about the differences between the original memoir 
and the published version [Pb].

However, considering the importance of the stake, namely the correction of the memoir, 
gives a criterion of analysis for the differences between [Pa] and [Pb]. The time spent by 
Poincaré for the rewriting was relatively short. The correspondence shows that he noticed 
his error during the first days of December, and he announced to Mittag- Leffler the fol-
lowing 5th of January that he was sending Phragmén, by the same mail service, the final 
writing of his memoir. Therefore, it is very probable, that from the moment he became 
aware of the error, Poincaré spent most of his energy on its correction, rather than on the 
clarification of secondary points. This gives us a reading key of the recurrence theorem 

13 See, for example, Barrow- Green (1994, p. 65).
14 Barrow- Green (1997) gives a general presentation of the organization of the competition and the con-

tents of the memoirs of Poincaré, including the differences between the two versions.
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and its rewriting. If it were completely independent of the error, we would be led to think 
that the change of formulation is more probably a clarification made on the occasion of 
the rewriting, but the idea of which was already clear to Poincaré. Nevertheless, the clear 
difference that we have shown between the vague formulation of 1889 and the precise 
vocabulary, which appears in 1890 and is kept in the later texts, points toward another 
interpretation. The following study will confirm that the recurrence theorem plays an 
important role in [Pb], if not directly in the correction of the error, at least indirectly as 
a compensation for a result, which showed to be false.

The point here is not only to determine the date at which Poincaré might have had the 
idea to use probabilities to clarify the recurrence theorem. By studying the place of this 
theorem in the arrangement of the two memoirs [Pa] and [Pb], we will be able to trace 
very closely the context in which Poincaré develops the statement of the corollary and 
his motivations, when he develops the technical terminology described above. Therefore, 
this is a privileged access to understand how in history, a statement of the very particular 
type that is of interest to us here— that is, a statement which quantifies the generality of 
a property— appeared.

6.3.2  The first memoir: the issue of stability and 
the recurrence theorem

To grasp the impact of the error and understand what were the resulting modifications 
between [Pa] and [Pb], it will be useful to describe the structure of the initial memoir. 
Further, we shall see that the error particularly affects the proof of stability. This is why 
the place of the stability issue in [Pa] will carefully be examined, in order to consider, in 
a second step, the way it changes in [Pb].

6.3.2.1  Structure of [Pa]

Poincaré presents in the introduction of [Pa] the orientation of his work and the main 
tools he developed. He starts by placing things in a historical perspective, which allows 
him to reconsider the results obtained by his predecessors and to show how his work is 
linked to this history of celestial mechanics and the n- body problem.

He thus mentions the successive attempts to integrate the differential equations of 
celestial mechanics using trigonometric series and their limits.

First, Laplace and Poisson were able to show that the major axes of the planets orbits 
are only subject to “periodic variations”15 when only the first and second powers of the 
masses are considered. In other words, the expansions obtained are sums of terms of 
the form α cos nt, called “trigonometric,” or “mixed” terms of the form αtm cos nt. But if 

15 In the introduction of [Pa], Poincaré uses this term in a very wide sense. In [Pb] and in the Méthodes nou-
velles, he makes his words more explicit and distinguishes the purely periodic terms from the “mixed” terms of 
the form αtm cos nt. The latter appear in the expansions obtained by Poisson, who goes up to the second order 
of the masses, whereas Lagrange and Laplace stopped at the first.
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one takes into account the third powers, “secular” terms appear, that is, terms of the form 
αtm, in which time does not appear in any trigonometric function.

New expansions were then obtained, in particular by Gyldén and Lindstedt, that only 
contain trigonometric terms. However, the convergence of these series was not proved, 
and Poincaré announces a first result— negative— of his memoir, namely that these series 
diverge.

This historical overview enables Poincaré to show the limits of expansions in trigono-
metric series and the necessity of finding new methods to study the problems of celestial 
mechanics. He then introduces a second type of tool, imagined by Cauchy to study 
differential equations and developed by Weierstrass, then by Briot, Bouquet, Kowalevski, 
and Poincaré himself: the “calculus of limits” (calcul des limites). This theory allows one 
to prove the convergence of some series expansions of solutions. Here too, he points out 
its weaknesses: “these series, proceeding according to the ascending powers of some vari-
ables, can be used to prove the existence of the integral, or even to calculate its numerical 
value; but most of the time, they do not reveal its properties.”

Poincaré then mentions a last method: the geometrical method that he developed in 
his memoirs Sur les courbes définies par les équations différentielles. He summarizes the 
approach, which will be adopted in this new contribution, in the following terms:

In this work, I shall use the three methods which I have just mentioned to work toward my 
goal; from the ancient methods of celestial mechanics, I shall take the trigonometric form 
of the expansions; from “the calculus of limits” the proof of their convergence; finally it 
is the geometrical method of M. Poincaré16 that I shall use to prove stability. [Pa, p. 7– 8]

He then presents the study of the restricted three- body problem, to which he confined 
himself, and announces two results: the rigorous proof of stability in the restricted three- 
body problem and the “complete theory” of periodic solutions. He finally draws attention 
to a notion, which he introduced in order to apply his geometrical method to the equations 
of dynamics: “integral invariants,” to which we will come back.

The memoir is then composed of two parts.
The first opens with a chapter where Poincaré gathers the notations and definitions that 

he will use afterward. Here, he clarifies the form of the equations which will be studied 
and the meaning he gives to solutions, integrals, trajectories. He defines “surface trajectories” 
which will play a major role in the proof of stability:

Let us consider any skew curve. A trajectory passes through each point of this curve; the 
set of trajectories forms a surface that I shall name trajectory surface [Pa, p. 11].

The important property of these trajectory surfaces is that they cannot be cut by other 
trajectories. Therefore, they lie at the center of the analysis of the stability question, which 
was proposed immediately after their definition by Poincaré [Pa, pp. 11– 12].

16 The 1889 memoir retains the anonymous form of the original memoir that was submitted for the prize 
offered by the King of Sweden.
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In this way, Poincaré introduces, from the beginning of his memoir, his main objec-
tive: to prove stability (meaning here: that trajectories are bounded). He announces at 
the same time the reasoning that will lead him to this result, namely the search for closed 
trajectory surfaces.

The two other chapters of the first part present the mathematical tools developed 
by Poincaré to study the restricted three- body problem. They are organized in two 
theories, which first appear as two autonomous developments, the “theory of integral 
invariants” and the “theory of periodic solutions.” It will not be necessary here to go 
into the mathematical details of these two chapters; it will suffice to remember two 
points:

• It is in the chapter on integral invariants that Poincaré states and proves the recur-
rence theorem, in the section on the “use of integral invariants.”

• The heart of the chapter on periodic solutions consists in using the calculation 
with limits to search for periodic solutions. Knowing a periodic solution to non- 
perturbed equations (for example, in the three- body problem, when the third mass 
is equal to zero), Poincaré studies the conditions for the existence of a periodic 
solution to the perturbed equations as well (when the third mass is no longer 
equal to zero, but is very small). Poincaré further studies the stability properties of 
periodic solutions.17

In the second part, Poincaré discusses the subject proper of his memoir: the study of the 
equations of dynamics and the n- body problem. He first considers the case of two degrees 
of freedom. The equations of Hamilton are then composed of four equations and four 
unknowns, but the energy invariance allows reduction of the system to a system of three 
equations with three unknowns. Poincaré thus starts by presenting several geometric 
representations, which allow reduction of the problem to that of the integration of a vec-
tor field in a portion of the three- dimensional space. In particular, he gives the example 
of the restricted three- body problem. Once this framework is set, the chapter on the 
theory of periodic solutions gives an infinity of unstable periodic solutions (in the sense 
given in note 17). Poincaré also showed that through each closed trajectory representing 
these periodic solutions, there pass two trajectory surfaces called asymptotic “on which 
are traced trajectories in infinite number, which go asymptotically closer to the closed 
trajectory curve” [Pa, p. 114].

Poincaré then studies in detail these asymptotic surfaces, establishes their equations, 
and shows— or rather, believes he shows— that they join exactly, therefore forming a 

17 The question of the stability of a periodic solution, which depends on the behavior of neighboring solu-
tions, should not be confused with the stability of a trajectory of a system of differential equations, which con-
cerns the behavior of this trajectory in the long term. These two questions are never mixed by Poincaré, despite 
the use of a single term. In our study, our interest on the question of stability mainly lies within the framework 
of the second context, that is, the analysis of the behavior in the long term. We shall see that Poincaré uses 
several different characterizations of stability and that the main emphasis changes between [Pa] and [Pb]. This 
will lead us to distinguish a first and a second meaning of the term stability, but it will always be the stability 
concerning the behavior in the long term.
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closed trajectory surface.18 In accordance with the characterization given at the very 
beginning of the memoir, this leads him to the conclusion of stability [Pa, p. 143].

The memoir ends with two short chapters. The first gives a summary in two parts of 
the results obtained for the problems with two degrees of freedom: positive results and 
negative results. This chapter, just as the introduction, is particularly interesting for us, 
since it enables us to see how Poincaré conceives the assembling of the different results 
of his memoir. The last chapter presents the difficulties encountered by Poincaré, when 
he tried to extend his results to a greater number of degrees of freedom.

In the summary of the positive results, Poincaré first reminds his readers of the entire 
reasoning that leads to the proof of stability: the solutions of the equations of dynamics 
can be represented in the case of two degrees of freedom— in particular for the restricted 
three- body problem— by curves, named trajectories, in space. Among these trajectories, 
one distinguishes periodic trajectories, in infinite number. In the neighborhood of the 
unstable ones, one can show the existence of asymptotic trajectories, which together 
form a trajectory- surface. This surface divides the space into three regions, which again 
contain closed unstable trajectories, thus asymptotic surfaces, and therefore can in turn 
be subdivided.

Poincaré explains— without having developed this point before, and therefore without 
giving a proof:19

This subdivision can be continued to infinity and it can be pushed far enough for the 
volume of each partial region to be as small as we want.

As no trajectory can go from one region to another, it must be concluded that stability 
is rigorously proved; that it is possible, given the initial position of the point representing 
the situation of the system, to find a region from which this point will not be able to go 
out and to assign to this region, if not its precise boundaries, at least boundaries as close as 
one wants to these precise boundaries [Pa, pp. 154– 5].

He concludes by recapitulating the different types of trajectories: closed, asymptotic, 
and others. On this occasion, he refers to the recurrence theorem by stating the 
conjecture that there exist closed trajectories in any portion of space, or, in modern 
language, that the closed trajectories are dense, and thus allow to approach any 
trajectory.

6.3.2.2  The issue of stability in [Pa]

The comparison between the introductions of memoirs [Pa] and [Pb] is significant to 
understand the mutation of the place given to the issue of stability in these two memoirs. 
The term of stability does not figure in the introduction of the memoir [Pb], whereas it 
appears from the very beginning of the introduction of memoir [Pa].

Indeed, it is according to this line of study that Poincaré reads again the work of his pre-
decessors in order to link his memoir with this tradition of celestial mechanics: “Among 

18 See Fig. 6.1, where one easily imagines how the surface might close up.
19 Poincaré considers again this question, with others, in note B of [Pa]. In this note, he tries, on Mittag- 

Leffler’s request, to reformulate the main results in the usual language of astronomy [Pa, pp. 179, 183].
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the results they obtained, one of the most remarkable is the one concerning the stability 
of the solar system.”

As we have seen, Poincaré announces that “the three methods will contribute to [his] 
goal,” of which origin he reminds the reader in the introduction: he will use trigonometric 
expansions, will show their convergence using the calculus of limits and will finally prove 
stability using his geometric method. The proof of stability, in the context of the restricted 
three- body problem, appears therefore to be the ultimate goal of the memoir.

This emphasis is reinforced in the following part of the introduction. Only one full sen-
tence is underlined by the use of italic characters, and it concerns it: “In this particular case,20 
I rigorously proved stability.” Further, two other expressions are also given in italic characters. 
These are “periodic solutions,” for which Poincaré announces a complete theory, and “integral 
invariants,” a “new notion” introduced “to be able to apply to the equations of dynamics the 
geometric method,” which was developed in the memoirs on curves defined by differential 
equations (Poincaré 1881, 1882, 1885, 1886). The theory of periodic solutions as well as that 
of integral invariants are treated in the first part, to be then used in the second part, where 
Poincaré “considers the problem itself” [Pa, p. 8]. So, these two theories, although they have 
their distinctive coherence and significance, are placed, in the 1889 memoir, as preliminaries 
vis- à- vis the heart of the study containing in particular the proof of stability.

As for the first result announced in the introduction, the divergence of the known 
series, it is also directed toward the proof of stability, since it shows the inadequacy of the 
methods available until then. This is a negative result that gives a motivation to introduce 
new tools, more than a result in itself. It appears in the body of the text as a consequence 
of the absence of an analytical and uniform integral other than the energy integral, and 
it is this last result which is highlighted. Therefore, the divergence of the known series is 
mentioned in the introduction incidentally, and not as an essential result.

Of all the results announced in the introduction, it is indeed the rigorous proof of 
stability that emerges as the central result of the memoir.

The recurrence theorem is also associated with the issue of stability. More precisely, to 
introduce this result, Poincaré defines a second meaning for the term stability:

We have defined stability above by saying that the moving point P must stay at finite 
distance; sometimes it is understood in a different sense. For there to be stability, the 
point P must come back after a long enough period of time, if not to its initial position, 
at least to a neighboring position as close as we want to this initial position [Pa, p. 31].

But this meaning of the term stability is only used in the section of the memoir where it is 
introduced. On the contrary, in all the passages in which Poincaré insists on this essential 
result, namely his proof of stability, it concerns indeed the first sense, introduced from 
the beginning of the memoir: the sense referring to the confinement of the trajectories 
inside closed trajectory surfaces.21 When he is questioned about his characterization of 

20 Poincaré has just presented the restricted three- body problem, to which he limits his study (AR).
21 The exchange of letters with Mittag- Leffler supports this conclusion. See Barrow- Green (1997, pp. 88, 

136) and Poincaré and Mittag- Leffler (1999, letter 70 15/ 11/ 1888, note 7, letter 74, 21/ 12/ 1888, letter 75, 25/ 
12/ 1888, in particular note 8, and letter 76, 15/ 01/ 1889).
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stability, Poincaré only refers to the first sense, the one he defines at the beginning of 
the memoir in the following terms: “There will be stability, […] if the trajectory of the 
point P remains entirely in a limited region of space.” Stability in the second sense, to 
which Poincaré will give in 1890 the name of Poisson stability, does not come up at any 
moment in this discussion.

6.3.2.3  The recurrence theorem in [Pa]

If we now consider the second sense of stability, the one of the recurrence theorem, we 
see that it is presented as a secondary sense, relative to the first.

The recurrence theorem is presented, in [Pa], as a supplementary property of certain 
trajectories, a consequence of the first form of stability [Pa, p. 31]. The principal property 
of stability is indeed the first; it applies to all the trajectories of the three- body problem. 
As it will soon be seen, the situation is different in [Pb] and in the following texts.

To complete our analysis of the place of the recurrence theorem in the arrangement 
of [Pa], let us examine the way this theorem is exploited. It is first applied, immediately 
after having been stated, to Hill’s problem, a model for the study of the motion of the 
Moon. We shall come back to this point.

As noted in our presentation of the outline of [Pa], the recurrence theorem will only 
be cited again at the end of the memoir, in the summary of the positive results. On this 
occasion, the term “stability” does not appear:

We can state (theorem I, chapter II, part i22) that if one considers any portion of space, 
however small it might be, there will always be trajectories that pass through it infinitely 
many times.

It is even very likely that any portion of space is crossed by an infinity of closed 
trajectories. If it is so, and if one considers any trajectory of the third category, we can 
always find a trajectory belonging to one of the first two categories23 which for a period 
of time as long as we want, moves away from it as little as we want, allowing us to find the 
equation with the desired approximation [Pa, p. 155].

Thus, we see that, if Poincaré expresses his hope to improve the result given by the 
recurrence theorem, it is not in the sense of the corollary introduced in [Pb]. The latter 
asserts that recurring trajectories are not only dense, but also more general than the others. 
The result conjectured in [Pa], would say that not only recurring trajectories are dense, 
but periodic trajectories are too.

This conjecture was already formulated earlier, at the end of the study of systems with 
two degrees of freedom, made in [Pa] just before the summary of the results:

It can be demonstrated that in the neighborhood of a closed trajectory representing a peri-
odic solution, either stable or unstable, there passes an infinity of other closed trajectories. 
This is not sufficient, strictly speaking, to conclude that any region of space, however 
small it might be, is crossed by an infinity of closed trajectories,24 but this is sufficient to 
give this hypothesis a high degree of likelihood [Pa, p. 153].

22 This is the recurrence theorem (AR).
23 Poincaré has just recapitulated the types of trajectories that he has pointed out. The first two categories are 

respectively the closed and the asymptotic trajectories; the third category gathers all the other trajectories (AR).
24 Here, Poincaré inserts a note on which we will come back later: “The recent work of Mr. Cantor has indeed 

taught us (to use the language of this learned geometer) that a set can be perfect, without being continuous.”
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Therefore, the recurrence theorem appears, in the results summary, as one of the sup-
porting elements of this conjecture on the density of periodic trajectories.

To summarize, in [Pa], the principal result is stability in the first sense regarding the 
restricted three- body problem. Stability in the sense of the recurrence theorem is only a 
consequence of it, and therefore has little to do with the issue of stability. This theorem is 
rather part of the attempt to characterize the different kinds of trajectories, which inspires 
the conjecture on the density of periodic solutions.

6.3.3  The impact of the error

Thanks to Phragmén’s questions, Poincaré realized there was an error in his proof of 
the closure of asymptotic surfaces. These surfaces are composed of sheets which lean 
on a periodic trajectory, as can be seen in Fig. 6.1. Poincaré believed that, by using a 
simple— but wrong— geometric argument, he was showing that these sides join again to 
form a toric surface, which leaned on the considered periodic trajectory (this surface can 
easily be imagined by extending the pieces of surface represented in Fig. 6.1 all along the 
periodic trajectory). But at the end of 1889, Poincaré discovers that the two pieces do not 
exactly join. If the intersection of the pieces of asymptotic surfaces are represented with 
the section plane represented in Fig. 6.1, we do not get a closed curve, but two branches 
of curves, which intersect almost as tangents, as can be seen on the left of the Fig. 6.2.

This error does not directly concern the recurrence theorem. Indeed, on the one hand, 
the validity of the recurrence theorem is not affected by the discovery of this error. On 
the other hand, the ways Poincaré uses this theorem, in [Pa] and [Pb], do not require the 

Periodic trajectory

Plane section

Figure 6.1 Asymptotic surface.
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corollary added in [Pb]. In fact— we have seen it for [Pa]— Poincaré does not use much 
the recurrence theorem. He first gives, in [Pb] just as in [Pa], a direct application: the 
recurrence theorem allows one to specify a result due to Hill on the theory of the Moon. In 
[Pb], Poincaré extends this point to a generalization of Hill’s problem proposed by Bohlin.

The difference which might seem the most significant is that Poincaré uses the recur-
rence theorem for the study of asymptotic surfaces in [Pb]. Having shown that the two 
branches of the curve presented on the left side of Fig. 6.2 intersect at least twice, Poincaré 
applies the recurrence theorem to establish that the two curve branches intersect infinitely 
often. And as each of the two branches, taken individually, cannot have a double point, 
the result is an extremely complex pattern that is represented today by a figure of the 
type of Fig. 6.2, to the right. But Poincaré uses the initial theorem and has no need of the 
corollary at this point. Therefore, the introduction of the corollary in [Pb] is not made 
necessary by this correction.

So, at first sight, the characterization of “exceptional” trajectories using probabilities 
seems to be an unmotivated clarification on the part of Poincaré in 1890. And, this has 
been pointed out above, during the short period where he was probably occupied with 
the corrections of the discovered error, in order to give Mittag- Leffler, as fast as possible, 
a correct memoir. In fact, many signs show that the addition of the corollary accompanies 
a profound change in the place occupied by the recurrence theorem in the arrangement 
of the memoir. Even though, as already seen, the recurrence theorem had a relatively 
subordinate position in [Pa], eclipsed as it was by the “rigorous” proof of stability in the 
first sense, it becomes in 1890 the principal result of stability. The interest of the corollary 
becomes obvious: indeed, it expresses in a rigorous manner that stable trajectories (in 
the second sense) are the most general, when the initial theorem only stated that stable 
trajectories could be found in any region.

6.3.4  The mutation of the concept of stability and the new 
signification of the recurrence theorem in  
the arrangement of [Pb] and later texts

Following the discovery of the error invalidating the “rigorous proof of stability,” the 
stability issue loses, in [Pb], the importance it had in [Pa]. The introduction of [Pb] gives 

Figure 6.2 Section of an asymptotic surface.
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a new position to several results that were, in [Pa], subordinate to the proof of stability 
in various ways. So, from now on, the recurrence theorem is stated in the introduction, 
with its corollary: “I recognized that in this case [the restricted three- body problem, AR] 
the three bodies will pass infinitely often as close as one wants to their initial position, 
unless the initial conditions of the motion are exceptional” [Pb, p. 264]. While in [Pa] this 
theorem was a result derived from stability in the first sense, Poincaré recognizes in [Pb] 
that it has its own significance justifying its mention in the introduction.

The presentation of the recurrence theorem in the body of the memoir is modified 
in a similar way. In [Pa], it appeared to be a consequence of stability [Pa, p. 31]. On the 
contrary, in [Pb], it is stated directly as a property satisfied by the restricted three- body 
problem [Pb, p. 313].

Even more, Poincaré now gives to the recurrence theorem the position that he gave, 
in [Pa], to the stability proof by confinement of trajectories.

He performs this substitution only a few days after the discovery of the error, as can be 
seen from his letter to Mittag- Leffler on 9 December 1889: “There is stability in the sense 
that unless the initial conditions of the motion are exceptional, the planet will pass infinitely 
often as close as one wants to its primitive situation” (Poincaré and Mittag- Leffler, 1999, let-
ter 93). But it is only gradually that this change affects the organization of Poincaré’s memoir.

In [Pb], the replacement of the first meaning of the term stability by the second is 
not too obvious. But, the recurrence theorem takes almost stealthily the place previously 
occupied by the proof of stability— in the first sense— in the arrangement of the memoir.

The status of the recurrence theorem in [Pb] vis- à- vis the stability question is rather 
hesitant. The reason for this is probably that [Pb] is the amendment of an erroneous 
text. Poincaré rewrote the incorrect passages and, as we started to show, reinforced the 
exposition of the recurrence theorem that allowed him to replace, as best he could, what 
he had to abandon. But he leaves without modification a great number of pages of his 
memoir. Therefore, the two concepts used to characterize stability, the first sense and the 
stability “in the sense of Poisson” lie side by side in [Pb].

However, from the standpoint of the arrangement of the memoir, the recurrence 
theorem takes the place of stability in the first sense. The latter is always defined first, but 
is no longer proved. One can even show a tendency to truly present it as a stability result, 
and at the same time to replace the first stability concept, which is now a fossil definition, 
by stability “in the sense of Poisson.”

This change is only confirmed in the following texts, in particular in 1891. Indeed, in 
the two summaries of the memoir on the three- body problem for the Bulletin astronomique 
and the Revue générale des sciences, Poincaré presents the recurrence theorem no longer 
in the section on integral invariants— as it is the case in [Pa] and [Pb]— , but under the 
heading “stability.”

Further, in the first summary (Poincaré, 1891b), Poincaré draws again attention on the 
progress that this result represents compared to Hill and Bohlin’s work, in terms which 
confirm my hypothesis:

In this case [the restricted three- body problem, AR], Messrs Hill and Bohlin have proved 
that the radius vector of the small planet always remains inferior to a finite limit. However, 
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this is not sufficient for stability; the small mass must also pass infinitely often as close as 
one wants to its initial position (Poincaré, 1891a, p. 537).

This passage is particularly interesting because it shows how stability in the sense of 
Poisson became for Poincaré, at the moment he writes these lines, stability. Indeed, 
Poincaré does not present here Poisson stability, that is, the fact of passing “infinitely 
often as close as one wants to [the] initial position,” as a definition among others of 
stability. It becomes a necessary condition to be able to talk legitimately about stability. 
The exact same idea can be found, almost in the same terms, in Poincaré (1891b, 
pp. 489– 90).

Therefore, the notion of stability is, in 1891, identified with the property of recurrence.

6.4  In search of a suitable definition of stability

6.4.1  Two underlying concepts that are present 
throughout the studied period: confinement  
and recurrence

We have showed a major evolution between 1889 and 1891. In [Pa], the confinement 
inside the trajectory surfaces seemed to be the key property for the definition of stability. 
In 1891, recurrence is presented as the condition for stability. However, continuing the 
reading of Poincaré’s texts on celestial mechanics, one finds that the definition adopted 
in 1891 does not definitely overshadow all other conceptions. The confinement condition 
of trajectories— this time, not linked to trajectory surfaces— appears again in the article 
sur la stabilité du système solaire (Poincaré, 1898, p. 540). We shall see that it is also found 
in the Méthodes nouvelles.

The reflections of Lakatos (1976, 1984) and the vocabulary he proposes seem likely 
to help us better describe the process under consideration. Indeed, we see how the def-
inition of stability changes from one text to another, in a way that is very much linked 
to the proof that is given. The comparison between [Pa] on the one hand and [Pb] and 
the 1891 summaries on the other reveals a phenomenon similar to that expressed by 
Lakatos: “three proofs, three theorems, a single ancestor”25 (Lakatos, 1984, p. 83). We 
have here two proofs, two theorems and a single ancestor. As in Lakatos’ example, each 
couple proof– theorem corresponds to a peculiar definition of stability. Stability by con-
finement (or stability in the first sense) gave rise to the theorem proved in [Pa], which 
“rigorously” establishes stability in the restricted three- body problem. Stability in the 
second sense is studied by the recurrence theorem. But the two concepts are linked to 
the historical exploration of the stability of the solar system by expansion in perturbation 
series of the solutions of the equations of motion.

25 Lakatos introduces this expression to replace “the usual expression ‘different proofs of the same theorem’,” 
which “is misleading, for it hides the vital role of proofs in the formation of theorems.” The three proofs he refers 
to in this passage are those of Euler’s formula for polyhedra, respectively due to Cauchy, Gergonne, and Legendre.

 

 



 6.4 In search of a suitable definition of stability 193

   193

However, the phenomenon under study is more complex in certain respects than that 
of Lakatos.

First, as we have just shown, the two meanings of the term stability are not used exclu-
sively. More than two distinct definitions of stability, among which we choose depending 
on the proof we want to use or the study context, these two meanings appear as two 
components of the “familiar”26 concept of stability.

Further, each of these two aspects of stability behaves like a concept such as those 
studied by Lakatos, liable of “extension” and successive definitions that do not exactly 
overlap. Regarding the second concept, that of recurrence, this phenomenon is of par-
ticular interest to us,27 because these extensions are linked to the treatment of exceptional 
trajectories. We shall come back to this point in detail in Section 6.4.2.

Poincaré already associated these two concepts, confinement and recurrence, to study 
stability in his memoirs Sur les courbes définies par les équations différentielles (1881, 1882, 
1885, 1886). In particular, the third of these memoirs opens with a chapter on “stability 
and instability.” To my knowledge, it contains Poincaré’s first reflection on the definition 
of stability. This text deserves a thorough study that cannot be done here. A few remarks 
will suffice for our purpose.

In the chapter mentioned, Poincaré starts by giving five examples, from which he will 
define what is meant by stability. In the first example, all the trajectories are closed, and 
Poincaré describes this case as “complete stability.”28 Further, he then points out that 
the property of recurrence, finally adopted to define stability, characterizes “a certain 
periodicity of a particular nature” (Poincaré, 1885, p. 92).

The last four examples are particularly interesting because they precisely illustrate 
the four possible combinations between the two characteristics according to which 
Poincaré examines the trajectories of the considered systems: the recurrence property 
and the question whether the trajectories remain— or not— in a bounded region of the 
plane. Therefore, while choosing the recurrence concept to define stability, Poincaré 
systematically examines the behavior of trajectories vis- à- vis the other concept. He also 
considers that “stability defined in such a way,” that is, by the recurrence property “has 
only theoretical importance.”29

In the 1891 summary and in the article on the stability of the solar system, two sen-
tences seem to echo. First Poincaré states in 1891 that the confinement of trajectories 

26 Lakatos suggests this term to designate the concept as long as it has not been defined mathematically 
(Lakatos, 1984, p. 21). Before this gives rise to any objections, we suppose the ability of distinguishing what 
is stable from what is not.

27 Concerning the first concept, a distinction should be made between the confinement within asymptotic 
surfaces of 1889 and the requirement according to which the system does not move away indefinitely. Indeed, 
the peculiarity of asymptotic surfaces was that they existed with arbitrarily small diameters. This is what made 
their superiority compared to Hill and Bohlin’s result.

28 To study in detail the formation of these two concepts, one should link this model, where all the trajec-
tories are closed, with the tradition of trigonometric expansions of the solutions of the equations of the solar 
system.

29 Tatiana Roque (2001, chap. 7) studies these texts, and the way the stability question is treated, under a 
slightly different angle. She examines the relation between mathematics and physics, theoretical development, 
and inspiration from celestial mechanics.
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within a bounded region “is not sufficient” without the recurrence property. Conversely, 
in 1898, he believes that recurrence “is not sufficient” if one does not know how to 
show that the trajectories remain at finite distance. So, even when recurrence overrides 
in 1891, from the standpoint of the proof, the characterization in terms of confinement, 
the two concepts remain inseparable in Poincaré’s reflection on stability. This close union 
between the two characterizations of stability is found more distinctly still in 1899 in the 
Méthodes nouvelles.

The coexistence of the two concepts of recurrence and confinement seems to express 
a tension between what the proof allows to prove (“proof- generated concept”) and what is 
expected when talking about stability, in other words the “familiar concept” of stability. It 
seems that this tension is translated here into a tension between mathematics and physics, 
between theory and practice. From a mathematical and theoretical point of view, the most 
interesting concept of stability is the one that can be proved. But from a physical and 
practical point of view, a technical property more or less ad hoc remains unsatisfactory 
vis- à- vis what is expected of the use of the term stability.

6.4.2  The exceptional character of non- recurring 
trajectories

These two concepts of stability are not settled during this period. In particular, as noted 
above, the corollary of the recurrence theorem is progressively reinforced. Let us now 
examine in more detail the evolution of the concept of Poisson stability in these texts. 
I shall also consider the manner in which the mathematical definition of the term “excep-
tional” is used. The definition itself changes between 1890 and 1899. These successive 
amendments lead to making the most of the proof:  its result, the concept of Poisson 
stability, is really a “proof generated concept” in the sense of Lakatos.

The first evolution of the use of the term “stability,” which can be seen between [Pa] 
and the later texts, is related to the phenomenon that has been shown in Section 6.3.4. 
In 1889, the aim of the recurrence theorem was, above all, to show the existence, in any 
region of space, of trajectories of a particular type, the recurring trajectories, called “stable 
in the second sense.” The question of the stability of the restricted three- body problem was 
treated elsewhere. Therefore, stability in the second sense appeared merely as a property 
of certain trajectories. From 1890, and even as early as Poincaré’s letter to Mittag- Leffler 
on 9 December 1889, stability— in the sense of Poisson— is also predicated, by extension, 
of the problem defined by the studied differential equations, or the body (the Moon for 
example), of which they model the motion.

The novelty here is that the term “stability” then does not only cover recurring trajecto-
ries, but also the exceptional trajectories— that are not stable in the sense of Poisson— that 
the studied problem may present.

The already mentioned passage of the letter to Mittag- Leffler illustrates well this 
extension of the meaning of the term “stability” when it is not referring to a particular 
trajectory: “Stability remains, in the sense that unless the initial conditions of motion 
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are exceptional, the planet will pass infinitely often as close as one wants to its initial 
position.” Poincaré does not say here that the trajectory of the planet is stable except 
for certain exceptional initial conditions, but that the motion is stable, in the sense that 
the trajectories which are not Poisson stable are exceptional. These two uses of stability 
in the sense of the recurrence property are not presented by Poincaré as two different 
meanings of the term stability, in the same way he distinguishes, between 1889 and 
1890, stability in the first sense from stability in the second sense, still named in 1890, 
stability in the sense of Poisson. So, the concept of recurrence is not mathematically 
immutable; it extends as the argumentation develops. From the moment Poincaré 
defined what is meant by exceptional trajectories, he allows himself to talk about 
stability in a more general sense. It is an extension rather than a transformation of the 
sense of Poisson stability. Indeed, Poincaré continues to talk about solutions that are 
stable— or not— in the sense of Poisson, at the same time that he says the problem as 
a whole is stable.

The shift in meaning that we have just mentioned is not particular to the mentioned 
letter: it is found in the entire corpus [Pb, pp. 313, 320].

In the Méthodes nouvelles, Poincaré defines Poisson stability by the condition “that the 
system passes infinitely often as close as one wants to its initial position” (see citation in 
Poincaré, 1892– 99, t. III, p. 141). He then announces that this condition is fulfilled in 
the case of the restricted three- body problem. Of course, it must here also be understood 
that the trajectories that do not have this property are exceptional.

Further on, Poincaré also explicitly links the exceptional character of non- recurring 
trajectories with the legitimacy of affirming stability by including them in the statement:

To summarize, the molecules that only pass through U0 a finite number of times are 
exceptional in the same way that commensurable numbers are only an exception in the 
series of numbers, whereas incommensurable numbers are the rule.

So, if Poisson thought he could answer positively the question of stability as he had 
posed it, although he had excluded the cases where the ratio of the mean motions is 
commensurable, similarly we shall have the right to consider that stability, as we define 
it, is proved, even though we are forced to exclude the exceptional molecules mentioned 
above (Poincaré, 1892– 99, t. III, p. 154).

This allows us to clarify the brief commentary that is found in Poincaré (1891a): “I 
shall add that the first [the unstable particular solutions, AR] are exceptional (allowing 
us to say that there is stability in general).” Grammatically, the remark in parentheses 
can be analyzed in several ways, depending on whether “in general” is related to the 
noun “stability,” or to one of the verbs “allow,” “say,” or “there is.” These different pos-
sibilities seem to me to have two meanings. Either one understands, in general, that is, 
most often but not always, there is stability. Or, one understands that there is “stability 
in general”: stability can be predicated, in the sense of a general property, as opposed to 
a universal property. Consideration of the other texts of the corpus shows that one can 
settle for the second interpretation. The exceptional character of unstable trajectories 
allows us to affirm stability, which would not have been justified if only the recurrence 



196 Elaboration of a statement on the degree of generality of a property

196

theorem had been established. Indeed, it only states the existence of stable trajectories in 
any region of the plane, but does not give any information on the quantitative importance 
of these trajectories compared to those that are unstable.

The mathematical quantification of the exceptional is thus presented by Poincaré as 
a central element of his argumentation. It allows him to limit the importance of certain 
marginal trajectories and to extend the property satisfied by the other trajectories to the 
problem considered globally. The two levels on which stability can be predicated, however, 
are never confused, and it is only when Poincaré talks about the stability of a problem 
that he excludes exceptional trajectories. Yet, he most often mentions— this can be seen 
in the above passages— in what sense he asserts stability: to say that the problem of the 
Moon, the restricted three- body problem, etc. is stable, means that the trajectories have 
the recurrence property unless the initial conditions are exceptional.

6.4.3  Three correlated changes

Our analysis allows us now to come back to the question posed at the beginning of 
Section 6.3.1: How can we interpret the changes made to the recurrence theorem and 
its formulation between [Pa] and [Pb]?

In 1890, Poincaré introduces a new formalism, which comes from probability calcu-
lus; this allows him to extend the recurrence theorem with a corollary. In the following 
texts, the corollary is gradually reinforced, in a process that can be described, according 
to Lakatos, as the search for the domain of the proof. Therefore, the introduction of the 
language of probabilities is part of a larger movement, in which Poincaré increases the 
scope of the recurrence theorem.

This evolution occurs precisely when Poincaré gives to the recurrence theorem the 
place of the proof of stability, which proved to be erroneous. Thus, there is a correlation 
between the change of status of the recurrence theorem and its mathematical strengthen-
ing by the corollary.

Finally, a third aspect of the texts of our corpus changes during the same period: the 
manner Poincaré links his work with that of the astronomers preceding him, in particular 
Lagrange and Poisson.30 Poincaré draws a parallel between his theorem and the proof 
by Poisson of the stability of the solar system precisely on the two evolving points: the 
exclusion of certain trajectories in the statement of a stability result, which is the subject 
of the corollary added in 1890, and the fact of considering the recurrence property as a 
form of stability.

These three changes are clearly closely related. The aim of the legitimation— using 
Poisson as a reference— is both the form of the stability studied by the recurrence theorem 
and the aspect of the quantification given by the corollary. Moreover, the strengthening of 
the theorem is necessary to be able to present it as a stability result. In its original form, 
it appears as a technical existence condition of solutions that have a particular property. 
But, for it to be valid as a stability result, one must be able to say what type of trajectory 

30 This point is developed in Robadey (2005).

 



 6.5 Where does the idea of using probabilities come from? 197

   197

is the most widespread. Therefore, the information given by the corollary is particularly 
crucial. It is only this quantitative precision on the importance of recurring trajectories 
which gives the theorem its strength in the tradition of the stability results established by 
Lagrange, Laplace, and Poisson.

Now, Mittag- Leffler’s report, which announced the outcome of the competition in 
honor of the King of Sweden, mentioned explicitly stability as heading the list of the 
questions treated by the prize- winning memoir:

The most important and difficult questions, such as the stability of the world system, 
the analytical expression of the planets coordinates by series of sines and cosines of 
time multiples, and the very remarkable study of asymptotic motion, the discovery 
of forms of motion where the distances of the bodies remaining between fixed limits, 
their coordinates cannot however be expressed by trigonometric series, other subjects 
that we do not mention, are treated by methods that open, it is fair to say, a new era in 
celestial mechanics (Rapport de la Commission du Prix offert par S.M. le roi Oscar ii de 
Suède, 1889, p. 287).

This context must have encouraged Poincaré to keep a stability result in his memoir, even 
if it was to be weaker than that originally aimed at.

Therefore, it is possible to say, without committing oneself much, that it is precisely 
with the aim of replacing the erroneous proof of stability that Poincaré reshapes his 
recurrence theorem between [Pa] and [Pb], by giving it a greater mathematical scope and 
by presenting the obtained result in the tradition of the founding research on stability in 
celestial mechanics, even if he employs entirely new techniques.

In other words, it is indeed a new need that leads to a real change of viewpoint in 
the manner Poincaré considers stability “in the second sense.” It is in this context that 
Poincaré resorts to probability calculus to strengthen the result given by the recurrence 
theorem.

6.5  Where does the idea of using probabilities 
come from?

In the study above, we were able to identify a precise moment, when Poincaré introduces 
a new type of statement following the discovery of his error. To do this, the tool he resorts 
to is probability calculus. At first sight, it seems to be a very distant area of mathematics. 
What made Poincaré adopt such a tool to study trajectories? How does probability theory 
answer his needs?

Asking such a question might lead to an anachronistic interpretation. Indeed, one 
might be tempted to consider the problem studied by Poincaré from a contemporary 
standpoint and seek to show that he did not have the choice: he was forced to introduce 
a new way of apprehension to evaluate the importance of recurring trajectories. Or even 
that he necessarily had to use probability calculus or a similar tool. But what does one 
mean by “probability calculus or a similar tool?” The modern reader of course thinks 
of measure theory. But, this is a retrospective way of thinking. More broadly, the state 
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of development of theories which we today have to describe accurately what Poincaré 
did and possibly judge what was best absolutely does not correspond to what Poincaré 
actually had at his disposal. The result is that it is extremely difficult to pose the question 
of Poincaré’s choice.

However, one can identify uses of the notion of probability in contexts close to 
Poincaré’s work on the three- body problem: these facts might have suggested to Poincaré 
the use of probability calculus. This is what I shall strive to identify.

Further, I shall try to show elements of continuity between the proof of the recurrence 
theorem and that of the corollary. Therefore, we shall see that Poincaré exploited the 
work which had led him to the proof of the theorem and developed it to establish the 
corollary. It appears that, probability calculus, such as Poincaré formulates it in order to 
introduce it here, is an appropriate tool for the strengthening of the recurrence theorem. 
Our author does not just stick an exterior tool onto a given problem; he adapts them 
both to fit each other.

Finally, I shall show some specificities of Poincaré’s work using probability calculus 
in the framework of the recurrence theorem. They highlight the novelty of this approach 
compared to other ways of studying sets of trajectories, or compared to other uses of 
probabilities.

6.5.1  General solution and particular solutions

Let us first start by examining the first work of Poincaré in the field of celestial mechanics.
This research is interesting for us in two respects. First, in these texts, Poincaré men-

tions the probability of these periodic trajectories— however, in a very different sense than 
the one he gives to this word in 1890, as will be seen. More broadly, Poincaré uses here 
other tools to characterize sets of trajectories.

The texts I  propose to examine are a note published in the CRAS (Poincaré, 
1883)  and an article that was published a year later in the Bulletin astronomique 
(Poincaré, 1884), which develops the content of the former. Poincaré considers “some 
particular solutions to the three- body problem,” of which he shows the existence and 
studies the properties.

The article Sur certaines solutions particulières du problème des trois corps (Poincaré, 
1884) starts by opposing the “general solution to the three- body problem,” which “is 
still to be found,” and “some particular solutions” that must be brought to the fore. While 
the convergence of the trigonometric expansions proposed for the general solution of 
the three- body problem is not proved,31 Poincaré points out a major interest of some 
particular periodic solutions that he is going to study: they can be represented by con-
vergent series. The opposition made here by Poincaré between “general” and “particular” 
solutions is classical in the study of differential equations and Poincaré reminds the reader 
of it at the beginning of both versions of his memoir on the three- body problem, [Pa] and 
[Pb]. If one is interested in the equations

31 In his 1890 memoir, Poincaré also proves, among other things, the non- convergence of some of these 
series.
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“represent the general solution if the constants Ci remain arbitrary.” They “represent a 
particular solution if the constants C are given numerical values” [Pb, p. 266]. In other 
words, the “general solution” is given by a single formula that contains all the particular 
solutions; the latter are obtained by fixing the values of the arbitrary constants of the 
general solution.

Poincaré continues his 1884 article by the presentation of his method showing the 
existence of particular periodic solutions. He applies it successively three times to high-
light three “kinds” of periodic solutions. Concerning the first kind, he specifies the 
quantity of periodic solutions shown in this way: “therefore there are periodic solutions 
of the first kind; there are even a quadruple infinity of them.” In fact, Poincaré shows that 
the periodic solutions of this kind are given by formulas, in which remain four arbitrary 
constants. These four parameters give rise to the announced “quadruple infinity” of 
solutions.

These quantitative considerations on the periodic solutions, of which Poincaré proves 
the existence, were already present in the 1883 note:

In the particular solution considered, if it is imposed on the three bodies to move in a 
plane, there still remain four arbitrary parameters; if they move in space, there remain 
eight parameters. Thus, in both cases, four conditions must be imposed on the initial 
elements of motion for it to have the periodicity that we have just mentioned (Poincaré, 
1883, p. 252).

In 1884, Poincaré proves the existence of three “kinds” of periodic solutions. The first 
two correspond to motion in a plane, the third to motion in space. Poincaré only gives the 
enumeration of the arbitrary constants for the solutions of the first kind. The conclusion 
of the study of the solutions of the third kind simply states: “this proves the existence of 
an infinity of periodic solutions of the third kind.” The reader must himself notice that 
there remain eight arbitrary parameters, which can be set at will to obtain these periodic 
solutions, as Poincaré had announced in 1883.

Similarly, Poincaré shows how to calculate, by successive approximations, the coef-
ficients of series representing the solutions of the first kind. Specifically, he calculates the 
first approximation, by this indicating the procedure to follow. But, he only presents this 
calculation in the case of the solutions of the first kind.

It is therefore clear that Poincaré chooses, in 1884, only to detail the study of the 
solutions of the first kind, for the enumeration of the arbitrary constants as well as for 
the calculation of solutions by approximations. Concerning the other kinds, he only gives 
the parts of the analysis which present the acknowledged differences in relation to the 
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first study, and leaves to the reader the task of completing the work, in order to convince 
himself of the results announced in the 1883 note.

However, even if the enumeration of the arbitrary constants is given only in the first 
example of the 1884 article, one can see that the considerations on the number of con-
stants to set in order to perfectly determine a solution of a given type form the last third 
of the short note of 1883. This shows Poincaré attaches importance to this quantitative 
evaluation of the sets of solutions that he highlights.

Clearly, the mode of characterization, which Poincaré uses here in order to estimate 
the importance of a set of solutions, is linked to the opposition between general solution 
and particular solutions. The sets of solutions presented in these pieces of work appear 
to be a transition between general solution and particular solutions. They are indeed 
given by formulas, in which some constants remain arbitrary, whereas others must be 
imposed.

The passage of the 1883 note that I quoted calls for another remark. In this passage, 
Poincaré first considers the number of arbitrary constants which remain in the expression 
of the solution. In modern terms, this corresponds to the dimension of the considered 
set of solutions. Today, it is natural to understand such an indication as an element of 
evaluation of the generality degree of the suggested solutions. Such a relation between 
the number of arbitrary constants in a formula and the estimation of the generality of 
the solutions represented by this formula is not given explicitly in these texts of Poincaré. 
But the link is confirmed by a passage of the memoir Sur le problème des trois corps. In 
this text, Poincaré comments on a formula that he gives to represent certain solutions, 
in the following terms:

This solution is not the most general, since it only contains three arbitrary constants, but 
it is the most general among those that can be written in the form (3).32

The form of the solutions which are studied here matters little to us. The important 
point is that Poincaré himself relates the number of arbitrary constants to the degree of 
generality of the solution.

After having paid attention to the number of conditions that have to be set to obtain 
periodic solutions, Poincaré remarks in 1884:

Application of periodic solutions— It seems at first look that these periodic solutions are of 
no practical use, since they correspond to particular values of the initial elements, values 
of which the probability is equal to zero. But, if the initial elements are very close to those 
corresponding to a periodic solution, the real positions of the three masses can be linked 
to the positions that they would occupy in this periodic solution, and consequently we can 
use this solution as we would use an intermediate orbit (Poincaré, 1884, p. 260).

One sees that Poincaré insists on the term “particular,” which echoes the opposition 
between general solution and particular solutions. We have just analyzed how Poincaré 

32 This passage is in [Pa, pp. 81– 2], and is given again in [Pb, p. 360].
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developed this opposition into a gradation of generality. He then notes that the probability 
of the initial conditions, which gives rise to these periodic solutions, is equal to zero. But, 
contrary to the use of probabilities that we studied in [Pb], he does not at all specify how 
this probability should be calculated. The fact that the probability is equal to zero seems 
here to stress the preceding indication on the particularity of these periodic solutions 
rather than adding new information. Thus it seems that the term of probability is used 
here in its everyday meaning and not in a technical sense.

Therefore, Poincaré employs, in his work on celestial mechanics, two very different 
means to consider sets of trajectories.

The attention paid to the dimension of classes of solutions appears already in the first 
pieces of work on celestial mechanics. This dimensional approach is still present in 1889 
and 1890, as we have seen.

However, in 1890, Poincaré introduces a new means of comparing different kinds of 
trajectories. For this, he uses probability theory, employed in a technical way.

These two tools refer to a common approach, which consists in quantitatively evaluat-
ing a set of solutions. The use of the term “probability” in 1884, to me, seems rather to 
reflect the similarity between the two modes of apprehension than to be a reference to 
probability theory. The connection between these two ideas might have contributed in 
1890 to give to Poincaré the idea of using probability calculus in a technical way. But both 
approaches are well distinguished in the subsequent work of Poincaré, which suggests 
he is fully aware of their differences. We shall soon come back to the specificity of the 
problem of recurring trajectories: this is another factor that might have led Poincaré to 
use a new tool.

6.5.2  Cantor’s set theory

Poincaré borrows from Cantor’s work a third type of consideration to study sets of tra-
jectories. This mathematician forged specific concepts to study sets: countability, density, 
derived sets, closed sets, “perfect” sets, etc. Poincaré refers to this in the memoir Sur le 
problème des trois corps, as we have seen, to discuss his conjecture about the density of 
trajectories [Pa, p. 153; Pb, p. 454]. He shows that in the neighborhood of any closed 
trajectory, there passes an infinity of other trajectories. Poincaré remarks that this is not 
sufficient to conclude that closed trajectories are dense, and he justifies this remark using 
a result of Cantor: “a set can be perfect without being continuous.”

A perfect set, in Cantor’s theory, is a closed set, of which any element is the limit of 
a sequence of distinct elements of this set. Poincaré only showed that the set of closed 
trajectories satisfies the second of the conditions characterizing perfect sets. He therefore 
is not faced with a perfect set. Poincaré’s commentary must probably be understood 
as referring to the properties of closure of the set of trajectories. The latter is closed 
by definition, and always satisfies the second condition, thus is a perfect set. Poincaré 
conjectures that all the trajectories are attained in this manner— in other words, the entire 
space of initial conditions. Here too, the point is to evaluate the importance of a set of 
trajectories. Since in the neighborhood of a periodic solution there exists an infinity of 
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other periodic solutions, there are many closed trajectories and one might think they are 
dense. However, Cantor’s result leads to moderate this first impression in the absence of 
any supplementary argument.

Poincaré’s contacts with Cantor’s work date back to the beginning of year 1883. At this 
time, he contributed to the translation into French of a memoir of this mathematician, 
requested by Mittag- Leffler for the Acta Mathematica33 (Cantor, 1883). The correspond-
ence between Mittag- Leffler, Hermite, and Poincaré shows that the Frenchmen involved 
in the translation are not convinced of the interest of this research in itself. But Poincaré 
does not hesitate, from 1883, to use notions defined by Cantor, when they allow him to 
clarify his understanding of phenomena that he is studying (Poincaré and Mittag- Leffler, 
1999, letter 28, note 4). The memoir Sur le problème des trois corps is a new example of this.

This shows that Poincaré studies sets of trajectories in all their aspects, using all avail-
able means: dimensional approach, probabilities, set theory. More generally, we see that 
Poincaré is open to using various methods. We have already remarked that he willingly 
gives a geometric interpretation of the studied phenomena. The influence of the kinetic 
theory of gases on the rewriting of the proof of the recurrence theorem is another example 
of the links he readily makes between various fields of study. It seems to me that the 
introduction of a probabilistic tool also reflects the manner in which Poincaré works, 
prompt to make various areas of his mathematical activity interact.

6.5.3  Gyldén’s use of probabilities

Poincaré already had used several tools to study the sets of trajectories: the dimensional 
approach and set theory. And although he had mentioned probabilities in 1884, he had 
not used probability calculus proper, neither in his previous work nor in [Pa]. A circum-
stance can however be noted that might have drawn his attention to this tool. The Swedish 
astronomer Gyldén had used it shortly before. He sought to evaluate the probability that 
the integers appearing in the continued fraction expansion of an irrational number taken 
at random are very large. This work is presented in two notes in the Comptes rendus de 
l’Académie des Sciences (Gyldén, 1888c, 1888d), which summarize two articles in Swedish 
of the Comptes rendus de l’Académie des sciences de Stockholm,(Gyldén, 1888a, 1888b).

Several factors converge to suggest that Poincaré had knowledge of Gyldén’s work. 
For example, he mentioned this astronomer’s work in the introduction of [Pa]. So he 
had knowledge of the work of Gyldén that was related to his own centers of interest. 
Further, right after the announcement of the award, before the memoir had been 
printed in its first version, Gyldén had claimed priority over certain of Poincaré’s 
results, referring to his previous work (Gyldén, 1887). Mittag- Leffler had called on 
Poincaré to prepare his response, giving rise to a series of long letters at the beginning 
of 1889 (Poincaré and Mittag- Leffler, 1999, letters 79– 87). In these letters, Poincaré 
comments on the 1887 memoir of Gyldén and discusses the convergence of the series 
that are defined in it.

Gyldén’s motivation to study the decomposition of irrational numbers in continued 
fractions is related to these questions of celestial mechanics and convergence of series. 

33 See Dugac (1984) and Poincaré and Mittag- Leffler (1999, letter 28, note 3).
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He develops it in the first memoir in Swedish. The underlying problem is that of the 
convergence of trigonometric series, which intervene most particularly in celestial 
mechanics in the calculation of the perturbations of the Keplerian motion of a planet 
due to the attraction of the other planets. Gyldén concludes: “the probability that the 
series representing the perturbations of the planets diverge is less than any given value” 
(Gyldén, 1888b, p. 83).34  This aim is mentioned in the conclusion of the second note 
in the CRAS: “From these results follows a thesis of great importance to judge the 
convergence of certain trigonometric series used in the calculation of perturbations, 
namely: the probability of finding a value of a outside a given limit is in reciprocal 
ratio to the number signifying this limit”35 (Gyldén, 1888d, p. 1781). This is the only 
mention of the orientation of this research toward celestial mechanics, somewhat ellipti-
cal, in the communications addressed to the Academy of Paris. But, Poincaré knew 
Gyldén and the aim of the latter was possibly clear to him, having read— or not— the 
Swedish memoirs.

6.5.4  An important characteristic of the recurrence 
theorem: a non- constructive proof

We have already noted the continuity between the proof of the recurrence theorem proper 
and the corollary that Poincaré adds in 1890. Poincaré uses the same elements of proof, 
that is, consideration of the sequence of consequent regions of a given region and their 
common parts, as well as evaluations of their volumes. In fact, in [Pb], he only refines his 
analysis of these regions. Probability calculus is therefore an appropriate means to take a 
greater advantage of the proof method already used for the theorem.

This continuity is deeper. Considering the technical details, another characteristic 
shared by the theorem and the corollary can be uncovered. It shows a radical difference 
between the question of recurring trajectories and the problem of periodic solutions 
that has just been considered (see Section 6.5.1). The recurrence theorem states the 
existence of trajectories which have a certain property, but absolutely does not allow us 
to show explicitly such a trajectory. This is a non- constructive result. This particularity 
is not without consequence on the means by which one can evaluate the qualitative 
importance of trajectories of a given type, as Poincaré does in the corollary. In the article 
on periodic solutions studied above (Poincaré, 1884), Poincaré made an analysis of the 
conditions under which a trajectory is periodic of the first [respectively second or third] 
kind. From this, he drew considerations on the respective importance of these types of 
solutions among each other and in relation to the set of solutions of the problem. Here, 
this is not the point: it is not possible to characterize by a condition the initial positions 
which give rise to recurring trajectories.

The non- constructive character of the proof of the recurrence theorem is very strong.

34 Cited by von Plato (1994).
35 The italic type is that of Gyldén. Here, the ai are the integers that appear in the expansion of a given 

irrational number into continued fraction. Gyldén shows that the probability for an ai to be greater than n is 

proportional to 
1
n

 (AR).

 



204 Elaboration of a statement on the degree of generality of a property

204

In fact, it is not even possible to define precisely what it means for a given trajectory 
to be recurring— or not— in the sense of the theorem, such as it is stated in [Pa] and [Pb]. 
In 1885, Poincaré gave “a precise definition of stability” for a trajectory:

We shall say that the trajectory of a moving point is stable, when describing a circle or a 
sphere of radius r around the starting point, the moving point, after having left this circle 
or this sphere, will enter it an infinity of times, and this, however small r is (Poincaré, 
1885, p. 94).

But he does not prove the existence of such trajectories neither in [Pa], nor in [Pb]. In 
both these memoirs, stability in the second sense is defined only by a sentence of everyday 
language, without any mathematical notions:

For there to be stability, the point P must come back after a long enough time if not to 
its initial position, at least to a position as close as one wants to this initial position [Pa, 
p. 31; Pb, p. 313].

In everyday language, the order of the components of the sentence is much freer than 
in the technical language. It is only in the statement of the theorem that the position of 
the quantifier “a position as close as one wants” is fixed in relation to the determination 
of a stable trajectory:

If one considers any region r0, however small this region might be, there will be trajectories 
that pass through it infinitely often.

The introduction of the notation r0 is preceded by the expression “if one considers” 
which marks the definition of a mathematical object. Therefore, it is indeed the region 
considered that is chosen first. Then only a trajectory is fixed in order to examine its 
properties. In the first formulation, in everyday language, the point P appears without 
being defined, and the sentence does not impose the reading according to which stability 
would be defined for a given trajectory as the fact of coming back infinitely often in any 
region containing the starting point. It admits several interpretations, which is not the 
case for the theorem.

Thus, the definition of stability is not fixed technically except in the statement of the 
theorem, and it is inseparable from this statement. The theorem does not predict the 
existence of stable trajectories. But, for each region, the theorem predicts the existence 
of recurring trajectories with regard to this region. It is this that is interpreted as the 
existence of stable trajectories.

The same goes for the corollary. In [Pb] one can see that the definition of the term 
“exceptional” is neither isolated from that of stability nor from the statement of the 
corollary. First, this is a consequence of what we have just seen: there is no set of non- 
recurring trajectories, the probability of which could be calculated, but only recurring 
trajectories with regard to a region. Further, the probability calculated by Poincaré in 
1890 is not that of the non- recurring trajectories with regard to a given region, but that 
of trajectories which do not come back in this region more than k times. The result is that 
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the meaning of the term “exceptional” is only defined by the statement that Poincaré is 
going to establish. More precisely, Poincaré writes:

The probabilities being defined in this way, I propose to establish that the probability 
that a trajectory coming from a point of r0 does not cross this region more than k times 
is equal to zero, however large k might be and however small the region r0 might be. 
This is what I mean when I say that the trajectories that only cross r0 a finite number of 
times are exceptional [Pb, p. 316].

Thus, he claims not to give a mathematical sense to the term “exceptional” in itself, but to 
clarify what must be understood by the fact that non- recurring trajectories— with regard 
to a given region— are exceptional.

This can also be seen by a quite strange text organization. The section, which is marked 
as being the corollary, comes before the passage that I have just cited. It is a paragraph 
given in italic characters, preceded by the heading “corollary”:

Corollary— It follows from the preceding that there exists an infinity of trajectories crossing infinitely 
often the region r0; but there can exist others that only cross this region a finite number of times. 
I propose now to explain why the latter trajectories can be regarded as exceptional [Pb, p. 316].

At this point in the text, Poincaré has not yet defined the term “exceptional;” he has not 
even mentioned probability. He announces an explanation and a proof, at the same time 
as a definition of what he means by exceptional.

Therefore, a new characteristic common to the recurrence theorem and its corollary 
emerges: the close connection between these two statements and the definition of the 
terms by which they are translated. Stability— that is, Poisson stability— is not an intrinsic 
property of certain objects, just as the exceptional character of certain types of trajectories 
is not an intrinsic property of a given set. These terms allow Poincaré to reformulate 
complex technical properties.

6.6  Probabilities

6.6.1  Poincaré and probability calculus

Probability calculus is not an area in which Poincaré wrote much. In fact, the use of prob-
abilities in [Pb] is the oldest evidence of his reflections on the subject. In 1890, Poincaré 
has been holding the Chair of “mathematical physics and probability theory” at the 
Sorbonne for three years, but it is only during the second semester of year 1893– 4 that 
he chooses to teach probability theory. This course is written by Albert Quiquet, former 
student of the École Normale Supérieure (graduation year 1883), who had been work-
ing since 1886 as an actuary in an insurance company. It was published two years later 
(Poincaré, 1896). The book is composed of chapters of similar lengths, only identified by 
the lesson numbers. The content probably reproduces very faithfully Poincaré’s teaching 
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of year 1894. It is only in the second edition, published in 1912, that Poincaré reconsiders 
the structure and organizes the chapters thematically. The modifications of the body of 
the text are quite minor with regard to what interests us here. Between the two editions, 
Poincaré published a less specialized article (Poincaré, 1899) that will be integrated into 
La science et l’hypothèse (Poincaré, 1902), and an article (Poincaré, 1907) that forms the 
introduction, mentioned above, of the second edition of the course.

The period that particularly interests us is that of the rewriting of the memoir on 
the three- body problem and the period of the publication of the summaries for the 
Bulletin astronomique and the Revue générale des sciences, that is, the 1889– 91 period. 
The work explicitly on probability calculus comes later. But the 1894 course presents 
a mature version of Poincaré’s reflections of the preceding years. In fact, we have 
already noted above (see Section 6.2.2) striking correlations between the statement 
of the corollary of the recurrence theorem and the content of this course. Pursuing 
this analysis, we shall be able to suggest a chronology of Poincaré’s work in the field 
of probabilities. More than a chronology, the study of the research on the three- body 
problem reveals some of Poincaré’s motivations for the elaboration of his personal 
approach to probability calculus.

The course published in 1896 mentions very few sources. The most frequently cited 
author is clearly Joseph Bertrand, whose book on probability calculus had just come out 
(Bertrand, 1888). Besides, Poincaré knew certain points of Bertrand’s work from the 
talks given by the latter at the meetings of the Academy while he was writing the text. He 
might also have heard of Bertrand’s reflections on probabilities at the École Polytechnique.

Poincaré refers to Bertrand several times in his course. He recognizes his paternity 
of several examples,36 questions,37 results,38 and remarks.39 Concerning these constant 
references to Bertrand’s book, one can note that when Poincaré considers some of the 
explanations of the paradox of Saint- Petersburg, he omits naming their authors, whereas 
Bertrand precisely traced the origins of the various interpretations. The circumstance 
seems to me to indicate that Poincaré uses Bertrand’s book as his main source. He takes 
advantage of the latter’s work of compilation.

The only mathematician that Poincaré refers to, not already cited by Bertrand, is 
Maurice d’Ocagne. Poincaré attributes to him the solution of a problem of geometric 
probabilities40 (Poincaré, 1896, p. 113). But, this is an isolated contribution and bears no 
comparison with that of Bertrand.

Therefore, it seems that Poincaré thought about probability calculus essentially on the 
basis of Bertrand’s book.

36 For instance, the first examples of probability problems. The reference is explicit: “Let us cite two other 
examples of Bertrand.” Even before this reference, Poincaré had chosen, just as Bertrand, the question of the 
probability of point 4 on the throw of a dice as the simplest example of probability theory. Similarly, one then 
finds several examples— not indicated— common to Bertrand and Poincaré: the pistol shot, Maxwell’s error, 
and the polling problem (Poincaré, 1896, pp. 41– 9; Bertrand, 1888, pp. 29– 31, 18– 20).

37 Let us particularly note Bertrand’s paradox, solved by Poincaré, to which we shall come back.
38 Poincaré (1896, p. 73): “J. Bertrand calculated the probable moment of his ruin.”
39 Poincaré (1896, p. 173): “J. Bertrand presents the following objections: […]”
40 We shall see that it is in this area that Poincaré stands out the most in comparison to Bertrand’s book.
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This teaches us two things. First, Poincaré read Bertrand’s text, at least before 1894, 
and probably earlier, maybe as early as 1889; it is not impossible that this reading— and 
the reflections it raised— is one of the sources of inspiration suggesting the formulation 
of the recurrence theorem in probability terms. More precisely, I propose to show that 
the work on the recurrence theorem between 1889 and 1891 is for Poincaré the occasion 
of shaping his own conception of probability calculus.

6.6.2  Bertrand and continuous probabilities

One of the points on which Bertrand and Poincaré’s texts differ considerably concerns the 
treatment of the problem of continuous probabilities, that is, the problems for which the 
set of possible outcomes of a probability experiment is a continuum, and thus an infinite 
set. It is important for us to study the way Bertrand and Poincaré treat these problems, 
since the probability evaluated by Poincaré for the corollary of the recurrence theorem 
is of this type. Indeed, the set of possible initial conditions that determine a trajectory is 
a domain of the space of n dimensions.

From the very beginning of his book, Bertrand gives a word of warning against this 
type of problems, showing the contradictions that may arise:

Another remark is still necessary: infinity is not a number; one must not, save an explana-
tion, introduce it into the reasoning. The illusory accuracy of words might give rise to 
contradictions. To choose at random among an infinity of possible cases is not a sufficient 
indication (Bertrand, 1888, p. 4).

First, let us remark that Bertrand is not aiming here at all the questions involving continu-
ous probabilities, but the problems implying a “random” choice among an infinite set of 
possible choices. Therefore, the chapters on the calculus of errors involve distributions 
on continuous probabilities, but do not relate to this initial warning.

Bertrand immediately gives a first example of the difficulties that arise in the treatment 
of these problems: “One asks for the probability that a number, integer or fractional, 
commensurable or incommensurable, chosen at random between 0 and 100, is greater than 
50. The answer seems obvious […]. The probability is ½” (Bertrand, 1888, p.4). Now a 
different result is found if one considers the square of this number and one evaluates the 
probability that this square is between 2,500 and 10,000: the natural answer is then ¾.

Bertrand then gives another problem: “One randomly traces a chord in a circle. What 
is the probability that it is smaller than the side of the inscribed equilateral triangle?” 
(Bertrand, 1888, p.4). He presents three arguments aiming at calculating this prob-
ability: each of them gives a different result. Bertrand concludes: “Among these three 
answers, which is the correct one? None of the three is false, none is exact, the question 
is ill- posed” (Bertrand, 1888, p. 5). It is this example that Poincaré chooses to open his 
chapter on continuous probability. But instead of rejecting the problem because it is 
badly formulated, he solves the paradox: each of these arguments, introducing different 
coordinates to locate a chord of the circle, leads to the definition of a different probability 
distribution on the set of chords.
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Bertrand does not just give these two examples to warn against a difficulty. Throughout 
his book, he shows a clear attitude of rejection toward the problems that involve a random 
choice among an infinity of possible cases. Each time, he reaffirms that the question is 
ill- posed. We shall see several examples of this.

The interpretation of Bertrand’s attitude concerning these paradoxes is a complex 
historical question, since his interest in probabilities mingles with a polemicist attitude 
that tends toward skepticism. Further, there is not serious study on the man and his 
philosophical positions, important for the conception of probabilities. Without claiming 
to complete this gap, I propose to highlight some aspects of Bertrand’s thought on prob-
ability theory that emerge from the way he treats this problem.

The first thing to note is that Bertrand is not the first to point out a paradox of this 
type. In the second half of the eighteenth century, Lambert and Laplace had proposed 
two formulas, both of them plausible, although contradictory, to express what it means to 
choose at random a point on a sphere. The paradox is discussed by Cournot (1843), and 
also at the meetings of the Philomatic Society at the end of the years 1840. Bertrand is 
present (Bru et al., 1997, note 22, p. 161, note 58) and so from this period he is confronted 
with these difficulties of probability theory.

But it seems that his attitude toward these problems was at this time quite different 
from the one he adopts in 1888 in his book on probability theory. The accounts of the 
meetings of the Philomatic Society, although very brief, indeed lead to this interpretation. 
The only meeting where we find a sufficiently explicit reference to these paradoxes is that 
of 12 July 1851, on which it is stated:

Mr. Bravais reports Mr. Cournot’s opinion on the manner of calculating averages in the 
three- dimensional case. He also indicates the research that he has undertaken to determine 
the average form of the skull. Mr. Quetelet also studied these questions.

Mr. Villarceau replies.
Mr. Bertrand and Mr. Bienaymé add a few remarks. Mr. Bienaymé, to show how inde-

terminate the problem is, reminds the auditors of the previous discussions on average life41.
Mr. Bertrand thinks that it is possible to clearly define what is called average direction 

(Comptes- rendus des séances de la Société philomatique de Paris, Ms 2090, pp. 27– 8).

Some explanations are required to situate these few lines. The problem reported by Bravais 
is slightly different from that of the indetermination of continuous probabilities, but it is 
linked to it. The origin of this discussion is a remark by Cournot in Exposition (Cournot, 
1843; pp. 143– 4 in the Vrin edition, Cournot, 1973– ): can one define an average triangle? 
Cournot shows that this question is not obvious; in particular, if the three vertices are 
drawn at random and the averages of the three angles are made separately, the sum is 
not 180°, and yet this is always the sum of the angles. He uses this argument to criticize 
the notion of average man proposed by Quetelet in his important essay (Quetelet, 1835). 

41 In particular, Bienaymé is probably referring to the meeting of 29 March 1845 for which we read: “Mr. 
Bienaymé mentions research on the length of human life and on the manner the families disappear. This com-
munication gives rise to a discussion that Mr. Bienaymé will summarize in a note” (Ms 2089, p. 71, verso). The 
archives of the Philomatic Society contain, in addition to manuscript records of the minutes of the meetings, 
about forty boxes (nos123– 64). I have not found Bienaymé’s note.
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Following Quetelet’s answer, Bravais (who has done his thesis on the localization errors 
of a point in space) continues this discussion at the Society. The account suggests that it 
tends toward the issue that interests us here, more specifically, because of the mention of 
the average direction. Indeed, this refers to Cournot’s reflections on the various ways of 
defining the coordinates of an astronomical body, resulting in different behaviors of the 
average (Cournot, 1973– , pp. 150, 179).

The context having been clarified, let us remark that it is Bienaymé who insists on the 
indeterminate character of the question, whereas Bertrand considers that the problem 
can be sufficiently defined in order to remove the indetermination.

This reading is consistent with the use Bertrand makes of probability calculus in his 
course on integral calculus. Indeed, at this point, he is considering a continuous problem 
(Bertrand, 1870, pp. 483– 91). More precisely, he wants to prove the following formula, 
attributed to Crofton:42
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“dσ designating any element of the plane exterior to a convex curve, of which the 
area is Ω and the length L, and ω the angle from which this curve is seen from a 
point situated on the element dσ.” The proof uses the probability that a convex disc, 
randomly thrown on a plane cut by parallel lines, meets one of these lines. Bertrand 
then calculates the probability that two chords chosen at random on a convex curve 
meet inside the curve. Finally, he evaluates the probability that they meet outside 
in a given region. In other words, in 1870 Bertrand considers, apparently without 
it posing him any theoretical problem, the random choice of a chord of a convex 
surface. What is more, he gives his preference to this probability proof to establish 
the Crofton formula.

So, at this time, Bertrand does not show any reluctance to consider probability experi-
ments in which the number of possible cases is infinite. Two problems addressed in this 
proof are considered again in 1888: the disc thrown on a series of parallel lines and the 
chord of a circle. The result is a particularly striking contrast between the 1870 course 
and the book on probability theory: while these two problems did not seem to pose any 
difficulty in 1870, they appear as sources of difficulties in the 1888 text. We have already 
seen this with the problem of the probability that a chord of a circle be smaller than the 
side of the inscribed triangle that Poincaré significantly named “Bertrand’s paradox.” Let 
us now turn to the problem of the random choice of the chord of a circle. It gives rise, 
indeed, to a very interesting passage in the 1888 text.

Bertrand is interested in this problem for the treatment of the classical problem of 
Buffon’s needle: let equidistant parallel lines be traced on a plane; a needle is thrown 
at random on the plane and one seeks the probability that the needle meets one of the 
parallel lines. This classical example is given in the third chapter of the 1888 book. 

42 See Seneta et al. (2001) for a more detailed study of the history of this problem.
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Bertrand solves it by considering the probability that a circle of radius R, thrown at 
random on a plane, meets one of the parallel lines. Therefore it is the same calcula-
tion than that opening the proof of Crofton’s theorem in 1870. This is how Bertrand 
proceeded in 1870:43

This said, the distance between the parallels being 2a, if the disc is a circle of radius R, 
the probability that they meet is clearly R/a, because it is both necessary and sufficient for 
this that the center is at a distance less than R from one of the parallels between which it 
has fallen, and that, consequently, over a distance 2a of which all the points are equally 
possible, the center of the circle is in a portion where the total length is 2R (Bertrand, 
1870, p. 484).

The problem of Buffon’s needle is so classical and its solution so obvious, that Bertrand, 
apparently, is not able to resign himself to consider it as insufficiently determined— and 
yet this would be consistent with the initial warning against the choice among an infinite 
number of possible cases. He thus presents it, but it is the only example of continuous 
probabilities, and it appears among a collection of finite probability problems. Bertrand 
even tries to bring his resolution back to that of a choice among a finite number of possible 
cases (Bertrand, 1888, p. 55).

The result is correct, but the attempt at discretization is very unsatisfactory and attests 
to Bertrand’s predicament. The problem is only apparently reduced to a finite number of 
cases. Bertrand was certainly quite aware of this discrepancy. This passage shows that he 
forbids himself to choose randomly among an infinite number of cases, however without 
rejecting, in fact, all the problems of this type.

One can suggest several reasons, which may be linked, to explain Bertrand’s hesitation 
in this matter. I shall concentrate myself here on the question of the determination of the 
probability, even if there are probably other factors that could be taken into account.44 
This will allow me to show that this difficulty, on which Bertrand insists in his course, 
is resolved in Poincaré’s course; Poincaré’s resolution is linked to the way he introduces 
probability calculus in order to strengthen the recurrence theorem.

In order to better understand Bertrand’s problem, we must closely study how he 
expresses the deficiencies of the random choice among an infinite set of cases. He points 
out, from the beginning of his indictment, that it is “not sufficient information” (Bertrand, 
1888, p. 4).

Part of his analysis aims at denouncing a badly founded application of the principle of 
composite probabilities to prove— wrongly— that the probability distribution is necessarily 
Gaussian. It is the initial remark— according to which the data are insufficient— that 
interests us. Indeed, it agrees with the judgment on the first paradox: the information 

43 I have slightly modified the notations in order to harmonize them with those of 1888. In 1870, Bertrand 
wrote the radius of the circle r rather than R.

44 B. Bru considers that Bertrand’s position in his course on probabilities is revealing of his attitude: as he 
got older, he became very skeptical about the role of mathematics and mathematicians.
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is insufficient. We shall see that Poincaré takes the same example and the comparison 
between the two passages will be significant regarding the different approaches of the 
two authors.

In all these passages, Bertrand always comes back to the way the problem is described, 
seeking there either the origin of the paradox or of the difficulties encountered: the ques-
tion is ill-posed, not precise enough, the information is insufficient.

Bertrand seems to consider that the probability distribution must be determined by 
the description of the experiment that is being conducted. In other words, the probability 
is necessarily objective. It is the result of the conditions of the experiment that must be 
described very precisely.

This suggests an explanation to the radicalness with which Bertrand rejects, in 1888, 
the use of probabilities in the problems containing a choice among an infinite number 
of possibilities.

Let us first remark that Bertrand considers such problems mainly in two places in 
his book— almost always to criticize the solution that one has tried to give to them. This 
concerns the first chapter, on the enumeration of chances. Then, Bertrand comes back to 
the insufficiently determined character of some problems in his chapter on the probability 
of causes. In this area of probability calculus, one seeks to determine the probability of 
the different events that may have led to a same observed outcome. The first example 
given by Bertrand is the following:

Peter bet he would obtain with three dice a value greater than 16; he won: this is the event. 
The value obtained can be 17 or 18: these are the possible causes of success (Bertrand, 
1888, p. 143).

To solve this type of problem, one must know a priori the probability distribution of the 
experiment, of which the outcome is known. In the above problem, it is natural. Peter is 
playing with three dice. Of course, it is assumed that the dice are not loaded, so that for 
each dice, the probabilities of the six possible outcomes are, before Peter has thrown the 
dice, equal. But, the initial distribution is often not given in problems where it is neverthe-
less not obvious. This is the first example that Bertrand gives after having introduced the 
theoretical resolution of the problem of the probability of causes:

An urn contains μ balls: some are white, others black, but one does not know in what 
proportion. k balls are drawn, each time replacing the drawn ball into the urn. Only white 
balls are drawn. What is the probability that the urn only contains white balls? (Bertrand, 
1888, p. 146).

Bertrand starts by noting that “the question is ill-posed” and that “further, one ought to 
say what is the a priori probability” of each hypothesis about the composition of the urn. 
The experiment that determined the composition of the urn must be described. It is this 
precise description that allows us to know the probability a priori:

If all the possible combinations having been prepared in urns of identical appearance, 
chance decided among them, the conditions are different than if one drew randomly balls 
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from an urn of agreed composition, in order to constitute, with the drawn balls, the new 
urn that we are talking about (Bertrand, 1888, p. 146).

Bertrand carries out the calculation in different cases where the a priori probability is 
determined in this way; then his tone becomes more controversial:

Without reason, one has put questions into the same category as the preceding problem 
that are in fact very different.

When the observations contradict predictions, the probability of which seemed great, 
naturally, the influence of a disruptive cause is assumed and one is led to seek the prob-
ability of its existence.

The question is insoluble. On the one hand, one does not have the necessary data. 
On the other hand, the dilemma, either there exists a cause or there does not exist a 
cause, does not have the clearness promised by the form of the statement (Bertrand, 
1888, p. 156).

He gives several examples: the probability that a coin toss favors heads or tails accord-
ing to the outcomes given by a large number of throws, reason for the gap between 
the numbers of girls and boys born in one region compared to another etc. In all 
these examples, one can see that the main problem is that of the a priori probability 
definition. The latter can no longer be defined by a sufficient description of experi-
ment, because of the nature of the problems considered. One could say how the urn 
of unknown composition had been chosen among a set of urns, or filled with balls by 
drawing lots. But, to determine the a priori probability that a coin toss favors heads 
or tails, one would have to enumerate the factors that can create a disequilibrium 
of the coin, their contribution to this disequilibrium and their probability of occur-
rence…. Most of the problems that Bertrand mentions to fight the improper use of 
probability calculus are problems of probability of causes: the causes do not come 
from experiments of probability. The result is that one cannot precisely describe an 
experiment that would have given rise to them. Therefore, the data remain insufficient 
in Bertrand’s eyes.

Thus, in Bertrand’s book a link can be made between the rejection of the choice among 
an infinite number of possible cases, which is not a sufficient indication, and his vigorous 
assault against a great number of improper uses of probability calculus, with the aim of 
giving back to the latter its possibly lost legitimacy.

This link may be interpreted at least in two ways. An objective conception of prob-
abilities may constitute the common origin of these two attitudes: the probability of the 
events must be determined by the conditions of the experiment. When this is not the 
case, the data are insufficient and the use of probability calculus is not founded. But, it 
might also be suggested: it is Bertrand’s contentious intention to reject improper uses 
of probabilities that leads him to insist so firmly on the objectivity of probabilities. So, 
from the very beginning of his book, Bertrand adopts a radical attitude, to the point of 
putting himself in a predicament at the time of the treatment of the classical— and non- 
debated— problem of the needle of Buffon.
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Whatever the profound reason of this offensive attitude may be, it led him to cast 
doubt on the legitimacy of the use of probability theory from the moment it did not 
concern game theory. This concerns justice,45 but also physics and astronomy:

Applied to dice, cards, to the game of red and black, to odd and even numbers, to heads 
and tails, the theory of chance is indisputable: nothing alters the rigor of the proofs; 
Algebra carries out more rapidly the counting which, with time and patience, could be 
carried on the fingers of one’s hands […]

Physics, astronomy, social phenomena, seem to be, in many cases, governed by chance. 
Can one compare rainy and sunny weather, the appearance and absence of shooting stars, 
health and illness, life and death, crime and innocence with white and black balls drawn 
from a same urn? The same disorder appears in the details, does it conceal the same 
uniformity regarding the means? Will one find in the differences the known traits and the 
physiognomy of the effects of chance?

[…] Reasoning cannot anticipate experiment; carefully discussed observations con-
demn at the same time the rebellious skeptics of any reconciliation and the exclusive minds 
that want everything to be subject to calculation (Bertrand, 1888, p. xxiii).

Earlier in the same preface (pp. xviii– xix) Bertrand had already mentioned the use 
of probabilities in celestial mechanics to point out its misuse. He had first explained 
the “too bold use” that “an astronomer whose name remained obscure without 
injustice, the Archbishop Mitchell” had made of an correct and ingenious idea: the 
latter had considered the distribution of the 3,000 known stars across the vault of 
the heavens. He had shown, among other things: one could bet 500,000 to 1 that a 
cause, apart from chance, had brought the six stars of the Pleiades closer. Bertrand 
does not definitely condemn this type of calculation, but he remains extremely 
careful and judges:

In proposing the precise measurement of such vague assertions, Science can be jeopard-
ized. […] An assessment without figures is not binding, a number commits science, and 
this is with no right. The application of calculation to questions of this type is an illusion 
and an abuse (Bertrand, 1888, p. xviii).

The problem is developed in the body of the text (pp. 169– 71), and its analysis ends 
with the same mistrust toward the application of probability to causes in celestial 
mechanics.

The only application of probabilities that Bertrand admits in astronomy concerns the 
theory of errors, uncertainty calculations, errors of observation. Celestial mechanics, 
from a theoretical point of view, is presented by Bernard as a field in which probability 
calculus has no reason of being used.

45 The last chapter of his book is a “critical summary of the attempts made to apply probability theory to 
judicial decisions,” where he shows the flaws of Condorcet’s theory.
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6.6.3  Use of probabilities in celestial mechanics: 
the probability distribution presented as a 
convention by Poincaré

In counterpoint to this rejection of “random” choices among an infinite number of possi-
ble cases, which concerns in particular continuous probabilities, in Bertrand’s entire book, 
Poincaré devotes two chapters of his course to the latter.46 In it, he exposes Bertrand’s 
paradox, explains why one obtains different results for the same problem and shows how 
to avoid this difficulty.

The way Poincaré solves these paradoxes is rooted in a conception of probability 
calculus different from that of Bertrand. Indeed, Poincaré distinguishes two stages in 
the resolution of any probability problem. A first stage consisting in the determination 
of the cases considered equally probable, that is, setting the probability distribution; this 
is the choice of a “convention,” and this stage is not in Poincaré’s view, a mathematical 
stage. However, once this convention has been fixed, there remains only calculation. 
So, whereas Bertrand included, in probability calculus, the evaluation of the probability 
distribution determined by the conducted experiment, Poincaré places this stage of the 
problem resolution outside the scope of mathematics.

In his book, Poincaré deals very little with the part of the study that consists in fixing the 
probability distribution, if not precisely to explain the “paradoxes” given by Bertrand: they 
are only due to the fact that the various calculations are based on different probability 
distributions. In other words, it is not the calculation that causes the paradox, but the 
incompatibility of the conventions used in two different evaluations of the probability.

This evolution in the conception of probabilities coincides with a reassessment of 
the possible links between probability calculus and celestial mechanics in relation to 
Bertrand’s position.

The latter challenged the legitimacy of applying probability calculus to physics or 
astronomy. Poincaré, on the contrary, gives in his course several examples of problems 
taken from celestial mechanics.

Twice, he takes the example of stars placed randomly on the celestial sphere— that 
Bertrand studied, we have seen, only to criticize the legitimacy of the calculation suggested 
by Mitchell. In the chapter where Poincaré presents several applications of continu-
ous probabilities, he calculates the average distance between two stars assuming N stars 
randomly arranged on the celestial sphere. In the preceding examples, he had already 
considered figures randomly placed on a sphere and he had chosen the probability dis-
tribution to be proportional to the surface measurement of the sphere. He continues to 
work using this convention. For him, it is only a calculation problem, and the link with 
the effective arrangement of the astronomical bodies in the sky is not considered. He then 
looks at the way a great number of planets are spread across the zodiac after a relatively 
long lapse of time, whatever their initial positions were: we shall come back to this point.

46 It is, in the second edition (1912), chapter VII, entitled “Continuous probabilities” and the chapter 
“Various applications;” these two chapters form, in the first edition, the second part of the eighth lesson, the 
ninth, and the tenth lessons.
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He also proposes a problem of probability of causes regarding astronomical bodies: the 
divergence from Bertrand’s attitude is particularly clear here. The problem is stated as 
follows: “Let N represent the total number of small planets; a certain number M of them 
are known. During one year, n planets are observed of which m are known. One asks for 
the probable value of N.” Poincaré makes an additional hypothesis in order to be able to 
apply probability calculus: “we assume the probability known that, during the observation 
year, an existing planet was observed; let p be this probability: we admit that it is the same 
for known and unknown planets.” He then considers the case where the probability p is 
assumed unknown and where we give ourselves a probability distribution satisfied by the 
value of p. Here too, it is quite clear that Poincaré is not concerned by the relation between 
the calculations he does and the true number of small planets. The calculations have no 
pretense of saying something about them; they are the result of the initial hypothesis.

Thus, Poincaré’s approach allows him to apply probability calculus to objects that 
belong to celestial mechanics, without Bertrand’s criticisms being relevant here. No 
more than in Bertrand’s book, is Poincaré’s physical world governed by probability laws. 
Poincaré introduces problems whose objects come from celestial mechanics. Whereas 
Bertrand denounced the improper use of probability calculus to avoid its devaluation, 
Poincaré presents this theory as a mathematical tool that may prove useful in various fields.

The 1894 course treats several problems coming from celestial mechanics, contrary 
to the position taken by Bertrand. One is tempted to ask whether this is not a clear sign 
of the use that Poincaré made of probabilities in his research in celestial mechanics, more 
particularly for the formulation of the corollary of the recurrence theorem.

One of the examples, given by Poincaré in the chapter concerning the applications of 
continuous probabilities, reinforces this hypothesis in a striking way. Poincaré shows that, 
for a differential Hamiltonian system, if a probability distribution on the initial conditions 
of the system is given and if this distribution is proportional to the volume, this distribution 
will be the same for the final values when one makes the system evolve during a given 
time. This is a variant of the invariance property of the volume for Hamiltonian systems. 
Poincaré had announced this last property in his work on celestial mechanics. Even more, 
this is precisely the property that allows us to apply the recurrence theorem. Therefore, 
we see that Poincaré relates probability calculus and celestial mechanics, and that he 
reinterprets the results obtained in the second field of research by using the terminology 
of probability calculus.

Further, we have observed that Poincaré already makes use, in 1890, of the conception 
of probabilities that allows him to solve Bertrand’s paradoxes. Indeed, in [Pb], he carefully 
clarifies from the beginning the convention that he adopts to evaluate the probabilities 
involved. He uses the same terminology: “let us adopt the convention that the probability 
[…]” [Pb, p. 316] (italics added). Thus, his reflection on probabilities seems to show 
indeed, from 1890, the superiority that we have just mentioned in comparison with 
Bertrand’s book.

In this, it differs from Gyldén. We have seen that the latter also uses probability calculus, 
with a view to celestial mechanics. But he does not set the probability distribution on 
the segment [0; 1] in which he chooses “randomly” a number μ. He first considers the 
continued fraction representing μ, then reasons on the numbers that appear during the 
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calculation of this continued fraction, and supposes that a quantity formed as a function 
of these coefficients follows a uniform distribution. But, this distribution corresponds to a 
non- uniform distribution on the initial number. This is the problem that was highlighted 
by Bertrand’s first example: the square of a number seems naturally to have a probability 
3
4

 of being between 2,500 and 10,000, whereas a number only has a probability 
1
2

 to be 

between 50 and 100. But, Gyldén does not show cautiousness in this regard.
On the contrary, when Poincaré uses probability theory in 1890, he first defines the 

adopted probability distribution. By this, he shows, vis- à- vis Bertrand’s paradoxes, a rigor 
that announces that of his 1894 course and reveals itself in the same way. So if the 1890 
work might have been inspired by Gyldén, it shows nevertheless Poincaré’s personal 
reflection.

Moreover, I shall soon come back to the clarification added by Poincaré in 1891: the 
probability that a trajectory is non- recurring is equal to zero, whatever the chosen prob-
ability distribution. We shall see that Poincaré presents this addition as being the answer 
to an “objection.” I shall show that one can recognize here an allusion to Bertrand’s 
paradoxes, and the origin of an important theoretical development: the method of arbi-
trary functions.

The significance of probability calculus for physics is indicated even more clearly 
by Poincaré in the second edition of his course, in 1912. He then adds the introduc-
tion, which is based on an article published in 1907, and the last chapter. In the latter, 
Poincaré develops the analysis of the problems he presented in the introduction: the 
shuffling of cards, the distribution of the digits in a numerical table and the mixing 
of liquids. Therefore, Poincaré broadens the scope of his book at the time Borel— and 
some other young scientists— becomes the promoter of the use of probability theory in 
kinetic theories.

And yet, well before 1907, signs of Poincaré’s orientation toward the use of probabilities 
in physics can be seen. I have shown the considerable difference, on this point, between 
Bertrand’s book and the first edition of Poincaré’s course on probabilities, in 1896, prob-
ably in accordance with the course given in 1894. The latter can further be placed in the 
continuity of the 1890 work on exceptional trajectories.

Poincaré’s reflection continues in his first philosophical article on probabilities, pub-
lished in 1899. In this text, Poincaré gives two examples of problems in which the initial 
state of the system is not known, and where one seeks nevertheless to say something about 
the present state: the problem of the small planets and that of the kinetic theory of gases. 
He concludes: “Only, probability theory allows one to predict the average phenomena that 
will be the result of the combination of these speeds.” The irreplaceable role of probability 
calculus is thus already clearly stated in 1899.

On this point an evolution can be seen between the 1894 course and the 1899 article. 
In the first edition of his course, Poincaré mainly insisted on the convention that was a 
prelude to any probability calculation in these fields. He writes the following: “We know, 
for example, the distribution of the motion of molecules; if we knew exactly their initial 
position, we would be able to say where they will be at a given time; the probability 
that these molecules occupy such- and- such a final position depends therefore on the 
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probability that we will give by convention to such- and- such an initial position. In each 
case, a particular hypothesis will be necessary.”47 One cannot fail to see the difference 
between this passage, in which Poincaré simply admits the usefulness of probability 
calculus, and the already mentioned conclusion of the 1899 article, in which probability 
calculus is presented as the “only” tool giving predictions.

Hence, the study of the use of probabilities to formulate the corollary of the recurrence 
theorem sheds new light on the first developments of Poincaré’s reflection in this field. But, 
this is only a first work, focused on the early 1890s. It would be interesting to continue, 
by studying in particular Poincaré’s writings on the kinetic theory of gases, starting from 
the mid- 1890s. One could then better evaluate the respective importance of celestial 
mechanics, the kinetic theory of gases and Borel’s reflections in the development of the 
conception of probability calculus and its role for Poincaré.

6.6.4  Poincaré’s method of arbitrary functions

A second point can be mentioned: Poincaré’s book constitutes, in relation to his work on 
the three- body problem, an important improvement in comparison with Bertrand’s book. 
Indeed, Poincaré introduces a new method, the method of arbitrary functions, by which 
the arbitrariness of the choice by “convention” of the probability distribution is removed.48

This method was already used by von Kries in 1886 (Von Kries, 1886)49 to show 
the equiprobability of red and black in a simplified roulette game. He asserts that for 
any regular enough probability distribution on all mechanical states of the system, the 
total probability of the color red and that of the color black will be approximately equal. 
However, he does not give the sufficient mathematical conditions to achieve this result. 
The same idea appears from 1891 in Poincaré’s work on the three- body problem: what-
ever the— sufficiently regular— probability distribution adopted by convention on the 
space of initial conditions, the probability that a trajectory is nonrecurring is equal to 
zero. The arbitrariness that is present in the initial choice of the convention disappears 
during the calculation and the result no longer depends on it.

It is difficult to know with certainty if Poincaré knew of von Kries’ work or not. The 
absence of his book in the Parisian libraries (and even the French libraries, except for 
Strasbourg) suggests that Poincaré apparently never had this book in his hands. Further, 
von Kries is a physiologist, and thus, belongs to a different milieu than that of Poincaré.

In fact, the clarification given by the 1891 summaries appears to be more an answer 
to Bertrand’s paradoxes than a way of conceiving probability calculus in the manner of 

47 This passage is found, identical, in the first lesson of the 1896 edition and in the first chapter of the 1912 
edition, p. 31.

48 Von Plato (1983) proposes a more complete presentation of the history of the method of arbitrary func-
tions, in particular the developments made by several mathematicians after Poincaré: Fréchet, Hostinsky, etc. 
The bibliography given by von Plato can be completed by Fréchet (1921, 1938). Bru (2003) also gives inter-
esting historical information on the history of probabilities in the first half of the twentieth century, with a 
section on Poincaré’s research.

49 A discussion of von Kries’ probability theory can be found in Kamlah (1983). More recently, the preprint 
of Shafer and Vovk (2004, pp. 13– 14) briefly presents von Kries’ book (1886).
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von Kries’ developments. The formulation of Poincaré (1891b) is too brief to be able to 
draw conclusions, but that of Poincaré (1891a) may give us an interesting clue. Indeed, 
Poincaré writes: “One will object that there is an infinity of ways of defining this probabil-
ity; but this remains true whatever the adopted definition […].” Therefore, Poincaré asserts 
he gives an answer to the objection saying there is no unique way to define probability 
in a continuous space. One recognizes here the difficulty raised by Bertrand concerning 
problems where one chooses “at random” among an infinite number of possibilities, in 
other words, problems in which one claims to calculate a probability when the set of 
possible causes is infinite. In 1890, was Poincaré aware of this weakness of his corollary 
expressed in probabilistic terms, without knowing in those days how to solve it? Or did he 
only realize it after the marathon of the correction of the memoir? Did he indirectly hear 
of von Kries’ work, which might have inspired this addition? In any case, the clarification 
is presented as an answer to the problem that the paradoxes of Bertrand gave rise to. In 
other words, Poincaré’s reflection on probability calculus— stimulated by the use of it 
induced by the discovery of the error in his 1889 memoir— is certainly based, as early as 
1890– 1, on a study of these paradoxes.

This reflection, which first appears in relation to the corollary of the recurrence theo-
rem, leads Poincaré to point out, in his book on probability theory, a class of particular 
events. This concerns events, the probability of which does not depend on the chosen 
probability distribution. After having given many examples to show how the distribution 
transforms itself in the case of a change of variable, Poincaré concludes by reminding the 
reader of the importance of the initial choice of this distribution. He then insists on the 
existence of problems that do not depend on it. Therefore, in his book on probabilities, he 
develops the remark that he had made as early as 1891, according to which the exceptional 
character of non- recurring trajectories does not depend on the probability distribution.

From the preceding, it follows that great care must be given to the definition of the choice of 
the adopted probability distribution.

The probability that x is between x0 and x1 is expressed by an integral

j( )x dx
x

x
;

0

1∫

j(x) will be a function about which hypotheses will have to be made in order to know 
the probability distribution, but, in general, we will have to consider j(x) as being 
continuous.

In general, the probability that x satisfies a given condition will depend on the choice of 
j ; however, this is not always the case, and some problems are independent of the probability 
distribution.

Example— The probability that x is incommensurable will always be equal to 1, what-
ever the chosen continuous function j , and the probability that x is commensurable will 
always be infinitely small.50

50 Poincaré (1896, lesson noX; pp.  147– 8 in the 1912 edition). One can recognize in the last remark, 
although in a very embryonic form, a precursory sign of the sets of measure zero that will be studied by Borel 
and Lebesgue.
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Following the example of rational and irrational numbers, Poincaré presents two other 
examples of such events. First the problem that had been studied by von Kries: “Let a 
wheel be divided into a great number of equal parts, alternately red and black; set it in 
a rapid rotating motion. When it stops, one of the divisions will be facing a fixed point 
of reference: what is the probability that this division is red or black?” (Poincaré, 1896, 
p. 148) Poincaré’s analysis is mathematically more precise than that of van Kries. Poincaré 
shows that the probability approaches ½ for each color when the number of divisions 
increases indefinitely, under the hypothesis that the probability density has a bounded 
derivative. The second problem is inspired by celestial mechanics: “Let us consider a great 
number of planets, the orbits of which are approximately circular. […] I say that after a 
very long time the planets will be equally distributed in all the signs of the zodiac. The 
probability that l [the longitude] is between given limits will therefore be independent 
of j [the probability density]” (Poincaré, 1896, pp. 150– 1). So, in Poincaré’s book, the 
method of arbitrary functions is related to celestial mechanics and may help to justify the 
use of probabilities in it, contrary to the attitude adopted by Bertrand. The reasoning that 
I have just mentioned allows one to legitimize the adoption of the uniform distribution 
on the arrangement of these planets: whatever the initial distribution, after a sufficiently 
long time, the planets will be situated according to a uniform distribution.

6.7  Conclusion

In 1890, Poincaré introduces a statement of a new type, thanks to which he formulates 
mathematically the remark that he had previously made in vague terms: “the trajectories 
that have this property [of stability, AR] are more general than those that do not.” The 
discovery of an error, which calls into question part of the results that seemed certain in 
1889, motivates the search for mathematical foundations to this statement whose impor-
tance becomes crucial. Thus, this construction is not wanted for itself, but meets a need.

The mathematical problem at stake is quite singular. The recurring trajectories— and 
those that are not— cannot be designated, Poincaré only proves their existence. In order 
to show that the non- recurring trajectories are exceptional, he must use a suitable tool.

To answer this question, Poincaré turns toward probability calculus. Reading may 
have given him the idea of this resource, in particular the texts of Bertrand and Gyldén. 
But, this is not an instrument ready to meet Poincaré’s needs. He adapts it to his subject 
and develops it according to his requirements. While Gyldén worked on a numerical 
problem by calculating averages, Poincaré bases himself on the volume estimates which 
are central to his proof of the recurrence theorem and reinterprets the volume as measur-
ing the probability. He adopts the rigor requirement that made Bertrand highlight his 
paradoxes, but he works to solve them and to prove beyond doubt the relevance of his 
use of probabilities.

In this way, the correction work of his first memoir is accompanied by a reflection on the 
probability concepts, introduced on this occasion. Poincaré develops at this time a personal 
approach to probabilities that can be found in his lectures at the Sorbonne a few years later. 
In particular, the study of recurring trajectories is behind the method of arbitrary functions.
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Generality and structures 
in functional analysis: the influence 
of Stefan Banach

FRÉDÉRIC JAËCK

7.1  Introduction and setting the problem

The Polish mathematician Stefan Banach is mostly known, often far beyond the strict 
mathematical community, through his recognized book on linear operations (Banach, 
1932), as well as through the spaces named after him. The latter, now called Banach spaces 
or, in modern terms, complete normed vector spaces (on ℝ or ℂ), constitute a fundamental 
and omnipresent object in the mathematics of the second half of the twentieth century.

In our paper, centered on the concept of generality, we propose initiating a systematic 
study of Banach’s work. Starting with his doctoral thesis, we shall analyze Banach’s specific 
appropriation of earlier works and the line of thought he derives from his own reading.

His doctoral dissertation was presented at Lwów University (in Poland at that time), 
under Professor Lomnici’s supervision, and was published in one of the very first issues 
of Fundamenta Mathematicae1 two years later (Banach, 1922).

The article, written in French, bore a title that indicated its goal in Banach’s view: On 
operations on abstract spaces and their application to integral equations (Sur les opérations dans 
les ensembles abstraits et leur application aux équations intégrales). Historians of mathematics 
often refer to this publication as the first occurrence of the Banach space structure in 
mathematics. We shall question this assertion, one of our main tools being to distinguish 
different types of generality in distinct publications by Banach.

1 The journal was founded in 1920 by Zygmunt Janiszewski, Stefan Mazurkiewicz, and Wacław Sierpiński 
and is freely accessible at the Polish Virtual Library of Science: http:// matwbn.icm.edu.pl/ .
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The birth of Banach spaces can be placed within the general historic context of the 
emergence of structures in analysis. It constitutes a major and characteristic part of an evo-
lution that can be traced across several domains in mathematics at the turn of the century.2

Focusing on Banach’s doctoral thesis, we shall see that at this stage his ideas are 
motivated by three major objectives:

a) The intention, announced in the introduction of Banach’s article, to deal with some 
collections of functions of various natures from a unique and undifferentiated point 
of view.

b) The project, expressed in the title of the article, to deal with operations defined on 
abstract spaces.

c) The motivation to obtain some new results for integral equations problems, this 
goal first appearing, once again, in the title of the paper.

Those three goals will be shown to be essential elements, and will constitute in a sense 
what determines the geometry of Banach’s text. They will embody the different forms of 
generality that Banach’s 1922 article generates.

Our study will be divided into two main parts. The first one analyzes in detail the two 
stages in the process by which Banach elaborated a new framework for functional analysis 
where structures were bound to play a central role. We shall focus on the work of reinterpre-
tation and appropriation of previously unconnected material, and we shall determine some 
crucial ingredients in the emergence of the new theory. In this part we shall also argue that 
Banach spaces were not actually born in this first paper, although the axioms enunciated 
by Banach match the ones we now use to define those spaces. In fact, we will bring forward 
specific evidence that Banach’s conception of such spaces as a general tool can only be 
definitely acknowledged later, in his 1932 book. A close examination of generality in the 
1922 and 1932 publications will be essential for capturing a major change in this respect.

In a second part, we shall concentrate on what appears to be the core of Banach’s 
1922 paper and on the transformation into a general setting that it represents. The main 
achievements of this work, as well as all the essential features that bear witness to the birth 
of a new theory, are concentrated in the study of linear operations. Our goal is to show 
that we are here in the presence of a general theory developed by Banach in his doctoral 
dissertation: the theory of linear operations constitutes the pinnacle of a development in 
search of a high degree of efficiency and generality.

Banach’s doctoral dissertation will be the first paper in a long series and at this early 
stage it is possible, maybe more than elsewhere, to capture in a mathematical discourse in 
the making and in the subtle interplay between some elements of the text, the emergence 
of various degrees of generality.

We shall use three main sets of sources to show the mechanisms involved into produc-
ing generality in Banach’s 1922 paper:

2 The reader can consult, for example, the following papers to obtain a general overview of the birth of 
modern analysis: Dorier (1996) and Dieudonné (1981).
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1) Some texts written before Banach’s time, by Peano, Pincherle, Fréchet, and others, 
all of whom worked on connected subjects. We shall establish some similarities with 
Banach’s paper and thus highlight his specific and complex work of appropriation 
and selection.

  Comparison among several texts either reveals a precise similarity between two 
forms,3 or shows the mark of a more subtle and manifold process. In particular, 
the mere formal correspondence between parts of two texts is not sufficient to 
give a faithful idea of the nature of the mathematical work, nor is it sufficient to 
discuss the emergence of new concepts. In order to give a precise account of the 
multiply- flavored expression of generality that arises in Banach’s work it is crucial to 
explore the deep links and evolving interactions among several parts of the various 
texts, especially between definition- like material and the proofs of theorems. Our 
analysis will trace these interactions through the texts and will determine the type 
of generality that emerges in some specific situations.

  When this is the case, we shall bring forward the nature of the evolution,  
and elaborate on a distinction between various types in the expression of 
generality.

2) We shall also refer to Banach’s 1932 book on linear operations.4 It exposes a very 
polished and mature theory, the form of which is currently still completely accept-
able. The reference to this book, although it was written some 12 years after Banach’s 
doctoral dissertation will be essential in our discussion about the precise positioning 
of the birth of Banach spaces in a long historical process.

3) Finally, Banach’s doctoral dissertation will constitute the central text of this study 
and a starting point for a new approach to his work and his wide influence.

7.2  Banach spaces

The notion of a space of functions is the result of a diverse movement the main aspects 
of which can be expressed in terms of generality. And Banach’s work is from this point of 
view very specific, since it brings together many essential ideas and developments which 
shape an abstract and general conception in functional analysis.5

3 In other words, some passages in two separate texts might be superposable, although their roles in the two 
contexts significantly differ.

4 Banach (1932).
5 The expression “functional analysis” deserves some comments here, since it was not quite a defined field 

at the time of Banach’s dissertation publication. We use it here to refer to the branch of analysis that deals with 
sets of functions (as opposed to the study of such or such given function individually). The emergence of 
several domains stamped “analysis” at the turn of the century is deeply connected with the influential use of 
structures in the study of functional problems. This essential aspect is beyond the scope of the present paper, 
and a specific analysis will be presented somewhere else.
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Banach’s doctoral dissertation opens with a passage about methodology, in which 
generality appears as a central value in the chosen approach:6

The present work will establish some theorems that are valid for several fields7 of functions 
which I shall specify later on. But, in order not to have to prove them separately for each 
particular field, which would be tedious, I have chosen another way round: I first consider 
in a general way the sets of elements for which I postulate some properties. Then I deduce 
some theorems and I show that the postulates I had adopted were eventually true for each 
particular field of functions.

And this methodological introduction is immediately followed by a list of function sets 
(champs fonctionnels):8

For the sake of simplicity, I have introduced the following notations for a few function 
fields:

The set of all continuous functions ( )C
The set of all summable functions (Lebesgue integrable) ( )S
The set of all rth power integrable functions (L) ( )Sr

The set of all bounded measurable functions ( )M
The set of all bounded Duhamel9 functions ( )D

The set of all functions such that the (p − 1)- derivative is absolutely continuous and 
the p- derivative is

continuous ( )C Cp

integrable (L) ( )C Sp

rth power integrable (L) ( )C Sp r

bounded ( )C Mp

Duhamel ( )C Dp

Starting with this context, the first step taken by Banach consists in a process of 
abstraction involving two dimensions. On the one hand, Banach identifies and extracts 
some common characteristics from these collections of functions as well as from some 
already known situations (he refers to several mathematicians at the beginning of his 
work). On the other hand the selected material is reshaped with the intention of being 

6 Banach (1922: 134).
7 Here the word “field” refers to collections of functions without reference to any algebraic structure. It is 

used by Banach in his dissertation in the same way as the word “set” (see next quote in our text). We shall 
discuss this in more detail later on.

8 Banach (1922: 134).
9 Duhamel functions are Lebesgue integrable functions f  such that lim

h x

x h

h
f t dt f x

→

+

∫ ( ) = ( )
0

1 .
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efficient: it is meant to enable the mathematician to present in a unified and synthetic 
way some ideas that pertain to what he considers to be a coherent domain. In particular, 
the proofs of the main results will be organized in a specific way and will stress the role 
of some general tools that were identified and isolated.

7.2.1  Vector spaces

Banach’s doctoral dissertation’s first chapter opens with a list of axioms which he will 
add to throughout his paper.

The first sub- list defines what we now call a vector space. Yet, Banach himself does not 
mention the word “vector space” at any stage in the paper. In fact, the vocabulary he uses 
fluctuates throughout the article. Banach will in turn use the words “class” (classe), then 
“system” (système), or “field” (champ) to denote the collection of elements he deals with. It 
is not until his 1932 book that one can see a final choice of terminology for differentiating 
situations involving more or less structure.

For the reader’s convenience, we shall nevertheless refer to these axioms using the 
expression “vector space axioms.”

These axioms are introduced at the beginning of the first section in the following 
form:10

§1 Axioms and fundamental definitions. Let E be a class containing at least two elements, 
any arbitrary elements, which we will designate for example by X, Y, Z, …

Given any three real numbers a, b, c, we define for E the two following operations:

1) the addition of the elements in E 
X Y Y Z+ + …, ,

2) the multiplication of the elements in E by a real number 
aX bY, , ...

Let us admit that the following properties are fulfilled:
I1. X Y+  is a well- defined element of the class E,
I2. X Y Y X+ = + ,
I3. X Y Z X Y Z+ + = + +( ) ( ) ,
I4. X Y X Z+ = +  implies Y Z= ,
I5. There exists a specific element θ in the class E such that we always have X X+ =θ  ,
I6. a X·  is a well- defined element of the class E,
I7. a X· = θ  is equivalent to X = θ  or a = 0,
I8. a ≠ 0  and a X a Y· ·=  implies X Y= ,
I9. X ≠ θ  and a X b X· ·=  implies a b= ,
I10. a X Y a X a Y· ( ) · ·+ = + ,

10 Banach (1922: 134– 5).
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I11. (a + b) · X = a · X + b · X,

I12. 1·X X= ,

I13. a b X a b X· ( · ) ( · ) ·= .

Along with this, we introduce the following definitions:

(a) − = −X X( )1 · ,

(b) X Y X Y− = + −( ) .1 ·

Although he lists these axioms, in his 1922 paper Banach does not consider the algebraic 
structure for itself. These statements are only properties shared by the collections of func-
tions he considered in the introduction. In this respect, we shall see that the 1932 book 
differs considerably from this earlier paper. Here, these axioms are followed immediately 
by a short comment and a few examples. Then Banach goes on introducing a norm, and 
definitively settles his study in the new context:11

II.   There exists an operation called norm (it will be denoted by X ), defined on the field E, 
with counter- domain the set of real numbers, and satisfying the following conditions:

II1. X ≥ 0,

II2. X = 0 is equivalent to X =θ ,

II3. a X a X· ·= ,

II4. X Y X Y+ ≤ + ,

III. If 1°) Xn{ } is a sequence of elements in E, 2°) lim
r
p

r pX X
→∞
→∞

− = 0,

then there exists an element X such that:

lim .
n nX X

→∞
− = 0

Of course, it is possible to find some definitions that are very close to parts of these 
axioms in earlier texts, and one can read for example Jean- Luc Dorier’s paper “A general 
outline of the genesis of vector space theory”12 to get a view of the evolution of related 
ideas over a long period.

Giuseppe Peano’s book, entitled Geometric calculus (Calcolo geometrico13), published 
in 1888, contains what is usually accepted as the first occurrence of a list of axioms 
defining what we now call a vector space.

At the end of this book, which deals with some specific geometrical situations involving 
vectors in the plane or in three- dimensional space, one can find the following axioms, 
which define what Peano calls a “linear system” (sistema lineare):14

11 Banach (1922: 135– 6).
12 Dorier (1995).
13 Peano (1888).
14 Peano (1888: 141– 2).
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72. There exist systems of entities for which the following definitions hold:

1. The equality of two elements a and b of the system is defined, that is, there is a 
proposition, noted a b= , which expresses a condition that some but not all pairs 
of elements in the system may satisfy, and which satisfies the following logical 
equations:

a b b a a b b c a c=( ) = =( ) = ∩ = < =( ) ( ) ( ).

2. The sum of two entities a and b is defined, that is, there is an entity noted a b+ , 
which belongs to the given system, and that satisfies the conditions:

( ) ( ), , ( ) ( ) ,a b a c b c a b b a a b c a b c= < + = + + = + + + = + +

 and the common value of the two sides of the last equality will be denoted by 
a b c+ + .

3. Given an entity a of the system, and a positive integer m, with ma we shall designate 
the sum of m entities all equal to a. It is easy to see that, given entities a b, ,… of the 
system, as well as positive integers m, n, … , we have:

( ) ( ); ( )a b ma mb m a b ma mb= < = + = +

( ) ; ( ) ( ) ; .m n a ma na m na mn a a a+ = + = =1

 We shall suppose that the expression ma is given a signification for any real number 
m, in such a way that the preceding equalities remain valid. The entity ma will be 
called product of the real number m by the entity a.

4. Finally we will suppose that there exists an entity in the system, which we will call 
the null entity, noted 0, such that, for each entity a, the product of the number 0 
with the entity a always gives the entity 0:

0 0a = .

If we give to the expression a b−  the signification a b+ −( )1 , then we can deduce:

a a a a− = + =0 0, .

DEF.  The systems of entities for which the definitions 1, 2, 3, 4 as well as the conditions 
imposed therein hold will be called linear systems.

This passage is followed by some examples, mainly geometrical ones, in dimension 
1, 2, or 3, that have been developed and studied earlier in the book and that are cited 
here as special cases. Hence this early work by Peano indisputably develops a unifying 



230 Generality and structures in functional analysis: the influence of Stefan Banach

230

point of view, encapsulating several known situations under the same definition. The 
introduction of this viewpoint constitutes one of the essential aspects of a kind of 
generality, which takes a specific form here. The axiomatic formulation, exposed at 
the end of Peano’s book, was derived from a single and coherent view of a diversity 
of situations.

It is also remarkable that Peano already thought of the infinite dimensional case:15 
“A system may have infinitely many dimensions.”

Yet no examples are given of infinite- dimensional spaces, and ideas of such situ-
ations might have been somewhat uncertain at that time. Anyway, this shows that 
the type of generality developed here is open: it goes beyond the strict unification of 
known cases, and presents itself as an open vision that wishes to point at some new 
and unknown situations, or even at some barely thinkable cases. We shall see a bit later 
how Banach himself uses a specific strategy to develop an efficient general point of 
view. Both approaches share some common ingredients: a unified formulation and a 
kind of openness that potentially covers unknown situations, while encompassing the 
usual ones.

Besides these first attributes characterizing the emergence of a kind of generality, 
Peano’s text bears witness to the development of a reflexive point of view. The presence 
of reflexivity in a text constitutes, in our view, a necessary ingredient for acknowledging 
the emergence of a new concept or a new theory. Returning to Peano’s book we notice 
that, just after his axioms, he develops a list of properties and starts a study of the newly 
defined linear systems (independence, dimension, etc.): this is an illustration of the reflexive 
activity that consists in exploring the new conceptual situation for itself. Highlighting the 
emergence of a similar reflexivity in Banach’ publications will constitute a key point in 
our argumentation and this criterion will make it possible to establish a clear distinction 
among several situations.

Some 13 years later, in 1901, Pincherle and Amaldi16 wrote a book of a similar flavor 
to what we analyzed in Peano’s work, titled The distributive operations and their applications 
to analysis (Le operazioni distributive e le loro applicazioni all’analisi17), which opens with 
a first chapter titled “The general n- dimensional linear set.” In fact, and regardless of 
the restriction contained in the title of the chapter, the authors first define linear spaces 
without any reference to dimension:18

2.  We will admit first that, given two elements α and β in S one can say whether they are 
linked by a relation, called equality,19 characterized by the following properties:
  I. If α is equal to β, then β is also equal to α.
II. If α is equal to β, and β is equal to γ , then α is equal to γ .

In order to express that α equals β, one shall write α β=  ...

15 Peano (1888: 143).
16 Much of the content of the book had been previously published by Pincherle alone; nevertheless this book 

has two authors.
17 Amaldi and Pincherle (1901).
18 Amaldi and Pincherle (1901: 1– 2).
19 Words are italicized in Pincherle and Amaldi’s original text.
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3.  Now we shall also admit that, given any two elements α and β in  , one can always 
determine a third element which will be denoted by α β+ .
The operation sending α1 and β to the third element is characterized by the following 

equalities:
  I. α β β α+ = + ,
II. ( ) ( )α β γ α β γ+ + = + + ,

Where α β γ+ +( ), ( )α β γ+ +  represent the elements deduced from α  and β γ+ , or from 
α β+  and γ  respectively, as α β+  is deduced from α and β.

The equal elements α β γ+ +( ) and ( )α β γ+ +  will be denoted by α β γ+ +  without 
further notice. The operation defined in this way will be called addition and α β+  the sum 
of α and β.

The equalities I and II will be called laws or properties of the addition; the former will 
be called the commutative law and the latter the associative law for addition.

In any sum involving any number of elements, one can, in conformity with the laws 
I and II, group any of the elements or permute their order.

4. In the set   we shall suppose the existence of an element ω , which we shall 
call the zero element, or simply zero, which satisfies for any element α the equality 
α ω α+ = .

We shall ultimately designate the element ω with the symbol 0; but it will be important 
to distinguish this element from the zero of the set of all numbers.

Some intermediate notations then follow, making it possible to replace, for any 
integer n, the sum α α+ +  by nα, before outlining some extended distributivity 
properties.20

5. To provide some sort of generalization of the above property, we shall admit 
that, given a number a and any element α, there exists in   an element, noted aα, and 
we shall call it the product of the element α by the number a . The operation through 
which aα is deduced from α  will be called the multiplication of the element α by the 
number a.

This operation is characterized by the following properties. When a  is a positive integer, 
aα will be the sum α α+ +  of a  elements all equal to α; for any given numbers a  and 
b, the preceding properties will remain valid, that is:

  I. a a a( )α β α β+ = + ,
 II. ( )a b a b+ = +α α α,
III. a b ab( ) ( )α α= ,

To which one has to add the following:
IV. 0 0α = .
Finally, Pincherle and Amaldi name the new object “linear space” or “linear set” 

(insieme o spazio lineare):21

A set  that has the properties enunciated in paragraphs 2, 3, 4, and 5 will be called 
a linear set or linear space.

Then some (very few) examples follow:22

20 Amaldi and Pincherle (1901: 3).
21 Amaldi and Pincherle (1901: 4).
22 Amaldi and Pincherle (1901: 4).
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A first example of linear system is given by the set of all (real or complex) numbers ...
Another example will be very instructive for us, since it makes the consideration of 

general linear systems intuitive: ... the set of all vectors in the ordinary space.

Beyond the obvious similarities there are some important differences between Peano’s 
work and the text produced by Amaldi and Pincherle. The fact that what we identified 
as the emergence of a structure first appears in the text at the very end of Peano’s book, 
whereas it opens Pincherle and Amaldi’s text, is not without importance. For Peano, the 
“linear systems” come at the end of an organized list of situations which are ordered in 
a nested progression: geometry of the line first, then the plane, then three- dimensional 
space. Linear systems come naturally as the next step in this list. No context ever becomes 
inappropriate because of the emergence of the next one and, as with a nested set of 
Matryoshka dolls, it is legitimate to choose the appropriate level and the best focus— plane, 
space, etc. for working in specific situations. Generality here is the expression of the fact 
that some results (for example in the plane) can be stated in an extended formal grammar 
(space or linear systems).

Starting from a different point of view, Pincherle and Amaldi begin their book with the 
definition of a linear system, then after a very short list of easy examples, they introduce 
determinants in a continued line of thought and use linear systems as a mere ingredi-
ent in their theory of distributive operations. In contrast to Peano’s view, there is here 
no hierarchy in the situations studied by the authors when considering linear systems. 
Linear spaces do not appear as a concept encompassing a large spectrum of situations. 
They appear in a context that allows them to promote the idea that linear operations are 
a universal tool, adapted to many problems, especially in analysis. In particular, and this 
will be very different from Banach’s strategy, they put forward very few properties of 
their spaces.

In fact, these historical documents show that contrasting and analyzing the strict formal 
contents of a list of axioms indeed sheds some light on the different points of view adopted 
by the authors. However, what we investigated just above shows that this is not enough, 
that the list of axioms and their differences or similarities do not give a complete account 
of the type of generality that arises in those texts.

Nevertheless, contrasting the texts from the perspective of their forms— I shall refer to 
this feature of the mathematical contents as “static,” in contrast to its dynamic features, 
to be introduced below— leads one to notice some specificities of Banach’s approach. For 
example, one can see that:

 1) Banach carefully assumes that there are at least two elements in the classes he deals 
with. This rigorous remark allows him to avoid the trivial space (though Banach 
does not refer to this point here).

On their side, Pincherle and Amaldi use as many elements as their propositions 
require without any comment. It appears to be only a question of style here since 
one can find the same element several times in their propositions. Nevertheless one 
can compare a sentence like “given two elements α and β …” in Banach’s text or 
Pincherle and Amaldi’s text.
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2) Both Banach and Pincherle and Amaldi give some examples in order to illustrate 
their lists of axioms, and there is some overlap here.

For Banach:23

One can think for example of the following systems: the Grassmann forms, 
the quaternions, the complex numbers, etc.

while Pincherle and Amaldi give the more restrictive collection of examples, refer-
ring mainly to real or complex numbers and to vectors “in the ordinary space.”

In comparison, Peano’s text, which was written earlier, does not embrace such a diver-
sity of particular situations, but as we mentioned earlier, it nevertheless refers to the 
infinite- dimensional case.

Hence, we see here that it is possible to track down parts of several texts in earlier 
publications that match Banach’s first list of axioms. Our claim is that this similarity is 
not enough to attribute the paternity of the concept to the author of the first extant text 
in which the axioms occur. The specificity of Banach’s ideas in 1922 is due to two main 
factors. On the one hand, he brings about a shift in the point of view by straightaway 
extending his list of axioms, adding a new collection of propositions of a very different 
nature that define the norm. On the other hand, he uses the newly defined environment 
in his own way.

The emergence of any form of generality, or even the nature of generality cannot be 
accounted for by the mere list of axioms; generality has to be understood here as the 
expression of a shift of point of view that we shall continue to analyze now.

7.2.2  Topological aspects

Of course, we shall use the word “topology” not as an actors’ category, but only as a 
taxonomic device: it will refer to several words in Banach’s text, such as norm, distance, 
convergence, continuity, and related elements.

7.2.2.1  Norm

As we have already mentioned, in a second list of axioms Banach introduces the notion of 
norm. This list is immediately followed by an axiom dealing with completeness (although 
this word is not used by Banach who does not give a name to the property).

The notion of a norm, even when dealing with functions, is not new, and it is possible 
to find the following passage in an article published by F. Riesz in 1916:24

1. Definitions and theorems.  In the following study we shall consider the set of all 
continuous functions on the segment a x b≤ ≤  ...

23 Banach (1922: 135).
24 Riesz (1916: 72).
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We shall call the set under consideration a function space. Moreover, we shall call the norm 
of f x( ), and we shall write as f ,  the maximal value of f x( ) ; hence the quantity f  will 
generally be positive, and will vanish only when f x( ) is identically zero. Moreover, this 
norm satisfies the relations:

cf c f f f f f= + ≤ +| |. and 1 2 1 2

This passage is shaped in a very modern form, very close to the one we would use 
nowadays. Riesz introduces a norm, then defines the continuity of a linear transformation 
on what he calls a “function space” (Funktionalraum).25

In this paper by Riesz, the scope of the definition, that is, the set of elements 
that fall under the definition, is totally determined in advance: the norm applies to 
continuous functions on the compact interval. At that time the set of all continuous 
functions on a closed interval had been studied for its own sake and was usually 
denoted by ( , )a b[ ] .

Despite obvious similarities, Banach’s point of view is very different since he does 
not explicitly list the objects that fall under his definitions: the function spaces cited 
at the beginning of the paper do not directly shape the list of axioms, and the norm 
is not specified, nor given a priori in terms of those function spaces. The vocabulary 
used here by Banach is characteristic: “Let us admit that ...there exists an operation 
called norm.”26

This gives rise to substantial differences between the two approaches. For Riesz, the 
norm is given and uniquely defined in the usual setting of continuous functions. Hence, 
what we call now completeness appears in his text as a useful property and is isolated as 
a tool and not as an axiom:27

The term distance of two functions f1 and f2 will be understood as the norm of their dif-
ference f f f f1 2 2 1 .− = −  It follows that the uniform convergence of a sequence fn{ } to 
the limit function f  is equivalent to the fact that the distance f fn−  converges to zero. 
A necessary and sufficient condition for the uniform convergence of a sequence fn{ } con-
sists in the usual so- called principle of convergence f fm n− → 0  when m → ∞ and n → ∞.

In particular, a sequence { }fn  such that the distances f f m nm n− ≠( ) are non- vanishing, 
that is to say such that the lower bound is strictly positive, will never converge 
uniformly.

As we saw previously, Banach introduces the corresponding property for any “sequence 
of elements” and without any reference to the nature of those elements. Banach even 
insists several times on the general nature of the elements using synonyms for “arbitrary” 
(quelconque, arbitraire in French).

Of course, the reference to Riesz’s work cannot be minimized in the analysis of the 
process leading to the shaping of a general context for the study of functional problems. 

25 Here the functions are defined on a compact interval [ ; ]a b  with the supremum norm.
26 Banach (1922: 135).
27 Riesz (1916: 72).
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The similarities show that at that time there was a need to develop a general point of view 
in analysis.

Moreover, one could argue from a historic point of view that, even if Banach’s axioms 
refer to a vaster field than Riesz’s, the space of uniformly bounded functions on the 
compact set [ ; ]a b  served as an archetype of the complete normed vector spaces, and that 
the notion of norm emerged by generalization from this instance. This is not the case, and 
Banach provides us with evidence that he did not model his introduction of a norm in 
general on that single example. Banach himself comments upon the fact that the context 
of continuous functions cannot be taken as a model:28

The notion of a function of a line29 was introduced by Mr. Volterra. Research on this subject 
has been carried out by Messrs. Fréchet, Hadamard, F. Riesz, Pincherle, Steinhaus, Weyl, 
Lebesgue, and many others. In their earlier works, they supposed that the domains and 
counter- domains were sets of continuous functions with derivatives of higher degree.30 
It was only Hilbert’s work that brought some results that could be easily transferred 
into theorems about operations for which the domain and counter- domain were square 
integrable functions ( )L , even though it was about quadratic forms with infinitely many 
variables, and not about functions of a line.

Hence Banach wished to set his 1922 paper in a very general context, and the choice of 
vocabulary (abstract set, sets of elements) shows his intention to elaborate a framework that 
is not as limited as the one used by his predecessors. Yet, despite those characteristics 
which tend to define a very open structure, where those objects falling under the defini-
tions and axioms are not fully identified, there are some restrictions that appear from the 
beginning of Banach’s paper. In particular, as we have seen earlier, Banach enumerates a 
list of sets of functions for which he wants to establish new results. This situation has to 
be contrasted with Banach’s 1932 book in which he would completely accept this open 
context for itself: the new exposition would no longer refer to an a priori given list of sets 
of functions and there would be a new step taken toward generality, an open generality 
freed from the initial restrictive context.

The notion of openness and its aptitude for describing a type of generality is hence 
first linked to the class of objects— identified or not, that potentially fall under a concept 
or a list of axioms. But further, openness also derives from the internal organization of 
the text, and from the dynamic chaining between some propositions. Contrasting with 
this point of view, Banach’s dissertation and his book of 1932 will show some major 
differences concerning the type of generality emerging in each situation. Among other 
important features of Banach’s work, the case of completeness, in particular its posi-
tion and interaction with other ideas, is characteristic of this phenomenon as we shall 
continue to analyze.

28 Banach (1922: 133).
29 A function of a line, as introduced by Volterra (1887), is a function (or operation) with domain the set of 

all continuous functions on an interval, and with values in   or .
30 Some ten years after Volterra’s pioneering paper, Pincherle would study “functional operations” where 

the domain and counter- domain were functions (cf. Pincherle, 1897).
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7.2.2.2  Completeness: toward an open generality

One aspect that affects the type of generality in Banach’s work is the shaping of the 
text itself and the way he organizes and separates several ideas. In retrospect, one 
can see that the organization of the axioms in his 1932 book permitted him to study 
some independent properties of metric spaces. Reading the contents pages of the book 
clearly shows the new possibilities concerning the organization of the concepts and 
the possibility of bifurcating into new unexplored domains or of reinterpreting old 
theories from a new point of view. In his 1932 book Banach uses this organization of 
ideas fully, splitting his book into chapters that follow the construction of more and 
more complex structures: groups, general vector spaces, spaces of type (F),31 normed 
spaces, and spaces of type (B).32 In comparison, Banach’s doctoral dissertation is 
less developed but the organization of the axioms is already present. There are no 
structures, and no sub- structures, but the three groups of axioms introduced are well 
differentiated and will make it possible to exactly point out what is necessary in the 
subsequent proofs.

In particular, the analysis of the role of completeness33 in Banach’s text and the contrast 
with what he does in his 1932 book lead one to reconsider the process involved in creating 
what we now call Banach spaces.

To understand the evolution of Banach’s ideas, one has to remember that in 1922 one 
of his main objectives was to deal with linear operations and in particular to bring forth 
new ideas about the study of integral equations. Considering this, completeness appears 
to be dictated by the necessity of working on those equations.

More precisely, after the 1922 paper, it was essentially the necessity of using infinite 
series and linearity that seems to have motivated the use of completeness. Historically, 
series seemed to come up in unavoidable ways. A major breakthrough concerning integral 
equations described the solutions in terms of infinite sums and used their ability to 
approximate regular functions by polynomials (see, for example, Fréchet, 1910a, 1910b). 
Moreover, the methods used in Banach’s paper for studying functional equations, which 
will give birth to the (now) well- known fixed point theorem for Lipschitz maps (II §2, 
theorem 634) and will lead to the theorem on Fredholm equations (II §2, theorem 735), 
are based on series of iterated values of a given function. The convergence of these series 
can be established thanks to completeness.

When considering Banach’s use of completeness one can see that there are two con-
flicting aspects. On the one hand, the axioms concerning the norm are dispatched in two 
sets: the first one states the general definition of a norm, and the axioms are numbered 

31 (F) for Fréchet: complete metric spaces in current usage.
32 (B) for Banach: complete normed spaces in current usage.
33 Since Banach does not use the word “completeness,” in our text it will refer to the property stated in 

Banach’s axiom III.
34 Banach (1922: 160).
35 Banach (1922: 161)
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II1 to II4, while the second set introduces completeness, and is numbered III. Hence, in 
conjunction with what we mentioned earlier, as present- day historians we are tempted to 
acknowledge that we are in the presence of an open situation: openness seems to manifest 
itself through possible bifurcation points which are emphasized in the structure of the text.

But, on the other hand, these bifurcations remain non actualized possibilities: in his 
dissertation, Banach does not deal with all the possible developments and definitely 
considers a unique context in which there is a norm, and a complete norm at that.

Moreover, the introduction of the norm is not itself dissociated from the vector space 
definition, and comes attached to it, in a coherent context. It is introduced by the sentence 
“Let us then admit that ...” (Banach, 1922: 135) followed by the norm axioms, generating 
a single flow of axioms.

As we shall see in Section 7.3, the discourse here is in fact oriented toward some purpose, 
namely the study of operations in a uniform presentation, a purpose that structures and 
gives a specific coherence to the new edifice. The openness that we see in the structure of 
the list of axioms and the tension between this openness and some prescribed horizon 
(namely, operations for the study of integral equations) both shape our interpretation of 
Banach’s text.

At this point, when reading such an analysis, one could be tempted to acknowledge 
the usual statement that says that Banach spaces were born in this article. Indeed, one 
could put forward two points in favor of such a position:

1) a list of axioms that formally matches the list we now use to define a Banach 
space.

2) a coherent context in which the link among the axioms is emphasized (a single list, 
given at the beginning of Banach’s paper).

On the contrary, we would like to argue that this is not enough to actually acknowledge 
the birth of Banach spaces in the 1922 paper. As a matter of fact, we shall prove in the 
remainder of our paper two facts which support such an argument. First, there is an 
essential parameter lacking, namely reflexivity (in the sense we mentioned earlier): the list 
of axioms here is never looked at for its own sake, and no independent theorem is derived 
solely from their statements. Every result derived from the axioms is presented as an almost 
pedagogic tool, meant to emphasize some parts of the reasoning or to simplify the proofs 
concerning the operations. Banach’s main goal here is to clarify some situations concerning 
the study of operations and to simplify the diversity of the treatments of various sets of 
functions into a single coherent language. In his 1932 book, Banach will actually introduce 
a more reflexive point of view: he will name different spaces, as we mentioned previously, 
and will develop a specific chapter of the book dedicated to each space. Moreover, there 
appear some elements that constitute the premises of a geometry of Banach spaces with 
sections entitled “spaces of type (B),” “bases in spaces of type (B),” or “weak convergence 
in spaces of type (B).” Although the book is again orientated toward a general theory of 
linear operations, which appears to be Banach’s main focus, there are specific parts of the 
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text which are dedicated to the study of inner properties of spaces of type (B) and which 
develop a reflexive approach. For example, Theorem 13 on p.172 of the book, which is 
characteristic, reads:

Given a separable space E of type (B) such that each norm bounded sequence of elements 
{ }xi  of E contains a partially weak convergent sequence to an element in E, then the space 
E is equivalent to E  (the conjugate of E 36).

This reflexive point of view is even more perceptible in the last part of the book enti-
tled “remarks,” which was written primarily by S. Mazur. The formulations there show 
that spaces of type (B) or normed linear spaces constitute subjects of study by them-
selves: “Normed vector spaces have been treated independently ... by N. Wiener,” “One 
can establish for37 spaces of type (F) ...,” etc.

We will use these remarks to address the important question of determining when Banach 
spaces were actually introduced and thus to make conclusions regarding the various types of 
generality that one meets in the various publications by Banach. But first we conclude this 
part, which is centered on topological aspects, with an analysis of the specific position given 
by Banach to some themes or elements connected with topology. Our purpose is to add 
weight to the argument that in the 1922 article there was no reflexivity in Banach’s approach.

7.2.2.3  Topology and geometry

Once again, Banach does not really deal with topological aspects that could have been 
derived from the properties of the norm. After the introduction of the norm, Banach 
inserts a paragraph entitled “auxiliary theorems on the norms and the limits” (Banach, 
1922: 136). This passage presents some facts that will be useful in his study of operations 
and isolates some lemmas concerning the manipulation of the norm.

Along those lines, one can find some theorems about the uniqueness of a limit  
(I §2 theorem 438), about operations and limits (I §2 theorem 639), and about series and 
convergence (I §2 theorem 7 and theorem 840).

It is to be observed that Banach always points out very carefully the axioms involved 
at each stage of his proofs. In particular the proof of theorem 8 is characteristic:41

Theorem 8: If

1°) { }Xn  is a sequence of elements,

2°) Xn
n=

∞

∑
1

 exists,

36 E , the “conjugate” of the space E as Banach calls it, is nowadays known as the space of all functionals on E.
37 Our emphasis.
38 Banach (1922: 137).
39 Banach (1922: 138).
40 Banach (1922: 138– 9).
41 Banach (1922: 138– 9).
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then the series Xn
n=

∞

∑
1

 is norm convergent.

The proof involves some partial sums Xn
n

p

=
∑

1

 and is written in Banach’s particular style:

Proof. Let S Xr
n

n

r

=
=

∑
1

. Whenever p q> , we have:

(4) S S X Xp q n n
n q

p

n q

p

− = ≤
= + = +
∑ ∑

1 1

.

But, by means of 2°):

lim .
p
q

n
n q

p

X
→∞
→∞ = +

∑ =
1

0

And hence inequality (4) gives:

lim .
p
q

p qS S
→∞
→∞

− = 0

Which proves, according to axiom III and definition 1, the convergence of the sequence 
{ }Sp . But now, the convergence of the sequence { }Sp  is equivalent, in view of definition 2, 

to the convergence of the series  Xn
n=

∞

∑
1

.

Finally, immediately after this result, Banach shows in theorem 9 of his paper that, 
under the assumptions in force in the article, the convergence of a sequence { }Xn  in norm 
implies that it is Cauchy.42 This theorem in particular shows exactly where axiom III 
about completeness comes into play, while also validating part of the result without this 
assumption.43 All the proofs refer to the axioms they rely on, which again contributes to 
the presentation of a text that could be interpreted as open, since it could in retrospect 
allow some inflection, some bifurcation dropping such or such hypothesis. But in fact the 
1922 text remains strongly oriented toward a precise goal and leads to efficient theorems, 
following strictly the program enunciated by Banach in the introduction of his paper. 
Once again, what we could be tempted to analyze as an open situation is not actualized 
in this doctoral dissertation: as we shall see in the next section, it attempts to present the 
study of operations in such a way that every hypothesis in use is clearly identifiable.

After this passage on the convergence of series, Banach adds a paragraph titled “defini-
tions and theorems on the sets” which makes use of a very geometric vocabulary:44

Definition 3. Let X1 be an element of E , and r a positive real number. The set of all 
elements X that satisfy the inequality X X r− ≤1  will be called a sphere. The element 
X1 will be called the center and r  the radius of the sphere. We will denote it K X r( , )1 .

42 Banach does not give a name to this property.
43 One implication is a reformulation of axiom III, whereas the reverse statement does not use completeness 

and is obtained by a simple application of the triangular inequality.
44 Banach (1922: 140).
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 (In this section, as well as in the sequel, we shall often use the word ‘point’ instead of 
‘element’).

Since the title of the Banach paper refers to “abstract spaces,” which is an expression that 
is due to Fréchet, it is important to analyze the framework adopted by Banach precisely. 
As a matter of fact, in his own doctoral dissertation and in several subsequent papers, 
Fréchet developed a notion of neighborhood that was meant to be largely emancipated 
from any geometrical background. His aim was to introduce topology in situations where 
geometrical tools were barely thinkable (sets of functions for example). In contrast, in 
1922 Banach wants to deal with any set (of functions) so long as there is a norm allow-
ing geometrical intuition. This may explain why there are no allusions to open sets45 or 
neighborhoods as basic topological devices, but only to spheres which will constitute the 
main tools for dealing with the notions of proximity or continuity.

The reasoning developed by Banach aims to show that a complete norm guarantees a 
situation in agreement with geometrical intuition and does not present any pathological 
aspects. We are far from Fréchet’s, Cantor’s, or Hausdorff ’s discussions here.

We also notice that the properties of the norm are not studied for their own sake, but only 
in order to develop useful tools adapted to demonstrations using sequences. The theorems 
or propositions proved in this passage will be reused in the subsequent major theorems 
as efficient and basic tools to shorten proofs and make their logical progression clearer.

The following theorem is an eloquent example of this specific use of the tools Banach 
has isolated:46

Theorem 17. When an operation F X( ), defined on set E , is of the first Baire class 
with respect to this set, then F X( ) is pantachically continuous with respect to any 
perfect set.47

We have chosen this example here because it is an example of a non- trivial proposition 
where Banach’s method and style are fully at play in the proof.

As a matter of fact, the proof following the theorem is very well structured: at every 
step, previously stated results or assumptions are clearly enunciated and referenced. 
No fewer than seven previous results or definitions are quoted by Banach in nearly two 
pages to justify the progression of the proof. This adds to the clarity of the development 
which is striking and characterizes Banach’s style. Some technicalities are moved out 
of the main development while some important lines of thought and strategies are put 
forward. In particular among those key ideas, Banach uses mainly spheres and sequences 
of their centers to deal with what we retrospectively call topological aspects. Another idea 
widely used by Banach is the consideration of the set of all elements satisfying a given 

45 We do not say here that Banach does not use words like “open” or “closed” which belong to the usual 
vocabulary of topology. Banach mentions in some theorems that a set he deals with is closed. But his proofs in 
topology only use spheres and balls and never refer to general open sets.

46 Banach (1922: 149).
47 The reader who is interested in the definitions of the mathematical concepts involved herein can find the 

relevant definitions in Banach’s paper which is nearly self- contained and scarcely refers to external sources 
(Banach, 1922: 149). We shall nevertheless continue to recall some notions when necessary in our study.
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proposition. This, in particular, allows Banach to reinterpret some inequalities in terms 
of the geometry of the space and its topology. For example in the proof of the theorem 
cited above, Banach fixes an arbitrary ε and considers “the set of all points that satisfy the 
inequality: F X F Xn n p( ) ( )− ≤+ ε.” This technique is used in several places in Banach’s 
paper and shows to be a very efficient tool. What could be analyzed as a purely analytic 
problem or as a problem of estimation of some quantity is read here in terms of geometry.

Another important feature of Banach’s text of 1922 resides in paragraph 4 on the 
applications of some topological ideas to operations. First of all, this passage is situated in 
the long first chapter of the paper, and is clearly part of the general background developed 
by Banach in order to study linear operations. In this part Banach defines the continuity 
of an operation as what we now call sequential continuity,48 and he definitively anchors his 
study in the new general setting we explored above. The definition of continuity is given in 
the context of what precedes it in the text, and strictly in terms of convergent sequences. 
Again, there is no escape here from this specific setting which structures Banach’s line of 
thought and establishes the coherence the 1922 paper demonstrates.

What is also new here is that Banach considers not only operations one by one, but 
also some sequences of operations:49

Definition. We shall say that a sequence of operations { ( )}F Xn , defined on a set A, 
converges in norm50 to an operation F X( ) defined on A, when every X  in A satisfies:

lim ( ).
n nF X F X

→∞
( ) =

This makes it possible for Banach to define some operations which are (pointwise) lim-
its of sequences of continuous operations, which will be said to be of the first Baire class.

These passages again show that there is no study of normed spaces for themselves, and 
that the 1922 paper is mainly dedicated to the study of linear operations. Even if Banach 
considers sequences of operations, their norms, their additions, or multiplications by a 
number, operations will always keep a special status in this text, very different from the 
elements of the spaces defined in the introduction of his paper. Operations have a specific 
place in the Banach text that we shall analyze in detail in Section 7.3.

48 A  function f E F: →  is sequentially continuous if whenever a sequence (xn) in E  converges to a limit  
x, the sequence ( f(xn)) converges to f(x). Thus sequentially continuous functions preserve sequential limits. 
Every continuous function is sequentially continuous. If E is a first- countable space, then the converse also 
holds: any function preserving sequential limits is continuous. In particular, if X is a metric space, sequential 
continuity and continuity are equivalent (this covers all the spaces studied by Banach or Fréchet that we 
mentioned in our study). When the space is not first- countable, sequential continuity might be strictly weaker 
than continuity.

49 Banach (1922: 148).
50 We now call this convergence “pointwise convergence” as opposed to the operator convergence induced 

by the norm of the operator.
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7.2.3  The birth of Banach spaces in question

As we mentioned in the introduction of our paper, the birth of Banach spaces is often 
attributed to this seminal work by Banach. As a matter of fact, we saw that the list of 
axioms I to III in Banach’s first chapter in 1922 could be superposed to the one we use 
nowadays to define51 the corresponding spaces. Moreover, and this seems to support the 
common idea, we established through a historical analysis that so exact a list of axioms 
was produced for the first time in Banach’s doctoral dissertation. Nevertheless, in light of 
the approach that we developed in this article and of prolonging some ideas we mentioned 
earlier in our study, we would like to argue that the thesis regarding the birth of Banach 
spaces has to be reconsidered, and that there is a capital difference between what we refer 
to as Banach spaces nowadays and what was involved in Banach’s 1922 paper.

As we have said before, our analysis is premised upon the idea that in order to com-
prehend mathematical texts and concepts it is not sufficient to focus on and compare 
locally their individual propositions from a strictly formal point of view. Some inner 
features of the mathematical texts and the interplay among several parts of the discourse 
have to be taken into consideration. These are the “dynamic” features of the text, as 
opposed to the static ones introduced above. They appear to us as essential tools for 
interpreting a text.

In a context where new pieces of knowledge arise, the analysis of some specific 
attributes of the generality emerging in the process of creation allows us to get a clearer 
idea of the mathematician’s activity. Our analysis of the attributes of generality as 
appearing in Banach’s landmark publications of 1922 and 1932 makes it possible to 
draw a clear line of separation between several situations. We shall now use this feature 
to prove that Banach spaces, as the general concept we now know, were not born in 
his doctoral dissertation.

The first attribute of generality, which we have already found in several places in 
Banach’s text is openness. Banach works on abstract sets (in his own terms “ensembles 
abstraits”). Yet, in his 1922 paper, the list of axioms I and II appears to be merely a tool 
meant for dealing with several given specific cases in a single uniform way. In fact, the 
only sets Banach will consider are the ones listed at the beginning of the article. They 
will appear again in the last part of the paper where he shows that they all share the right 
properties.

Hence, and although the axioms and the results of the first section appeared to cover 
a wide and open diversity of situations, this very general point of view is not completely 
adopted in 1922. The specific list of sets of functions (defined on a closed interval), placed 
at the beginning of the text and constituting the only topics dealt with in the final part of 
the text, define the boundaries of this early paper in a still limited field.

So generality is bounded by a given horizon, realized by known sets of functions 
endowed with their natural norms and carrying with them already settled properties.

51 We shall establish a typology of definitions in mathematics in a coming work. The word “definition” and 
connected expressions like “axiom,” “hypothesis,” or other modes used to isolate some objects play a funda-
mental and complex role in the mathematical discourse. In particular it will be necessary to analyze the deep 
changes in vocabulary that appear between Banach’s doctoral dissertation and his 1932 book.
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The second essential aspect is reflexivity and its counterpart separation,52 which is 
related to some distancing effect. They are both necessary for acknowledging the creation 
of a new mathematical object.

While analyzing Banach’s 1922 text we saw that axioms stated in the list which opens 
the paper served as a natural background and as a new sort of formal grammar to be used 
in the proofs. As we already mentioned, nowhere in the text is there any single proposition 
concerning an object such as a space defined by the list of axioms. Yet, Banach attempts 
to isolate the axioms I to III and insists upon their use in the last section:53

We did not give these axioms [IV– VI] at the beginning in order to better emphasize the 
consequences of the axioms I– III.

But, more than a retrospective look at what Banach himself could have considered as 
a new mathematical object, we think that this statement has to be understood as a useful 
strategy for making the proofs clearer and for emphasizing what they really involve. All 
the results in part 1 and 2, except the ones concerning operators, are used in the last part 
in order to give proofs concerning function spaces that are simplified and made uniform.

One can see that there is a gap of a very special nature between this early text and what 
is at stake in current evocation of Banach spaces: there was no determination of a new 
concept, no Banach space, and no proposition assuming such a concept. This situation 
contrasts sharply with what we find in the book of 1932, some 10 years later, where we 
see a real change in the mathematical discourse. In this book we can observe a new point 
of view and the emergence of spaces of type (B). The process of the introduction of those 
spaces naturally involves the seminal paper by Banach, but also, as we saw, some earlier 
works, as well as some rethinking of Banach’s doctoral publication by Fréchet who first 
termed the new non- totally achieved spaces “spaces of type (B).” Finally, Banach will 
develop the new theory in his book of 1932 and he will discuss what holds or does not 
hold when completeness is or is not assumed.

In conclusion, we believe that there are no Banach spaces in the 1922 publication. 
Perhaps in relation to the fact that historians have been obsessed with questions of origin, 
they concentrated mainly on the part of Banach’s doctoral dissertation that could be 
related to that concept. However, the paper undoubtedly presents for the first time in 
analysis another kind of general structure, as we shall now show.

7.3  Linear operations: the birth of a new theory

This section argues for the thesis that the central objects of Banach’s 1922 paper are 
linear operations on complete normed spaces.54 We shall prove here why this is the main 

52 The words reflexivity or separation might be misleading since they also frequently appear in the mathem-
atical discourses we analyze. Nevertheless, we have decided to keep them since they refer to what could be a 
topology of the discourse and are well adapted to the description of the emergence of generality here. They will 
be illustrated and their sense will be clarified in what follows.

53 Banach (1922: 164).
54 For the reader’s convenience, when axioms I– III are assumed to hold in a given situation, we shall refer to 

the situation with the anachronistic expression “complete normed spaces,” which Banach does not use in 1922.
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achievement of Banach’s dissertation and we shall show how it constitutes the most 
advanced object of this text from the point of view of generality.

7.3.1  Continuous operations as a limit case

The first part of Banach’s 1922 paper ends with a paragraph on operations. The link with 
what precedes is hence formally stated. Moreover, the central notion of continuity for an 
operation is defined here in terms of sequences, making this section dependent on the 
developments of the beginning of the first part.

The link between operations and the topics developed in the first part of Banach’s 
1922 article is even clearer if one considers that operations are defined in the very first 
lines. Banach’s thesis begins as follows:55

An operation is a univocal relation x y , that is to say such that:

y x  and z x  implies y z=  for every x y z, , .

Every relation x y  has a counter- domain (the reserve of the ys) and a domain (the 
reserve of the xs) also called a field.56 The functional operation, also known as the function 
of a line, is an operation such that the domain and counter- domain are sets of functions.

We shall come back to this definition soon, but in order to emphasize the organization of 
Banach’s text at this stage it is important to recall how he introduces the notion of continuity:57

Definition. The operation F X( ) is continuous for a point X0 with respect to a set A, when:

1°) F X( ) is defined for each point of the set A,

2°) X0 belongs to A and is a point of accumulation in A,

3°) lim ) ( )(
n nF X F X

→∞
= 0  for any sequence { }Xn  in A such that lim

n nX X
→∞

= 0.
58

Once again, we are far from Fréchet’s attempts to define neighborhoods, and Banach 
states this definition in terms adapted to normed spaces, defining what we would now 
call sequential continuity.59

We shall analyze several aspects of this definition in the next section, but we would 
like here to argue for the thesis that this last section of part I introduces some degree of 
reflexivity in Banach’s discourse, which makes it somewhat special in this first part. As a 
matter of fact, although the majority of the results exposed here are used in the subsequent 

55 Banach (1922: 133).
56 The word “field” in English might be ambiguous here. Banach uses the word “champ” in French which 

has to be differentiated from the French word “corps,” which also translates into “field” in English. Here “field” 
in English or “champ” in French can be thought of as “collection” of elements.

57 Banach (1922: 145).
58 The symbol lim refers to the convergence in norm: lim

n nu u=  means here lim
n nu u− = 0.

59 See note 48 on the types of convergence.
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sections and hence appear at least partially as technical tools intended for a given purpose, 
some propositions do not completely fit into this category.

For example, the first theorem which states that a linear combination of continuous 
operations is continuous is not used in the remainder of the paper. This is also the case 
for theorem 16, recorded below, which is not cited at any point after its proof:60

Theorem 16. When

1°) the operation F X( ) is continuous with respect to the set A for all the points in A,
2°) the set A is closed,
3°) m and p are two non- negative numbers with m p≥ , then the set L of all points X 

in A such that the following inequality holds

m F X p≥ ≥( )

is either empty or closed.

Another example which shows the emergence of a reflexive view on operations is the 
introduction of sequences of continuous operations in the same section (as we have seen). 
Some theorems using the first Baire class61 then follow, which give a specific point of view 
on collections of operations. It important to notice that Banach introduces his second 
section with the words “classes of operations” (classes d’opérations):62

§1. Among all classes of operations, the additive ones definitely deserve some special attention.

Hence operations have a very specific status and are sometimes treated as elements in a 
well- defined collection of objects to be studied through a uniform theory. And Banach 
does not study any specifically given or isolated operation: he considers operations in 
general, then presents a classification into sub- classes (operations, continuous operations, 
linear operations, etc.) and derives theorems that are uniformly valid for a given class.

As we will now show, the study of operations definitely constitutes the core of Banach’s 
development in his doctoral dissertation. Two aspects will play an essential role in his 
approach: the first one is a property of the operations, namely linearity, while the other 
is a property of the domain of the operation, that is, completeness. We shall now analyze 
in more detail those two aspects.

7.3.2  Linearity

The case of linear operations, which is explored in the second part of the 1922 publication, 
seems to be of a special nature. As we shall see, Banach’s approach in this domain is much 
more reflexive, and he definitively develops a new theory.

60 Banach (1922: 147).
61 Let us recall that an operation is of first Baire class if it is the pointwise limit of a sequence of continuous 

operations. One important result stated by Banach and used in several theorems says that any additive opera-
tion that is of first Baire class is also continuous.

62 Banach (1922: 151).
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But before we turn to analyzing this aspect, and before we show exactly what 
kind of generality will emerge from this part, it is necessary to briefly recall some 
earlier contributions dealing with linear operations, which undoubtedly influenced 
Banach’s work.

Once again the formal confrontation with earlier texts will shed some light on the 
operations chosen by Banach and will show the specific elements he selected.

While introducing operations at the beginning of his article, Banach refers to some 
mathematicians who worked in this domain (see last quote of Section 7.2.2.1). The study 
of linear operations is hence related to a historical context that is well identified by Banach 
himself and that is definitely motivated by the study of functions of a line (fonction de 
ligne). As we have seen earlier, Banach provides a highly specific definition of an operation 
right at the beginning of the paper.

The term operation (opération) is not new though, and it was regularly used at that 
time (prior to 1922). Operations were often defined as correspondences: one can consult, 
for example, the 1901 book by Pincherle and Amaldi Distributive operations and their 
applications to analysis. At the beginning of the second chapter of this book, the authors 
define operations in the following way (we include some passages showing their choices 
of notations):63

22. Among the elements of two systems   and ′  there might be a correspondence 
(corrispondenza) which associates one or more elements of  to each element of  ′  ...

It is possible that to one element in  there corresponds only one element in  ′  ...
From now on, we shall use capitalized Latin letters to designate operations. If the 

operation A sends an element α  in   to an element α′  in ′  we shall write:

A α α( ) = ′.

In his 1922 paper, Banach gets rid of the binary relation notation  he introduced in his 
definition, and immediately after adopts a stable prefixed form:64

We will denote the operations by F X P X( ), ( ), etc.

We remark here that Pincherle and Amaldi use a single letter to name their operations 
(“the operation A”), and that they make a distinction between the name of the operation 
and the name of the variable. This was not generally the case even in the articles published 
after 1901. One can cite here several examples of articles (Fréchet, 1904; Riesz, 1910; 
Banach, 1922, 1932) where the authors use the notations f X( ) or U f  to name their 
functions or operations, a generic element of the domain appearing here.

A detailed examination of Banach’s introduction leads one to remark that he pushes 
to the forefront what he considers to be three inseparable elements: two sets, called the 
domain (the reserve of xs) and counter- domain (the set of all images), and a binary 

63 Amaldi and Pincherle (1901: 17).
64 Banach (1922: 145).
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relation that associates to any element in the domain a unique element of the counter- 
domain. Historically, this choice in the presentation is not new, and in their book, Pincherle 
and Amaldi introduce in the first chapter the systems noted   and ′  at the same time 
as the correspondence.

Nevertheless, this point of view was again not uniformly accepted even after the pub-
lication of Le operazioni distributive. For example, in a series of three papers on linear 
operations written between 1904 and 1907, Fréchet starts from a point of view where the 
nature of the reserve of initial elements definitively does not share the front of the stage 
with the operation. Even his notation puts the name of the operation, and the elements 
it acts on, on two separate levels. Operations are meant to act on continuous functions 
only (which seems to be imposed by the necessity of describing functions in terms of 
converging series):65

I. Let us first recall some definitions. We shall say that an operation is defined, if to each real 
function f x( ) which is continuous between two given numbers a  and b there corresponds 
a finite determined real number U f .

This first point of view then evolved along with his papers. In the second one, written 
in 1905, the end of the article is devoted to a commentary on the reserve of functions:66

Importance of the function field in which the operation is defined.

Until now, we have supposed that the functional operations we were dealing with would 
associate a number U f  to each function f x( ) that was continuous between a and b, without 
investigating whether U f

 was defined for some other functions.
But the words following this question do not leave any doubt: “This hypothesis [that 

is the fact that the functions should be continuous] is essential, as we shall see” (Fréchet, 
1905: 138). And the end of the article finally deals with the only possibility left, which is 
to consider operations defined on regular functions.

The third article on the topic, published in 1907, manifests a clear- cut change in 
Fréchet’s point of view. As a matter of fact, the last paper of the series opens directly on the 
definition of the sets that were to constitute the a priori given domain for the operations:67

Definition of the field. Let us consider a field of functions, with variable x, and defined on 
the interval ( , )0 2π . I will suppose that if two functions belong to this field, then so does 
their sum. To each function f x( ) of the field we can associate a well- defined number U f .

 By means of this we will define an operation in the field of functions.

In conclusion, the contrast with those papers of Fréchet highlighted by these remarks 
shows that Banach introduced the operations in a very specific way. In fact, Banach’s way 

65 Fréchet (1904: 493).
66 Fréchet (1905: 138).
67 Fréchet (1907: 433).
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of dealing with operations aligns more closely to Pincherle and Amaldi’s line of thought, 
and he insists on some aspects first ignored or left out by Fréchet.68

Concerning now the more specific subject of linearity (as we now call it), it is again 
helpful to compare Banach’s text to Fréchet’s approach. In 1905, Fréchet wrote:69

Following M. Hadamard we shall call a linear operation any operation that satisfies the 
following two properties:

1°)  it is distributive, that is, given any two functions f1 and f2  that are continuous 
between a and b, we always have:

U U Uf f f f1 2 1 2+ = +

2°)  it is continuous, that is U f1
 tends to U f2

 whenever the function f1 tends to f2 uni-
formly between a  and b.

Here, continuity is part of the definition, and is expressed in a specific situation, namely 
the context of functions that are continuous on a closed interval ( ; )a b , with uniform 
convergence. The notations used in the definition above do not put on the same level the 
algebraic operations on f  (addition and multiplication by a number) and that on U f . It is 
noticeable that the choices made by different mathematicians are not uniform on this sub-
ject. For example, Riesz in 1914 uses a formulation close to Fréchet’s (see Riesz, 1914).

In contrast with these texts, and a few years earlier, Pincherle and Amaldi used the 
expression “distributive operations” (operazioni distributive) and dissociated linearity from 
continuity:70

If α and β are any elements of the linear space , and A is an operation that can be applied 
to those elements, one says that A satisfies the distributive property when:

A A Aα β α β+( ) = ( ) + ( ).

As a consequence … if c is a rational number,71

A c c A .α α( ) = ( )

In turn, Banach adopts this type of formalism, but uses the specific word “additive” 
instead of “distributive” to qualify operations with such a property. By this choice he puts 
on the same level all the elements constituting an operation (two sets with addition and 
multiplication by a number, and a correspondence) and he can then explore the possible 
properties of such an object:72

68 The passages of Fréchet’s work above show that he started his study of operations almost from scratch 
and the evolution of his point of view developed in those three papers is very subtle. One can read, for example, 
Jaëck (2010) for an analysis of these papers by Fréchet.

69 Fréchet (1905: 493).
70 Amaldi and Pincherle (1901: 25).
71 We shall analyze in a few lines the passage from rational to real numbers.
72 Banach (1922: 151).
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Definition. We shall say that an operation F X( ) is additive when for each X  and Y :

F X Y F X F Y( ) ( ) ( ).+ = +

It is obvious that F( )θ = 0, since

F F F( ) ( ) ( ).θ θ θ θ= + = 2

It is easy to prove that

F
p
q

X
p
q

F X






= ⋅ ( )

where p and q  are two integers and q ≠0.

The difference between the two words “additive” and “distributive” is important here 
from the point of view of generality. The use of the word “distributive” for Pincherle and 
Amaldi or Fréchet is probably copied from its use for operations on numbers. This has 
an influence on the understanding of the two + signs and the role of the operation itself 
in a proposition such as: A A A( ) ( ) ( )α β α β+ = + . Using the word “distributive” in such 
a situation, the author emphasizes the similarity with well- known properties of the usual 
addition, and, more than a mnemonic device, it keeps the operation A within a particular 
framework: the operation A lives here in the undifferentiated world of algebraic objects.73 
The words operation and distributive combine here in accordance with the laws of algebra. 
As with Banach’s doctoral dissertation, there is an evolution in the understanding of 
operations and they suddenly acquire a new status. In his paper, Banach defines addi-
tive operations. He writes propositions such as F x y F x F y( ) ( ) ( )+ = + . Such a notation 
correlates with his comments regarding the fact that the two + signs might live in two 
separate spaces. Moreover, what is crucial from the point of view of developing a new 
general concept here is the position given to the “operation” (we mean F ) itself. The 
parallel with the usual laws for the addition is not mentioned at all and the operations, 
as we saw before, acquire an independent status and are now studied for their own sake.

To conclude this section, we would like to point out that the word operation and its use 
in several contexts (addition and multiplication of numbers versus linear operations or 
binary relations for example) and the diversity of notations show that the mathematicians 
were struggling to shape a new general way of thinking about some usual and new objects 
in a coherent way. In particular, among many aspects, it would be interesting to compare 
the distinction between Fréchet and Banach’s points of view. Our study brought to light, 
on the one side, the emergence of the concept of module,74 and on the other side, the 

73 We see here that algebra and algebraic computation acquire an increasingly general status: algebraic oper-
ations serve as an archetype for situations where calculi have to be performed.

74 The parallel with the structure of module was suggested by K. Chemla (personal discussion).
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progression toward a general theory of operators, as opposed to operations. There is a 
striking neighborhood of several ideas and forms here that deserves deeper analysis.

7.3.3  A theory of linear operations on complete 
normed spaces

We now turn to the analysis of what appears to be one of Banach’s main achievements 
in his 1922 paper. Banach divides his second chapter, devoted to linear operations, into 
two distinct parts.

The first part deals with linear operations in a way that reveals a reflexive point of 
view: the only assumptions needed to obtain the results are linearity and continuity and 
operations are considered for their own sake.

Banach’s first theorem shows that boundedness on a sphere is a sufficient condition 
for continuity:75

Theorem 1. An additive operation F X( ), which is bounded in a sphere K , is continuous 
at each point of the field E .

Then some properties concerning sequences of operations and the conservation of con-
tinuity in the case of pointwise convergence are established:76

Theorem 5. If 1°) { ( )}F Xn  is a sequence of additive continuous operations,
2°) F X( ) is an additive operation,
3°) lim ( ) ( )

n nF X F X
→∞

= ,

then we have:
1°) the operation F X( ) is continuous,
2°)   there exists a number M > 0 such that for every n and every X  

we have:

F X M Xn( ) .≤

Except for theorem 3 and lemma 3 in  chapter 2, many of the results in this part are not 
used anywhere else in the text. One can thus assume that they are not meant as tools but 
as an independent exploration of linear operations.

In the second part, which differs from the first part with respect to the type of generality 
involved, Banach develops specific results which are, at least in their form, best adapted to 
the study of integral equations. This part does not use the preceding one, and only refers 
to theorem 8 in Chapter I, which proved that under the assumption of completeness the 
convergence of ∑Xn always implies the convergence of the series ∑Xn

. This part contains 

75 Banach (1922: 151).
76 Banach (1922: 157).
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two major results that we shall now record. Although none of these developments are 
explicitly related to integral equations in Banach’s text, their form leaves no ambiguity 
and even in Banach’s time they would certainly have been understood as dealing directly 
with integral equations.

The first result concerns general operations which satisfy a Lipschitz condition (no 
linearity assumed). This theorem is now known as the Banach fixed point theorem:77

Theorem 6. Let us suppose that
1°) U X( ) is a continuous operation in E , with counter- domain contained in E1 and
2°) there exists a number 0 1< <M  such that for every ′X  and ′′X  we have

· .U X U X M X X′( ) − ′′( ) ≤ ′ − ′′

Then there exists an element X  such that X U X= ( ).

Of course completeness is essential here. Moreover, one can observe the return of the 
non- geometric vocabulary “element” instead of “point” despite Banach’s remark in 
the first chapter. Strictly speaking, this theorem is stated by Banach under the extra 
hypothesis that the operation is additive, although this does not appear in the statement 
itself. In fact, at the beginning of the chapter, Banach writes: “We only consider in 
this chapter additive operations defined everywhere on the set E ” and there is here a 
slight inconsistency. However, the word “additive” does not appear in the statement 
itself. Further, the proof does not use the property and does not make use of any 
theorem using additivity. What is more, the hypothesis is repeated in the statement of 
every theorem in this part, except for theorem 6. Hence this fixed point theorem has 
a very special place in this article since it is totally self- contained and will not be used 
in subsequent theorems. In fact this theorem directly addresses a well- known problem 
in differential equations, namely the Picard– Lindelöf problem as we now call it. Its 
specific analysis and the role it plays in the study of differential equations goes beyond 
the scope of our paper.

What is central here, and is well illustrated by the theorem immediately above, is the role 
played by the hypotheses. It reveals Banach’s strategy in the construction of a theory of 
operations. Banach begins with a very general point of view, a mere correspondence, and 
he then attaches to the correspondence properties (additivity, continuity, completeness). 
Such a presentation allows Banach to specify for each proposition the exact properties 
used in the proof and hence to write the most general theorem, generality being deter-
mined here by the proof and the tools or assumptions it strictly requires.

In the same chapter, a second essential theorem addresses a celebrated problem, namely 
Fredholm- type equations. Contrasting with the previous one, here additivity comes back 
into play (one can observe that all additive operations are denoted by F  whereas Banach 
uses the letter U  when no linearity is assumed). Here again, the result given by Banach 

77 Banach (1922: 160).
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does not leave any doubt about one of the purposes of his study. This theorem interprets 
Fredholm equations and is stated in the most useful form:78

Theorem 7. Let X F X Y+ =· ( )α  be an equation where Y  is given and X  is the unknown 
element.

Let us suppose that:
1°) F X( ) is an additive continuous operation in the field E  with counter- domain 
included in E ,
2°) M  is the least number that satisfies the following inequality:  F X M X( ) ,≤
3°) α is a given real number;

Then for all Y  and for all h such that | |hM < 1 the above equation has a solution. 
Moreover, this one can be written:

X Y h F Y
n

n n n= + −( ) ⋅ ⋅
=

∞
( )∑

1

1 ( ),

where the operations F Yn ( ) are determined for each n by the following equalities:

( ) ( )( ).F Y F Y and F Y F F Yn n1 1( ) = ( ) = −

In both cases mentioned above, although the forms are adapted to well- known problems 
in integral equation theory, the results are stated as dealing with operations in a very 
general way. These two theorems, in particular the first one, have a form that goes far 
beyond the strict context of integral equations proposed by Banach in his title. All of the 
developments about operations show that these constitute the most sophisticated and 
general point of view of this paper, which develops some elements of an independent 
theory of operations on a complete normed vector space.

Nevertheless, the reference to integral equations cannot be ignored in this work, and 
shapes the type of propositions and the generality they bring. The study of the influence 
of Banach’s work in the analysis of integral equations is beyond the scope of this paper 
and certainly needs some particular attention as we have already mentioned. Yet, the 
theme of integral equations enters the dynamic movement which is central in our study 
and influences the type of generality that emerges in the text. It cannot be disconnected 
from the global process leading to the emergence of the theory of linear operations.

Precisely speaking, the final part of Banach’s paper, which is specifically devoted to 
the sets of functions listed in the introduction, and more generally the references to the 
integral equation problems, alter the text in a specific way and share in the emergence of 
a particular type of generality as follows.

At first sight, the necessity of dealing with the integral equations stated in the title 
of Banach’s paper could appear as preventing Banach from developing a very general 

78 Banach (1922: 161).
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setting from the outset. We have already invoked some of the general results relating to 
integral equations, which were partly shaped by this necessity. But when looking carefully 
at Banach’s text, one can see that the references to a specific domain or purpose (integral 
equations, continuous functions) is far from being a limitation in terms of generality as 
concerns the specific domain of operations. On the contrary, it is a fundamental element 
in the shaping of the new theory.

First, the ground material, that is the list of function sets, was obviously determined by 
this theme: the sets of functions quoted here are the ones usually involved in the study of 
classical integral equations, with the exception of square integrable functions which are 
new candidates. Then linearity came from similar considerations: it was already isolated 
as an important aspect of the theory of integral equations by Fréchet and others.

But, more than just complying with the necessities of dealing with a given context, the 
hard work of the final part (in particular showing that all the spaces verify the axioms) 
guarantees, in a sense, the coherence of the axioms chosen by Banach. The “axioms” and 
“postulates”79 proposed and used by Banach are here confronted by a given context and the 
necessity of dealing uniformly with a wide collection of functions and more generally with 
some given problems. And the long final part of Banach’s paper establishes the coherence of 
the axioms and of the new theory of linear operations with regard to these preset objectives.

In conclusion I suggest that the reference to the known list of functions or to the usual 
integral equation problems does not limit Banach’s enterprise to define a new theory of 
linear operators, but on the contrary that it is used to prove its solidity and its efficiency 
to generate a new coherent point of view.

7.4  Conclusion

Banach’s contributions stimulated and gave rise to some essential developments (opera-
tor theory, geometry of Banach spaces and many more). His doctoral dissertation gives 
very valuable access to the work of the mathematician and allows one to determine how 
he proceeded toward a new and very general conception, encompassing many previous 
approaches that did not grant such a prominent role to generality. This study, centered on 
some chosen aspects of Banach’s text, showed that he initiated a new focalization, deported 
from the established point of view and directed toward a more general point of view.

Two major aspects interplayed in this progress. First, Banach made a very selective 
choice of some already known but unconnected material: a vector space, a complete 
norm and linearity are for the first time seen as a coherent and unique ground material 
for a theory. But we have also seen that this summoning of formal elements was not the 
only essential aspect at stake here. It appears that the study of the inner shaping of the 
mathematical discourse and the interplay between several parts of the text were necessary 
to account for the dynamics involved in the emergence of such a complex and efficient 
generality. Of course, this dual aspect played a fundamental role in Banach’s work, but 

79 The terms “axiom,” “postulate,” as well as “definition” appear to be key words in the emergence and 
expression of generality. Those concepts and their specific roles need to be analyzed separately.
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more generally in the emergence of modern functional analysis where structures would 
play a prominent role.
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8

How general are genera? The genus 
in systematic zoology

YVES CAMBEFORT

8.1  Introduction

In systematic zoology and botany, animals and plants are classified and named according 
to their species, genera, and higher categories (family, order, etc.).1 Linguistic relationships 
between the words “genus” and “general, generality” might have played a role in some 
intuitive meaning of the genus, and older naturalists sometimes attached great importance 
to genus category. Zoology and botany share a number of traits, but the former deals 
with human beings, in addition to animals, and part of its aim has been to study the 
differentiation of our species from its animal relatives. Zoology and botany used to be 
associated (together with mineralogy) in “natural history,” with the old meaning of the 
word “history”— Greek (h)istoria— which means “research,” “information,” “inquiry,” 
etc. The scientific status of natural history has been questioned. Zoology, botany, and 
sometimes even biology have been denied the possession of general laws, since they are 
founded on particular cases:

Perhaps the only thing which can be said with any certainty is that there is no law about 
the value of searching for generalities in Biology, only pragmatics. But even though we 
can’t expect to find any laws governing the search for generalities in Biology, some rough, 
pragmatic, guidelines might be very useful indeed.2

In fact, the use of species, genus, and higher categories of classification (family, order, 
class, kingdom …) can be considered not only as pragmatics, but as a particular expression 

1 See Appendix 1 for a summary on animal classification.
2 Fox Keller (2006).
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of a sort of generality proper to zoology, or to natural history as a whole, aimed to account 
for the living world, in order to better understand it. It is clear that plants and especially 
animals are so numerous that it is necessary to name and sort them just to be sure of what 
and which is referred to. As it was obviously not possible to name individual animals, 
the concepts of species and genus were introduced to arrange together animals of the 
same apparent kinds. The word “apparent” refers more correctly to species, because 
the word “species” comes from a stem connoting vision, look, in- spec- tion: any animal 
species contains individuals which resemble each other more than they do individuals 
of other species. In contrast, the word “genus” connotes gen- eration and gen- ealogy: any 
animal genus contains individuals which (are supposed to) descend from each other or 
from a common ancestor. In the present paper, I shall examine how the genus category 
was perceived and conceived in zoology (with occasional references to botany), in refer-
ence to species on the one hand and to higher categories on the other hand, from the 
antique notions of Plato and Aristotle, through its systematic conception by Linnaeus, 
to its evolutionary definition by Darwin, and up to the diversifications of the present 
time. In the late twentieth and early twenty- first century, various concepts of the genus 
reflect differences in epistemological cultures according to biological specialties (zoology, 
anthropology, paleontology …), especially in the case of our own species, which is often 
referred to as “the human genus.”

8.2  From antiquity to seventeenth century

8.2.1  Plato and Aristotle

Plato used the words genos (plural genê) and eidos (plural eidê) to sort a variety of things 
and beings. Genos connotes both gender and generation, lineage, and descent; it has been 
Latinized as genus, and directly passed from Latin to English. Eidos is related to the old 
root (w)id, Latin uidere, which— in a way analogous to spec— connotes vision, aspect, and 
even concept, as exemplified in Plato’s idea (almost the same word as eidos); the word 
is given various English translations: “species,” “kind,” “form” … Plato also used the 
scheme of a “downward” and binary division of beings: an ideal group (a genos) could 
be divided into two subgroups (two eidê); each subgroup could be considered then as a 
genos and divided again into two eidê, etc. The division into two parts (or “dichotomy”) 
was mandatory: Tertium non datur (“there is no third term”), as expressly stated by 
medieval scholastics.

Aristotle criticized this system, although he used the words and concepts of genos and 
eidos, especially in the treatises of logic which composed his Organon.3 Genos, together 
with “property,” “definition,” and “accident,” was one of the four ways a predicate might 
be attributed to a subject (“differentia” was added to this list by later commentators). 
Aristotle gave a definition of genos in respect with eidos, and he obviously considered that 

3 Pellegrin (2007a).
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genos was “a whole,” a sort of higher rank, in contrast with eidos, which was “a part,” a 
sort of lower rank:

A genos is what is predicated in the category of essence of a number of things exhibiting 
differences in species (eidos)…. The question, “Is one thing in the same genos as another 
or in a different one?” is also a generic question; for a question of that kind as well falls 
under the same branch of inquiry as the genos: for having argued that “animal” is the 
genos of man, and likewise also of ox, we shall have argued that they are in the same genos; 
whereas if we show that it is the genos of the one but not of the other, we shall have argued 
that these things are not in the same genos.4

Genera were divided into— or according to— eidê, which in the most complete Aristotelian 
conception were contrary to each other, as for example the two species “health” and 
“illness” in the genos “condition of the body;” but there could be intermediates, as in 
the genos “color,” where the two eidê “black” and “white” were considered opposites, 
with all other colors between them.5 In his zoological treatises, Aristotle did not accept 
Plato’s ideas nor dichotomies: for him, animal kinds were not ideal but real; they were 
those recognized by people, not defined by philosophers, and were never based on 
dichotomies:

Some writers propose to reach the definitions of the ultimate forms of animal life by 
bipartite division. But this method is always difficult, and often impracticable. Sometimes 
the final differentia of the subdivision is sufficient by itself, and the antecedent differentiae 
are mere surplusage. Thus in the series footed, two- footed, cleft- footed, the last term is 
all- expressive by itself, and to append the higher terms is only an idle iteration. Again it 
is not permissible to break up a genos, birds for instance, by putting its members under 
different bifurcations, as is done in dichotomies where some birds are ranked with animals 
of the water, and others placed in a different genos. Birds and fishes happen to be named, 
while other groups have no popular names; for instance, the animals that we may call 
sanguineous and bloodless are not known popularly by any designations. If such genê are 
not to be broken up, the method of dichotomy cannot be employed, for it necessarily 
involves such breaking up and dislocation.6

…
The method then that we must adopt is to attempt to recognize the genê, following the 

indications afforded by the instincts of mankind, which led them for instance to form the 
genos of birds and the genos of fishes, each of which groups combines a multitude of eidê, 
and is not defined by a single character as in dichotomy. The method of dichotomy is either 
impossible (for it would put a single group under different divisions or contrary groups 
under the same division), or it only furnishes a single ultimate differentia for each eidos, 
which either alone or with its series of antecedents has to constitute the ultimate eidos.7

4 Topics I  5 (translation W. A. Pickard- Cambridge on the internet, at the address http:// classics.mit.edu/ 
Aristotle/ topics.1.i.html consulted on September 20, 2014), modified.

5 Pellegrin (2007b); see also Cho (2003).
6 Parts of Animals I 2, § 642b, translation by William Ogle on the internet at the address http:// classics.mit.

edu/ Aristotle/ parts_ animals.1.i.html consulted on 20 September 2014 (modified according to Aristote, 1956).
7 Ibidem, § 644b, (idem).

http://classics.mit.edu/Aristotle/topics.1.i.html
http://classics.mit.edu/Aristotle/topics.1.i.html
http://classics.mit.edu/Aristotle/parts_animals.1.i.html
http://classics.mit.edu/Aristotle/parts_animals.1.i.html
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As we can see from these excerpts, Aristotelian zoological classification was of the 
“downward” type like Plato’s one: a large group (a genos) of animals was first intuitively 
recognized (“by the instinct of mankind”) and not from any preconceived (Platonic) idea, 
for example, birds or fishes; it was then divided into subgroups (eidê), usually more than 
two (contrary to dichotomy), and sometimes “a multitude.” The system was neither rigid 
nor strict: like in colors, the most general Aristotelian rule could be lessened or diverted; 
but it was relative: there were no clear- cut concepts of genos or eidos, which were defined 
in relation with each other.

As far as animals were concerned, the Greek words genos and eidos have been translated 
into Latin respectively as genus and species. For example, Pliny the Elder reported that 
the genus fish comprised 74 species. In spite of the fact that Aristotle’s chief aim was not 
to classify animals but rather to differentiate them, he nevertheless introduced some 
implicit classification, including a very important first division of animals (sanguineous 
vs. bloodless), which had a very long use in western zoology (up to the introduction of 
the dichotomy vertebrates/ invertebrates by Lamarck in 1797).

In the Aristotelian conception as it was retained in the Middle Ages and early modern 
times, the theoretical categories “genus” and “species” designated relative categories, the 
same category being a genus when compared to those categories which it comprised, and 
a species when compared to another, more general category. Even more than a category, 
the “genus” of an object (inanimate or animate) was its “essence,” and the “essence” of 
a species consisted of its genus plus its differentiae. Aristotelian categories were strictly 
conformed to logic; in spite of the fact that neither animals nor plants seem to conform 
to any logical system already known, Aristotelian genus and species were nevertheless 
retained to designate groups of organisms, probably assuming that they were compliant 
with logic not yet discovered. These “logical” principles were applied by older naturalists 
to animals and plants, and ultimately reworked by Linnaeus into a system which has 
persisted up to now (see Section 8.3.1).

8.2.2  Sixteenth-  and seventeenth- century naturalists

Between antiquity and the Renaissance, almost no new data were added to the corpus 
accumulated in antiquity. Botany was considered more important than zoology because 
plants were the most important sources of Materia medica. For this reason, botany expe-
rienced an earlier development than zoology.8 In his book De Plantis (1583), the Italian 
botanist Andrea Cesalpino introduced the concept of “species” almost in its modern 
meaning, but he still used downward classification and dichotomies.

Sixteenth- century zoologists were numerous, but their science rarely exceeded a rather 
elementary knowledge of the more obvious kinds of animals, which they did not know how 
to classify.9 In the biggest zoological monograph of the century, Conrad Gessner’s five 
volumes of Historia animalium (1551– 87), animals were alphabetized “in order to make 

8 Magnin- Gonze (2004).
9 Delaunay (1962) and Pinon (1995, 2000).
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easier the use of the work.” Ulisse Aldrovandi attempted a dichotomous sorting according 
to characters, but these were deceptively heterogeneous, as in birds (1599): “with a strong 
beak;” “good singers;” “aquatic;” etc. This was no improvement, but rather a caricature 
of previous authors’ classifications. Aldrovandi partially abandoned dichotomy, especially 
in his volume on insects (1602): his greater divisions were dichotomous, but the ultimate, 
and sometimes also the penultimate, were multifarious (i.e., they comprised usually more 
than two “genera”).

In the following century, improvements of zoological knowledge were achieved by 
the British naturalist John Ray. Originally a botanist, he published important books on 
zoology, where he retained the downward model of classification (great animal “genera” 
were recognized at first glance, and then divided into smaller kinds); he is acknowledged 
for having carried out one of the first attempts to define animal species in their more or 
less modern meaning (just as Cesalpino did for plants), even if a clear difference was not 
yet made between category and character:

Specific identity of bull and cow, of man and woman, came from the fact they were born 
from the same parents, often the same mother…. A particular form preserves its species 
in perpetuity (speciem suam perpetuo servat), and never a species was born from another 
one’s seed.10

In the same way, Ray’s concept of the genus retained its Aristotelian, relative character, 
especially in animals: he recognized the genus quadruped, as well as the genus dog, the 
genus hare, etc. He noted that older animal classification has “sinned” by reducing the 
vivipara and ovipara to the same genus, in spite of the fact that “they differ by essential 
and generic features” (quae notis essentialibus & genericis differunt). As in Aristotelian and 
scholastic categories, the words “genus” and “essence” were more or less synonymous. 
Thanks to extensive information, and in spite of his conservatism, Ray was one of the 
most important zoological sources of Linnaeus.

A generation later, the French botanist Joseph Pitton de Tournefort (1656– 1708) was 
one of the first who explored distant countries in order to bring home new plants and 
animals. Ray and Tournefort’s time was a turning point: naturalists’ aim was no longer 
to recognize and classify species and genera which had been known since antiquity, but, 
in addition, naturalists had to make known new, “exotic” organisms that explorers had 
brought back from all over the world. Contrary to Ray, Tournefort wrote only botanical 
treatises, especially his Éléments de botanique (1694), which was translated into Latin and 
published under the title Institutiones rei herbariae in 1700. In this book, which was soon 
famous all over Europe, Tournefort gave the first firm principles of systematics of living 
organisms, and Linnaeus acknowledged him the “honor” of the “invention” of genera: for 
the first time, the relative, Aristotelian concept of genos was abandoned. Tournefort’s genus 
category was given a clear- cut, precise meaning, and his 698 genera were all considered at 
the same level (rank) of classification. Tournefort is also acknowledged for the invention 
of binomial nomenclature, a system which was to be later generalized by Linnaeus (see 

10 Ray, Synopsis methodica Animalium Quadrupedum 1693, quoted by Carus (1880: 340– 3).
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below): each plant was named by a genus name consisting of one word, followed by a 
specific differentia under the form of a few words or sometimes just one word.

8.3  Eighteenth century

8.3.1  Linnaeus

The Swedish naturalist Carl (von) Linné, or Linnaeus (1707– 1778), is famous for his 
generalization to botany and zoology of a binomial nomenclature which is still in use today, 
as well as for a highly influential “system” of plant and animal classification, whose basic 
principles have been retained up to now.11 As far as animals are concerned, Linnaeus’s 
most important works are the zoological sections of his Systema Naturae, especially in 
the tenth (1758) and twelfth (1766– 7) editions. Linnaeus was a physician, like most 
naturalists of his time, and he received the basic botanical and zoological training implied 
by his medical studies; in addition, he had a personal interest in plants, as well as in insects 
(especially butterflies). Eighteenth- century Sweden was one of those European countries 
where cabinets of natural history were most appreciated. Both King Frederik Adolph and 
Queen Louisa Ulrica each had a large cabinet of zoology. Linnaeus had access to these two 
extensive collections, and he published catalogs of both. The catalog of the King’s cabinet, 
published in 1754, was the first work where Linnaeus applied binomial nomenclature to 
animals, as he did soon after in the tenth edition of Systema Naturae (1758).

For our particular purpose, Linnaeus is important for his theoretical writings on taxo-
nomic categories, and especially for the key position he had always attached to the genus, 
even if his ideas had been first conceived for plants. The Genera plantarum of 1737 and 
the Philosophia botanica of 1751 were two important texts where he exposed his method 
or system (he did not make a difference between these two words). Although these texts 
dealt especially with botany, some animal examples were used too. Since he established 
his systems on the two seemingly Aristotelian categories of genus and species, he has 
been and still is thought of having been influenced by scholasticism and “essentialism.” 
The debate was quite active in the years 1950’s; but it has recently been reopened with a 
series of papers published on the occasion of Linnaeus’s tercentenary.12 His system was 
almost complete from the beginning; one of its clearest and most explicit summaries was 
given in the Ratio operis of the Genera plantarum (1737):13

6. There are as many genera as there are common, proximate attributes of different species, 
as they were created in the beginning. This is confirmed by revelations, discoveries, and 
observations. Thus: Genera and Species are all natural.

11 Hoquet (2005).
12 For some historians, Linnaeus was essentialist (from the classic papers of Cain, 1956, 1958, to more 

recent ones, e.g., Stamos, 2005); for others, he was not (more numerous papers, e.g., Winsor, 2001, and 
Müller- Wille, 2007).

13 See Appendix 2 for quotations in original languages.
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Indeed, it is not allowed to join the horse and the pig under one genus, even if both 
species were one- hoofed; nor is it allowed to distinguish the goat, the reindeer, and the 
elk by genus, even if they differed by the shape of the horns. Therefore, we have to study 
the limits of genera with attentive and diligent observation, since it is very difficult to 
determine them a priori, even though this work takes effort. ‘For should the genera be 
confused, everything must be confused’ (Cesalpino).

…
8…. Everyone capable of such work tried to make it useful and to build systems; all 

with the same inclination and with the same aim; but with unequal success. Because only 
a few knew the fundamental rules, which, if not observed by the builders, would cause 
the most splendid building to be ruined with the first tempest. Boerhaave’s14 Institutiones 
medicae, aphorism 31: Teachers ‘are to proceed from generalities to particulars, while 
explaining discoveries; while Inventors, to the contrary, have to pass from particulars to 
generalities.’ For some have assumed various parts as systematic principle, and with it, they 
have descended according to laws of division from classes to orders all the way down to 
species. And by these hypothetical and arbitrary principles they broke and tore apart the 
natural, non- arbitrary genera, and did violence to nature…. Because, as they say, if [these 
species] cannot be joined by class, they can be joined still less by genus. But they do not 
observe that they themselves constructed the classes, but the Creator Himself made the 
genera. Hence so many false genera! So many controversies among authors! So many 
bad names! So much confusion! …

9. … The method that is to be preferred over the rest is the one that leads to the genera 
by the more certain and trouble- free path, and the one that is the most universal. For 
I believe there is hardly anyone born with such a memory that he could retain the genera 
without a system. The method must therefore lead the way; for orders are subaltern classes. 
And no one will deny that it is easier to distinguish a few genera than all at once. I do not 
deny, however, that natural classes can be given as well as natural genera. And I do not 
deny that a natural method will be much preferred to ours and all methods invented. But 
I laugh at all natural methods hitherto proclaimed. And provoked to my defence, I venture 
to affirm that not a single class given so far, in any system, is natural, as long as such 
genera and such characters that are currently used are serving under them. It is easy to 
refer the greatest part of known genera to their natural classes, but more difficult to do 
this for the rest. And it is not possible to hope that our age will be able to see any natural 
system, nor perhaps will posterity. Nevertheless, we are striving to know the species; so 
meanwhile artificial and substitute classes have to be assumed.

10. Having assumed natural genera, two things are required to keep them pure and well 
inculcated, namely that true species, not others, are reduced to their genera …; and that 
each genus is circumscribed by true limits and terms, which we call generic characters.15

This remarkable text exposes Linnaeus’s ideas on the genus as a keystone of his “philoso-
phy.” Genera and species really exist: they are not made by naturalists, but they have been 
created by God in the beginning. Therefore, the purpose of naturalists is not to create 
but merely to discover them, especially genera, which are the most important part of the 

14 Hermann Boerhaave (1686– 1738), Professor of Botany and Medicine at Leiden, helped Linnaeus for the 
publication of the first edition of Systema Naturae (Leiden, 1735).

15 English translation by Müller- Wille & Reeds (2007: 565– 7). See original Latin text below.
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system, species being only subordinates to genera. Since genera were made by God, and 
therefore “natural,” they are separated from each other by clear and precise discontinui-
ties, and the only purpose of a naturalist is to discover their limits and boundaries. For this 
purpose, he must use inspection, a priori intuition, and flair. A naturalist must keep in his 
mind a much larger number of genera than a layman (if possible all available genera), and 
it is for this purpose that names must be attached to genera; because “If you don’t know 
the names, the knowledge of things perishes also.”16 By this famous formula, Linnaeus 
expressed unequivocally his position in the controversy of nominalism vs. realism which 
has divided Western philosophy since the middle ages. Not only the names, but also the 
“mental pictures” of genera must be kept in mind in order to recognize them at once, and 
a good system must help a naturalist’s memory: this retrieval role was the other purpose 
of Linnaean system.17 If a naturalist does not recognize a genus at once, or if he wants a 
confirmation, he may use available generic characters as well, but always keeping in mind 
another famous Linnaean formula: “Characters do not make a genus, but a genus makes 
characters.”18 Only from the facies (or habitus) of a genus, or from well- chosen characters, 
a naturalist must distinguish the limits of genera, which in most cases are clear- cut and 
obvious. Common sense too is useful: even if horse and pig would have the same form 
of hoof, which naturalist would classify them into the same genus? On the contrary, 
goats, reindeers, and elks clearly belong to the same genus even if their horns are differ-
ent. Being in possession of genera, the naturalist must then follow two complementary 
ways: a downward one, that is, from genera to species (as a teacher); an upward one, that 
is, from genera to higher categories (as an inventor). A naturalist should take great care 
not to start from supposed natural, higher categories, for example, orders and classes, 
since “orders are subaltern classes,” and “they themselves [naturalists] constructed the 
classes, but the Creator Himself made the genera.” On the contrary, he is allowed to use 
an upward process in the feed- back from species to genera, in the condition that only 
“true species” were used, and “reduced to their genera.” This is a condemnation both of 
the older, arbitrary definition of higher categories, and of the one- way downward process, 
which had led to so many controversies, mistakes, and wrong names.

In his first writings, Linnaeus still adhered to a more or less scholastic logical code, and 
he called the whole animal and vegetable kingdoms each a summum genus, whose species 
were classes of animals or plants. After 1735, he abandoned this use and restricted the 
word “genus” to a hierarchical level immediately above the species. If it were possible 
to identify essential characters, he said, one would need only those essential characters. 
However, as no appropriate method exists to identify them, one must use also artificial 
or factitious characters, which “distinguish a genus from all other ones in an artificial 
order.” Finally, a genus “natural definition gathers every possible generic feature; and it 
therefore includes Essential and Artificial.”19 Linnaeus often omitted to mention variations 

16 “Nomina si nescis, perit et cognitio rerum” (Philosophia botanica, 1751, § 210).
17 Cain (1958).
18 “Scias Characterem non constituere Genus, sed Genus Characterem” (Philosophia botanica, 1751, § 169).
19 Philosophia botanica, 1751, § 186– 90.
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presented by aberrant species, as far as, for him, any species “evidently” belongs to a 
genus which has been given a priori.

In the Systema Naturae, Linnaeus numbered genera in a continuous series from the 
beginning to the end; for example, in the Regnum animale of the tenth edition (1758), gen-
era were numbered from 1: Homo to 312: Volvox. On the contrary, species were numbered 
within each separate genus (genus 1: Homo, species 1- 2;20 genus 2: Simia, species 1- 21; 
genus 3: Lemur, species 1- 3; etc., to genus 312: Volvox, species 1- 2). Also from the tenth 
edition on, only one word (‘specific difference’) was added to the genus name, and this 
pair [Genus + species] made the “binomen” which has become characteristic of Linnaean 
binomial nomenclature. For this reason, the tenth edition of Systema Naturae (1758) is still 
considered by most zoologists as the starting point of animal binomial nomenclature.21

8.3.2  Buffon

Buffon is often opposed to Linnaeus:  the latter carved Nature into clear- cut classes, 
when the former affirmed that Nature was a continuum. In fact, his opposition with 
Linnaeus was introduced by Buffon chiefly for polemic reasons; also, it has sometimes 
been considered as another step in the always renewed controversy of nominalism vs. real-
ism.22 As early as 1745, Buffon wrote to a correspondent that “the method of Monsieur 
Linnaeus is the less sensible and the most monstrous of all.” He accused Linnaeus to 
mix very different animals in the same class, and to use in most cases only one character 
to separate his genera. Already in the first volume of his Histoire naturelle (1749), he 
harshly criticized Linnaeus’s zoological system and insisted on the fact that Nature was 
continuous and did not know our categories:

Nature walks through unknown gradations, and therefore cannot submit herself entirely 
to our divisions, since she passes from one species to another species, and often from one 
genus to another genus, through imperceptible nuances; so much so that there are many 
medium species and half- partitioned objects which one does not know where to place, 
and which necessarily disturb the project of a general system.23

The idea of intermediate species was later that of Charles Bonnet:

There always exist, between two closely related classes or genera, median Productions, 
which seem to belong neither to the one nor to the other, and join them:  the polyp 
chains vegetable to animal; the flying squirrel links bird to quadruped; the monkey unites 
quadruped and man.24

20 The second species, Homo troglodytes, was an artificial combination of orangutan and chimpanzee.
21 International Commission of Zoological Nomenclature (1999).
22 Buffon (1954) and Hoquet (2003, 2007).
23 Buffon (1749: 13).
24 “Il est toujours entre deux classes ou entre deux genres voisins, des Productions moyennes, qui semblent 

n’appartenir pas plus à l’un qu’à l’autre, & les lier. Le Polype enchaîne le Végétal à l’Animal. L’Écureuil- volant 
unit l’Oiseau au Quadrupède. Le Singe touche au Quadrupède et à l’Homme.” (Bonnet, 1781: 35).
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Buffon opposed Linnaeus to older authors, especially to Aristotle, whom he acknowledged 
as the best zoologist ever; he explained that Aristotle took a great care to recognize species 
as individuals and give them “proper names,” instead of classifying them into vague and 
inform genera, to which “common names” were applied (i.e., by Linnaeus). Yet, when 
he began to publish his Natural history, he knew almost nothing about Zoology, and his 
appreciation at that time was more that of a layman than of a zoologist. He used a highly 
subjective order, starting with those animals which were most familiar to him as well to 
his supposed readers (who apparently were country gentlemen, like himself): the first 
animal he dealt with was the horse (which was also the first species dealt with by Ray in 
1693). Gradually, Buffon would get acquainted with animals, would refine his zoological 
knowledge, and would come closer to Linnaean conceptions. Later in his work, he was 
obliged to introduce some sorting and classification of the many species he was dealing 
with, monkeys and especially birds being the clearest cases:

Instead of dealing with birds one by one, that is to say by separate species, I shall reunite 
some into a same genus, however without confusing and renouncing to get them distin-
guished whenever they can be.25

It is usual to remark that Buffon’s dealing of such groups as monkeys and birds was 
“systematical,” even if he took a great care to avoid any use of Linnaean categories, speak-
ing for example of “family” when Linnaeus defined a genus, etc. In his Nomenclature des 
Singes (“Nomenclature of Apes”), for example, he began by explaining that he himself 
was obliged to recognize in the group of monkeys some “families,” to which he gave 
“generic names,” as, for example, “ape” (singe) and “baboon” (babouin): note that he took 
great care to use French instead of Latin names, and without a capital letter. But certain 
species could not fit into these families/ genera. For example, between the singe and the 
babouin, he says, there is a species which one does not know where to place: the magot 
(Barbary ape). Later on, Buffon will mention another such intermediate species, between 
the genera babouin and guenon: the maimon (pig- tailed macaque). His conclusions were 
from a higher perspective and gave more insight into his conception of genera:

If, from such a large picture of similarities through which the Universe presents itself as 
if it were only one family, we pass to that of differences, where each species demands an 
isolated place and must have his own portrait, we shall recognize that, except for a few 
major species, as the elephant, the rhinoceros, the hippopotamus, the tiger, the lion, which 
must receive each its own frame, every other seems to join with its neighbours and form 
groups of degraded similarities: those genera that our Nomenclators have presented by a 
lace of figures, some of them hold by feet, others by teeth, by horns, by hair, and by other 
even weaker connections. And even those whose forms appear to us the most perfect, 
that is to say, the closest to ours: the apes, present themselves together, and need rather 
attentive eyes to be distinguished from each other, because it is less to form than to size 

25 “Au lieu de traiter les oiseaux un à un, c’est- à- dire par espèces distinctes et séparées, je les réunirai plu-
sieurs ensemble sous un même genre, sans cependant les confondre et renoncer à les distinguer lorsqu’elles 
pourront l’être.” (Histoire naturelle des oiseaux, tome I, 1770, p. xx.)
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that the privilege of isolated species is attached, and that man itself, although unique in 
its species, infinitely different from those of animals, being only of a rather small size, is 
less isolated and has more neighbours than larger animals. It will be seen in the history of 
the orangutan, that if attention would be paid to face only, this animal might be regarded 
as the first ape, or the last man, because with the exception of soul, it lacks nothing we 
have, and because it differs less from man as far as body is concerned, than it differs from 
other animals which are given the name of ape.26

Buffon’s opposition to Linnaeus is less clear- cut than would appear at first sight: both have 
changed opinion much during their careers, and it is somehow reductionist to arrest them 
at any moment of their reflection. Moreover, the methodological proposition according 
to which Linnaeus was a rationalist philosopher of the Aristotelian school and Buffon 
the prototype of an inductivist naturalist could be more realistic if reversed!27 The former 
opinion has been suggested by those who claimed that only Linnaeus’s systematics was 
clearly scientific, and that, on the contrary, Buffon’s Natural History was affected by a 
regrettable “naturalist” character which placed it far from authentic science. In fact, more 
than being representative of mediaeval nominalism or realism, Linnaeus and Buffon both 
tried to solve the even older problem of continuity vs. discontinuity: Linnaeus divided 
nature into clear- cut classes, for a purpose of classification, whereas Buffon, trying to 
describe it, affirmed that it was continuous and indivisible, and that natural bodies dif-
ferentiated with each other only by imperceptible nuances. But when Buffon had to deal 
with complex groups, such as, for example, monkeys or birds, he had no other choice but 
to divide them into classes. When he resigned himself to practice this sort of classification, 
his kind of systematics was of the downward model: as he did not really know animals 
(i.e., species), he started from larger groups (e.g., monkeys or birds, in the most obvious 
cases), and then divided them into subgroups down to the species he had to deal with. By 
this procedure, he more or less intuitively conformed to Aristotle’s zoological principles, 
and in fact Aristotle was Buffon’s great model. On the contrary, Buffon never accepted 
Linnaeus’s concept of the genus, and always carefully avoided to use something that could 
be perceived as similar or analogous to it.

8.4  Lamarck, Cuvier, and other nineteenth- century 
zoologists

In the 1780s, disciples of Linnaeus and Buffon tried to unite the two men’s conceptions 
into one: Buffon’s chapters were arranged according to Linnaeus’s genera in a series of 
new editions of Natural History, complete or abridged, which were all published during 
the nineteenth century. Some editions were completed by sequels (“Suites à Buffon”) 
dealing with all animals (and even vegetables), species which were not included in the 
original work, and which of course were sorted into Linnaean genera.28 As original 

26 Nomenclature des singes (Buffon, 1766: 29– 30).
27 Barsanti (2005).
28 For a list of these editions see Buffon (1954: 522– 30).
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Buffon’s volumes were generally no longer in use, it seems that an agreement was gradu-
ally established according to which he himself had used from the beginning such kind 
of Linnaean system!

In the same period, downward sorting was abandoned in favor of an upward one. This 
was especially the case in the study of lower animals (sponges, jellyfish, polyps, various 
worms, etc.): they were poorly known creatures, with few or no subgroups intuitively 
perceived or conceived, even by zoologists. Both Cuvier— from 1795— and Lamarck (who 
was originally not a zoologist and was not knowledgeable in animals)— from 1801— tried 
to sort the mass of unknown, mostly marine animals from the Paris Muséum collections, 
into species, genera, and higher categories. That their observations brought them to very 
different conclusions is another story: as far as our subject is concerned, the important 
thing is that they introduced and established upward classification, starting from spe-
cies, classifying them into genera, families,29 orders, and classes. In spite of this change, 
nineteenth- century naturalists retained most Linnaean ideas, especially that genera had 
some natural or “essential” characters. For example, this is clear when Lamarck said:

One gives the name of genus to clusters of races, called species, brought together by con-
sideration of their relationships, and making as many small series limited by characters 
which are arbitrarily chosen in order to circumscribe them. When a genus is well made, 
all the races or species it comprises resemble each other by most essential and numerous 
characters, must be naturally sorted besides each other, and do not differentiate from each 
other except by characters less important but sufficient to distinguish them. Therefore, 
well- made genera are in fact small families, i.e., true portions of Nature’s very order.30

Many younger naturalists, however, thought that genera did not exist per se, that a genus 
had no “essential” qualities, nor had it been “created,” and that it was a mere artificial 
combination made for convenience; but they acknowledged as well that any genus must 
be adapted to its role in classification. Cuvier for example insisted on the importance of 
using multiple characters, especially those he considered more significant than others. 
The aim was to achieve a classification as “natural” as possible (this aim being also that 
of the botanists of the time). Cuvier went into further, more technical details:

There is scarcely a single being which has a simple character, or can be recognized by 
one single feature of its conformation; a union of several of these traits is almost always 
required to distinguish one being from those which resemble it in some, but not in all 
its peculiarities, or which have some of them combined with others of which the first 
is destitute. The more numerous the beings to be distinguished, the greater should be 
the number of traits; so that to distinguish an individual being from all others, it would 
be necessary, without some concise method, to enter into a complete description of its 
character. It is to avoid this inconvenience, that divisions and subdivisions have been 
invented. A certain number only of neighboring beings are compared with each other, 

29 The family rank was not used by Linnaeus; introduced in botany by Michel Adanson in 1763 (Magnin- 
Gonze, 2004), it was used for the first time in zoology by the entomologist Latreille (1797).

30 Lamarck (1809: 32).
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and their characters need only express their differences, which, by the supposition itself, 
are the least part of their conformation. Such a combination of beings is termed a genus.31

But many zoologists still persisted by the middle of nineteenth century to find “essential” 
qualities in their genera, according to the scholastic tradition, and to associate them with 
nominalistic and typological considerations:

When a genus is subdivided into other genera, the original name should be retained 
for that portion of it which exhibits in the greatest degree its essential characters as at 
first defined. Authors frequently indicate this by selecting one species as a fixed point of 
reference, which they term the ‘type’ of the genus.32

Other zoologists, still more anecdotal, invented curious systems, based on a sort of numer-
ology, using the numbers three, four, or five as bases. The most famous is “quinarianism,” 
which explained that everything in nature was based on the number five: all zoological 
groups and subgroups were arranged by five along “circles,” adjacent circles touching 
themselves. In a given family (or tribe), there were precisely five genera— but a variable 
number of species: again, only genera, not species, were to conform to the “essence” of 
the system!

8.5  Darwin and the evolutionary concept of the genus

Charles Darwin’s theory of natural evolution completely upset the preceding conceptions 
of biology, including those of the genus. He was an experienced naturalist, with extensive 
knowledge of plants and animals. He undertook in October 1846 (aged 37) a revision 
of a peculiar zoological group: cirripeds, which first were classified as mollusks, then 
established as a separate class, before they turned out to be recognized as highly modified 
crustaceans.33 Darwin devoted exactly eight years of his life (till October 1854) to this 
project, and published it under the form of a two volume monograph. He later recognized 
that this work had been useful for his redaction of the Origin of species, however adding 
that he wondered whether the benefit was worth the investment of time it has demanded. 
In this text, Darwin revealed himself to be very aware of the basically practical role of 
genera, not hesitating to reject a particular genus, even perfectly valid, because he does not 
find it appropriate: for him, an equilibrium was necessary between the number of species 
and that of genera. In addition, just as other zoologists— and especially entomologists— of 
his time, he recommended that the number of genera should not be too much multiplied:

In my opinion, this inordinate multiplication of genera destroys the main advantages of 
classifications [i.e., their role of retrieving system].34

31 Cuvier 1817: 8– 9; 1834: 4).
32 Strickland (1842), quoted by Stamos (2005: 82); see also Farber (1976).
33 In Darwin’s time, crustaceans were still included in insects.
34 Darwin (1851: 216).
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He devoted a shorter time to the redaction of his Origin of species, which was published 
five years later (November 1859). Explanations about systematics were included in 
Chapter 13, where Darwin introduced for the first time a genealogical, evolutionary 
meaning of classification, basing his explanations on Fig. 8.1.

In the diagram each letter on the uppermost line may represent a genus including sev-
eral species; and all the genera on this line form together one class, for all have descended 
from one ancient but unseen parent, and, consequently, have inherited something in 
common. But the three genera on the left hand have, on this same principle, much in 
common, and form a sub- family, distinct from that including the next two genera on the 
right hand, which diverged from a common parent at the fifth stage of descent. These 
five genera have also much, though less, in common; and they form a family distinct 
from that including the three genera still further to the right hand, which diverged at a 
still earlier period. And all these genera, descended from (A), form an order distinct from 
the genera descended from (I). So that we here have many species descended from a 
single progenitor grouped into genera; and the genera are included in, or subordinate to, 
sub- families, families, and orders, all united into one class. Thus, the grand fact in natural 
history of the subordination of group under group, which, from its familiarity, does not 
always sufficiently strike us, is in my judgement fully explained.

a14

a10

a9

a8

a7

a6

a5

a4

a3

a2

a1

s2

i3

i 4d4

k5

k6

k7

k8 l8

l7 m7

u8

u7 w7

u6

u5

t3

t2

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

m6

m5

m4

m3

m2

m1

m8 w8

m9

m10 w10

w9

E10 F10

d5

f 6

f 7

f 8

f 9

f 10

q14 p14 b14 f14 o14 e14 m14 F14
n14 z14

XIV

XIII

XII

XI

X

IX

VIII

VII

VI

V

IV

III

II

I

A B C D E F G H I K L

r14 w14 y14 v14

Figure 8.1 Darwin’s diagram of descent from various genera (redrawn from Darwin, 1859).
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Naturalists try to arrange the species, genera, and families in each class, on what is 
called the Natural System. But what is meant by this system? Some authors look at it 
merely as a scheme for arranging together those living objects which are most alike, and for 
separating those which are most unlike; or as an artificial means for enunciating, as briefly 
as possible, general propositions— that is, by one sentence to give the characters common, 
for instance, to all mammals, by another those common to all Carnivora, by another those 
common to the dog- genus, and then by adding a single sentence, a full description is given 
of each kind of dog. The ingenuity and utility of this system are indisputable. But many 
naturalists think that something more is meant by the Natural System; they believe that it 
reveals the plan of the Creator; but unless it be specified whether order in time or space, 
or what else is meant by the plan of the Creator, it seems to me that nothing is thus added 
to our knowledge. Such expressions as that famous one of Linnaeus, and which we often 
meet with in a more or less concealed form, that the characters do not make the genus, 
but that the genus gives the characters, seem to imply that something more is included in 
our classification, than mere resemblance. I believe that something more is included; and 
that propinquity of descent— the only known cause of the similarity of organic beings— is 
the bond, hidden as it is by various degrees of modification, which is partially revealed 
to us by our classifications….

Finally, with respect to the comparative value of the various groups of species, such as 
orders, sub- orders, families, sub- families, and genera, they seem to be, at least at present, 
almost arbitrary … But I must explain my meaning more fully. I believe that the arrange-
ment of the groups within each class, in due subordination and relation to the other groups, 
must be strictly genealogical in order to be natural; but that the amount of difference in the 
several branches or groups, though allied in the same degree in blood to their common 
progenitor, may differ greatly, being due to the different degrees of modification which 
they have undergone…. Thus, on the view which I hold, the natural system is genealogical 
in its arrangement, like a pedigree; but the degrees of modification which the different 
groups have undergone, have to be expressed by ranking them under different so- called 
genera, sub- families, families, sections, orders, and classes.35

This was sort of a revolution, the most drastic rupture in the whole history of classifica-
tion: from that time on, classifications were no longer artificial, subjective systems the 
only purpose of which was to retrieve kinds and sorts of living beings; but classification 
reflected— or at least tried to reflect— the history of these living beings. In the second 
paragraph, Darwin discussed the relative importance of arrangement and hierarchical 
ranking. For him, both operations were completely different: if ranking was a pure mat-
ter of convention, arrangement was strictly determined by the descent of the group 
under study.

8.6  Twentieth- century concepts of the genus

The last century has elaborated a greater number of systematic (and therefore of generic) 
concepts than the previous epochs. I shall mention three of these concepts, in a somehow 

35 Darwin (1859: 412– 14, 419– 22).
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chronological order; they all have Darwinian evolution theory as both philosophical and 
scientific basis.

8.6.1  The “evolutionary” or gradist concept

In spite of illuminating principles introduced by Darwin, zoological and botanical sys-
tematics have hesitated during almost a century before finding ways which would enable 
convenient applications of Darwinian theory, one should rather say “neo- Darwinian,” 
since original evolution theory was modified soon after 1859, including by Darwin him-
self. This process of transformation found a first culmination in the so- called “synthetic 
evolution theory,” whose four principal advocates have been Julian Huxley (1887– 1975), 
Theodosius Dobzhansky (1900– 1975), George Gaylord Simpson (1902– 1984), and 
Ernst Mayr (1904– 2005); it is to their synthesis that the term “neo- Darwinism” has 
precisely been applied. Ernst Mayr was especially influential in the systematic part 
of the synthesis, a subject to which he devoted a number of books that have become 
classics.36 He was anxious to conciliate Darwinian theory and traditional zoology, and it 
is interesting to observe the way he dealt with history to give his ideas the best possible 
presentation and allure. In his three last books, published between the ages of 93 and 
100, he made every effort to convince benevolent readers that his system was the most 
“evolutionary” and the most “Darwinian” of all (he applied the two epithets only to 
his system, in spite of the fact that adversary ones were equivalent in these respects).37 
Instead of evolutionary, or Darwinian, Mayr’s system has been more often referred to 
as “gradist,” in opposition to another system termed “cladist” (see Section 8.6.2). These 
words both refer to evolutionary trees, which have been produced in great number since 
Darwin published the first one in 1859. In a genealogical tree (and in a classification), 
gradists attach a greater importance to clusters based on similitude, which are called 
“grades” (Latin gradus, a grade, a step, a stage), rather than to those based on strict 
phylogenetic criteria, or “clades” (Greek klados, a branch, a twig). Gradists indeed 
use evolutionary trees; but they also attach some importance to traditional sorting of 
taxa, taking care not to disturb too much the established classifications; they insist that 
commonsense characters, based on ecology, ethology, sometimes on intuitive or popular 
knowledge, etc., must be considered as well. This pragmatic position is well exemplified 
in the following Mayr quotation:

The best definition of a genus seems to be one based on the honest admission of the 
subjective nature of this unit, and it may not be possible to say much more than that the 
genus, to be a convenient category in taxonomy, must in general be neither too large nor 
too small. A tentative definition might be:  ‘A genus is a systematic unit including one 
species or a group of species of presumably common phylogenetic origin, separated by 
a decided gap from other similar groups. It is to be postulated for practical reasons that 
the size of the gap shall be in inverse ratio to the size of the group.’ The second sentence 

36 Mayr (1942, 1963, 1969).
37 Mayr (1997: 136– 42); see also Mayr (2001, 2004).

 



 8.6 Twentieth-century concepts of the genus 273

   273

of this definition requires an explanation. We have groups, as has been stated repeatedly, 
that are exceedingly variable and others that are very uniform. If the same standards of 
difference were applied, we might have to put every species of one family into monotypic 
genera and all the species of another family into a single genus. Genera with 500, 1000, or 
even 2000 species are very inconvenient, and any excuse for breaking them up into smaller 
units should be good enough. In birds of paradise, on the other hand, morphological 
differences between the species are so well developed that not only all the species, with 
two exceptions, have been put into different genera, but that even representative species 
in some genera have been separated generically on what seems superficially very good 
reasons. The genus would become completely synonymous with the species and would 
lose its function as category of convenience, if we were to recognize genera that are based 
merely on certain morphological differences.

It is obvious from this discussion that the delimitation of the genus is, to a considerable 
extent, a matter of judgment, and that this judgment in turn depends on wide experi-
ence and on some intangibles. It has happened frequently that some older taxonomists 
has divided a family into let us say eight genera, using what seemed entirely superficial 
characters. When the complete anatomy and life history of the species became known, it 
turned out that the original generic arrangement was quite correct.38

In a later text, Mayr gave a precise example of the gradist position. He considered the 
following diagram (see Fig. 8.2), a supposed phylogenetic tree of three supposed taxa: X, 
Y, and Z.39

This example could be identified as a true case: X could be the human species, Y 
the chimpanzee(s), and Z the gorilla. Numbers 1– 12 represent derived characters. 
Gradist taxonomists would separate the taxon X (e.g., at the genus level) from the group   

38 Mayr (1942: 283– 4).
39 Mayr (1986).
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(Y + Z), because X differs from Y by eight derived characters (3– 10), and share only one 
(2) with Y; they would also group together Y and Z in another taxon (also supposedly 
at the genus level), because Y and Z share the same “adaptive zone,” or “niche,”40 that 
is, they are supposedly more similar with each other (in appearance, but also in ecology, 
ethology, “natural history,” etc.) than with X. For gradists, overall similarity prevails over 
a closer proximity in descent (or, more correctly, over a supposed closer proximity, since 
genealogical relationships of related taxa are always hypothetical).

8.6.2  The “phylogenetic” or cladist concept

Gradist systematics dominated botany and zoology up to the 1970s. However, another 
system had previously appeared: cladistics. Its inventor was a German entomologist, 
Willi Hennig (1913– 1976), whose fundamental book Grundzüge einer Theorie der phy-
logenetischen Systematik, published in 1950, had been largely ignored until an English 
translation was published in 1966.41 Since this date, the Hennigian system has dominated 
systematics and taxonomy, under the various terms of “phylogeny” (a metaphorical use 
of the word, since the Hennigian system is no more phylogenetic than gradism is evolu-
tionary), “cladistics” (which refers to clades, above), or “cladification” (used especially 
by gradists, with a possible nuance of pejorative connotation). Basically, cladistics is a 
dichotomous classification system in which only derived states of characters (“apomor-
phies”) are taken into consideration; on the other hand, supposedly primitive states of 
characters (“plesiomorphies”) are considered uninformative. For example, if we consider 
again the diagram in Fig. 8.2, a cladist will identify the group (X + Y) as a taxon, for 
example, a genus, because X and Y share one derived state of character (2). The genus   
(X + Y) will then be separated from genus Z, in spite of the fact that X is very different 
from Y (and Y very similar to Z) in appearance, “adaptive zone,” or “niche,” etc. In 
cladistic terms, a taxon such as (Y + Z) is called a “paraphyly,” or paraphyletic group, 
that is, a group of species that share a common ancestor but does not include all the 
descendants of the common ancestor, and is radically rejected.

8.6.3  The biological concepts

In addition of concepts based on fossils, or on dead specimens preserved in collec-
tions and museums, other concepts are based on characters observable only on living 
individuals. These concepts are well known in the case of a given species, considered as 
a pool of genes which are supposed to circulate freely: all members of a species actually 
or potentially interbreed; in addition, some of them are capable of fertile interbreeding 
with members of other species.42 Products, which are called “hybrids,” are either fertile 
or sterile. For example, interbreeding between the two species lion and tiger produces 

40 Mayr (1963: 78, 593, etc.) considered the two terms “adaptive zone” and “niche” as synonyms.
41 Hennig (1966).
42 Interbreeding with other species is difficult and therefore infrequent under natural conditions, but some-

times easy and common with captive animals.
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fertile offspring; but the product of the two species ass and horse (which is called mule) 
is sterile. From this basis, a biological definition of the genus has been introduced by 
some zoologists: all species capable of producing fertile hybrids must be classified into 
the same genus; but zoologists hesitate when hybrids are not or only partly fertile.43 
Be that as it may, such biological definition of the genus can be used only in those few 
cases where the taxa in question have been observed or reared. But the vast majority 
of animal species are still known only from museum specimens, and therefore it is 
impossible to verify whether or not they comply with the requirements of a supposed 
biological definition.

8.7  Controversies in the early twenty- first century

In the same time as living species as well as zoologists have decreased in number, theoreti-
cal biology has taken a great importance and produced a large quantity of works published 
in more or less specialized journals. In the same way as biological research of the twentieth 
century took place within the boundaries of Darwinian evolution theory, almost all sys-
tematicians and taxonomists of our time situate themselves within the Hennigian system. 
Mayr’s efforts have been unsuccessful: most of his “evolutionary” system disappeared 
when he died in 2005, aged 101.

But the Hennigian system has also been altered. In its original conception, it only 
aimed to classify living organisms. Diagrams Hennig obtained from analyses of character 
matrices always referred to living species, because he studied insects, and living insects 
are vastly more numerous and better known than fossils. Hennig’s direct followers, 
including “vertebrologists,” also studied and cladified almost exclusively living species. 
But nowadays, basic Hennigian methodology of a step- by- step hand analysis has been 
universally replaced by computer treatments of very large matrices, which make use of 
a vast number of characters, either molecular (for living species) or drawn from fossil 
specimens (for paleontological studies). The result is that cladistics of today is only 
remotely related to original Hennigian methodology.44 In addition, although Hennig’s 
methodology was especially designed for classification, it is heavily used today to recon-
struct phylogenies, a perversion of the original meaning of the word “phylogenetic” in 
Hennig’s opinion. In other words, so- called “pattern cladistics” (which was aimed to 
make phylogenetically grounded, more exact classifications than previously), has been 
replaced by “process cladistics” (aimed to reconstruct pure phylogenies, i.e., scenarios 
of zoological groups history and evolution). It is not possible to enter here into details 
or to examine a series of cases. Only two examples which refer to our subject will be 
dealt with: the controversy of classification vs. cladistics, and the recurrent problem of 
the “human genus.”

43 See especially the books and papers of Alain Dubois, for example, 1988, 2004, etc.
44 Krell (2005).
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8.7.1  Cladification versus classification

When true classifications are abandoned in favor of pure and simple “phylogenies,” 
a series of new problems emerge, because phylogenies are not classifications: the lat-
ter indeed have philosophical importance,45 but classifications mostly were and still are 
used for practical purposes, which may be significant in certain domains. Let us take an 
example in mosquitoes of the tribe Aedini (subfamily Culicinae, family Culicidae, order 
Diptera, class Insecta). The future tribe was originally represented by a single species 
described and named Aedes cinereus by the German entomologist Johann Wilhelm Meigen 
in 1818. Less than two centuries later, in 2004, the tribe Aedini comprised 11 genera (the 
genus Aedes itself being divided into 44 subgenera), and some 1240 species widespread 
all over the world. Many species are important vectors of pathogen organisms, especially 
viruses: for example, the recently (re- )appeared Chikungunya and Zika are transmitted 
by a species of the genus Aedes. In 2004, a team of entomologists published a cladistic 
analysis of Aedini, where 32 subgenera of Aedes were elevated to generic status, bringing 
the total number of genera in the tribe from 11 to 43.46 This result was indeed interesting, 
even important from a scientific or philosophical point of view; but it provoked a complete 
upheaval in the tribe Aedini. Another reputed specialist of the group replied with a paper 
expressing serious reservations about such a cladification, which did not take into account 
the true role of a classification, retrieval of information:

To facilitate communication and information exchange among professional groups inter-
ested in vector- borne diseases, it is essential that a stable nomenclature be maintained. 
For the Culicidae, easily identifiable genera based on morphology are an asset. Major 
changes in generic concept, the elevation of 32 subgenera within Aedes to generic status, 
and changes in hundreds of species names proposed in a recent article demand considera-
tion by all parties interested in mosquito- borne diseases. The entire approach to Aedini 
systematics of [Reinert et al.] was flawed by an inordinate fear of paraphyletic taxa or 
Paraphylyphobia, and their inability to distinguish between classification and cladistic 
analysis.47

This example invokes practical rather than purely “scientific,” that is, theoretical criteria, 
and demonstrates than animal systematics can still be a source of disagreement between 
different epistemological cultures, as close as they might appear in this example.

8.7.2  Discordant ideas about the genus Homo

Linnaeus included the human species in the Regnum animale of his Systema Naturae, 
into the genus Homo and under the binomial name Homo sapiens.48 The genus comprised 

45 Dupré (2001).
46 Reinert et al. (2004).
47 Savage (2005: 923).
48 Linnaeus (1758, 1: 20).
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another species: Homo troglodytes, with a commentary in the text “Homo sylvestris Orang 
Outang” and a footnote:

There is no doubt that the troglodytes species is completely distinct from Homo sapiens, 
neither of our genus, nor our blood, although very similar in size.49

It is interesting to notice in this excerpt that Linnaeus made a distinction between a 
systematic or technical sense of the world “genus” and the ordinary meaning of the word. 
His species Homo troglodytes seems to have been an artificial combination of apes from 
Africa (chimpanzees) and Asia (true orangutan); another Linnaean name, Simia satyrus,50 
probably also referred to this combination. Buffon evoked “the great and unique family 
of our human genus”51 (a formula which might have been partly anti- Linnaean); he too 
considered that man belonged to animals, but only under a “material” point of view, and 
he recognized that the orangutan “might be regarded as the first ape, or the last man,” 
as we have seen above.

In the late twentieth and early twenty- first century, there are still diverse, even discord-
ant ideas about the systematics of our species and genus. It should be reminded once 
more that a genus is a pure matter of convention, conviction, or convenience. In this 
perspective, different kinds of conceptions can be identified. For example, according to 
the relative size they give to their genera, zoologists have been sorted into “lumpers” and 
“splitters”: the former give preference to similarities over differences, and therefore cluster 
in the same, broad genus series of species sometimes rather different; the “splitters,” on 
the contrary, prefer to insist on differences and to make almost as many (small) genera 
as there are species.52 This difference in the genus conception might be correlated with 
epistemological cultures: we shall here consider briefly the contrasted opinions of two 
groups of scholars: paleontologists and anthropologists.

One of the characteristics of paleontologists is their extreme tendency to splitting. For 
example, a recent synthesis recognized two living genera (Pan and Homo), and not less 
than six fossil genera (Ardipithecus, Australopithecus, Kenyanthropus, Orrorin, Paranthropus, 
and Sahelanthropus) in a “subfamily Homininae.”53 The authors explained their concep-
tions in the following words:

We will deal with evolutionary history at a unique level of taxonomic detail, that of the 
species and genus. The species category is the lowest taxonomic level commonly used, 
and genera are composed of one, or more, species. For a group to qualify for the rank 
of genus, the taxa within it are generally taken to be both adaptively homogeneous and 
members of the same clade. To comply with the latter requirement, the genus must contain 
all the descendants of a common ancestor and its members must be confined to that 

49 “Speciem Troglodytae ab Homine sapiente distinctissimam, nec nostri generis illam nec sanguinis esse, statura 
quamvis simillimam, dubium non est.” (Op. cit.: 24).

50 Op. cit.: 25.
51 “La grande et unique famille de notre genre humain” (Buffon, 1766: 311).
52 Mayr (1942: 280– 3).
53 Wood & Constantino (2004).
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clade. Species that are “adaptively similar” but belong to different clades do not qualify 
for the rank of genus.54

Remarkably, they refer both to cladistics and to a vague “adaptive similarity” which reminds 
us of Simpson’s (1961) “adaptive zone” and Mayr’s gradism (above). In the following 
paragraph, they invoke a “taxonomic philosophy,” which they seem to consider different 
when human species is concerned from the prevailing situation in other animals. This 
“philosophic” point has been studied in a recent paper explaining that a possible, intuitive 
human- nonhuman distinction may have contributed to the idea that human evolution is 
somehow exceptional, resulting in a true inflation of genera in paleoanthropology.55

On the contrary, anthropologists working on living beings are not reluctant to consider 
that human species is not different in its ontology from other animal species, and that 
it should be included in the same genus as its closest relatives: African chimpanzees. 
Because the Linnaean genus name Homo has priority over Pan,56 man cannot be termed 
a “third chimpanzee” (as some authors did a few years ago), but chimpanzees must be 
recognized as other members of our own genus, Homo, as Linnaeus himself did in the 
tenth edition of his Systema Naturae, however incorrectly and reluctantly (see above). 
This opinion, typical of the anthropologists “lumper” style, has been most clearly and 
completely presented in a recent paper:

The accumulating DNA evidence provides an objective non- anthropocentric view of the 
place of humans in evolution. We humans appear as only slightly remodeled chimpanzee- like 
apes. This is apparent when the DNA evidence is translated into a phylogenetic classification 
based on principles first envisioned by Darwin and elaborated on by Hennig. The paramount 
principle is that each taxon should represent a clade in which all species in the clade share 
a more recent common ancestor with one another than with any species from any other 
taxon. The second basic principle, a corollary of the first, is that the hierarchical groupings 
of lower ranked taxa into higher- ranked taxa (e.g., species into genera, genera into families) 
should describe the degrees of phylogenetic relationships among taxa, i.e., among clades.57

In conformity with their arguments, these authors classified the human species together 
with the two chimpanzee into a same genus, however with a reservation: the two chim-
panzees were classified into a particular subgenus, Pan, separated from the “true” human 
(sub- )genus Homo;58 all hominid fossil species (split into six genera by paleontologists, 
above) were explicitly lumped together into the subgenus Homo.59

8.8  Conclusion: the PhyloCode and the end of genera

Today, most botanists and zoologists continue to use the genus category. For example, it 
is still used in what has become the major journal of taxonomic zoology, available both 

54 Op. cit.: 518.
55 De Cruz & De Smedt (2007).
56 The genus Pan was created and named by Oken in 1816 to accommodate the African chimpanzee(s).
57 Wildman et al. (2003: 7181).
58 When a genus is divided into subgenera, the subgenus comprising the type species of the genus keeps the 

genus name, for example, Homo (Homo) sapiens.
59 Wildman et al. (2003: 7182 and Table 1).
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on the net and on paper: Zootaxa.60 However, the most radical cladists have arrived to 
the conclusion that Linnaean ranking— and especially the genus level— was no longer 
adapted to cladistic systematics, and they have decided to introduce a new, rank- free 
system called the PhyloCode. As they explain:

The PhyloCode is a formal set of rules governing phylogenetic nomenclature. It is designed 
to name the parts of the tree of life by explicit reference to phylogeny. The PhyloCode 
will go into operation in a few years, but the exact date has not yet been determined. It is 
designed so that it may be used concurrently with the existing codes based on rank- based 
nomenclature. We anticipate that many people whose research concerns phylogeny will 
find phylogenetic nomenclature advantageous.61

Only a few zoologists have already described and named animals using the PhyloCode 
rules, which are based only on the mention of specific epithet, without mention of a sup-
posed “genus.” For example, here is the case of a recently described marine mollusk species:

The species can be placed confidently in the clade Discodorididae, but not in any of 
its subclades (traditionally taxa of genus rank). The unique, epithet- based name of the 
species is ‘aliciae Dayrat, 2005.’ The combination Discodorididae aliciae may also be used, 
once the unique, epithet- based name has been cited. Discodorididae aliciae is an example 
of how a new species of Discodorididae could be named in the context of phylogenetic 
nomenclature. I argue that epithet- based species names and their combinations with clade 
addresses should be very appealing to people who think phylogenetically. I also discuss 
two advantages of such combinations: first, they should be more stable than Linnaean 
binomials, which often change for arbitrary (e.g. non- phylogenetic) reasons; second, they 
should help taxonomists avoid creating multiple names for the same species.62

However, most authors insist that the Linnaean system of Genus- plus- species is millions 
of taxa in advance of the PhyloCode, and that, in spite of its shortcomings, it is still more 
convenient than the latter.

appendix 1

Animal classification

Linnaeus established a system of classification and naming of plants and animals which has persisted 
up to now, and in which each species is designated by a “binomen” consisting of two words: a 
generic name and a specific name or epithet, for example, Canis familiaris (Canis is the genus 
name, familiaris is the specific name or epithet; a specific epithet has no meaning if its genus is not 
mentioned). Species and genera are arranged into higher categories, which in turn could be used 
for a more general comprehension of the animal world (Table A.I).

The words “species,” “genus,” “family,” “order,” “class,” and “phylum” designate the principal 
categories of classification (there are other, additional ones, especially in insects, like superfamily, 

60 See http:// www.mapress.com/ zootaxa/ 
61 From the Society for Systematic Biologists site (http:// systbio.org/ ).
62 Dayrat (2005: 216).
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subfamily, tribe, subgenus …). In technical terms, these categories are called “taxa” (singular 
“taxon”), derived from “taxonomy,” French taxonomie, a word coined by the Swiss botanist 
Augustin- Pyramus de Candolle in his Théorie élémentaire de la botanique (1813). The “species” 
taxon comprises only individuals, whereas all the other taxa— from the genus upward— comprise 
individuals already sorted and clustered into lower taxa. Thus, the genus comprises species, the 
family comprises genera, the order comprises families, the class comprises orders, and the phylum 
comprises classes. It is generally thought that the species itself— or at least each particular species— 
has some reality since it comprises real “objects” (living beings); but although species has been the 
object of intense debates and controversies among scientists and philosophers, it has not yet been 
possible to clearly define or understand it.63

appendix 2

Original Latin and French texts of long quotations64

A.2.1  Linnaeus: Ratio operis of the Genera plantarum (1737)65

6. Genera autem tot sunt, quot attributa communia proxima distinctarum specierum, secundum 
quae in primordio creta fuere: confirmant haec revelata, inventa, observata. Hinc Omnia Genera &   
Species naturalia sunt.

Non enim licet conjungere sub eodem genere Equum & Suem:  licet ambae monungulae 
essent; nec Capreolum, Rangiferum & Alcen genere distinguere, licet cornuum figurâ differant. 
Generum itaque limites attenta & sedula observatione inquirere debemus, cum a priori difficilius 
determinentur, licet hoc opus hic esset labor, nam Confusis generibus omnia confundi necesse est. 
Caesalp.

8…. Mox in usum vertere, mox Systema struere allaborarunt omnes hisce laboribus apti; omnes 
quidem eodem animo, & in eundem finem; at non omnes eodem cum successu. Paucis quippe 

Table A.I Example of Linnaean classification of a particular species: the domestic 
dog (Canis familiaris) [Family and Phylum ranks were introduced in the nineteenth 
century, as well as intermediate ranks which have not been mentioned here (subgenus, 
subfamily, etc.)]

Species familiaris (the dog in the most restricted meaning)
Genus Canis (the dog, the wolf, and related species)

[Family Canidae (dogs sensu lato, foxes, and related genera)]
Order Carnivora (dogs, cats, and related families)

Class Mammalia (mammals)
[Phylum Vertebrata (vertebrates)]

Kingdom Animalia (animals)

63 Lherminier & Solignac (2005).
64 Short Latin and French quotations have been given in footnotes. Original Greek texts (Plato, Aristotle) 

are not given.
65 The quotation is extracted from the 2nd edition (Linnaeus, 1742: ii– vi).
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notus fuit Canon fundamentalis, quem si non observant aediles, illico ruit prima oborta tempestate 
splendidissimum quamvis aedificium: BOERH. Inst. 31. DOCENTI procedendum a generalibus ad 
singularia quaeque, dum inventa explicat ; ut INVENTORI, contra, a singularibus ad generalia eundum 
fuit. Assumserunt enim Varii diversas partes [Fructificationis] pro principio Systematico, & cum eo 
secundum divisionis leges a Classibus per Ordines descenderunt ad Species usque, & hypotheticis 
ac arbitrariis his principiis fregerunt & dilacerarunt naturalia, nec arbitraria [6]  genera; naturaeque 
vim intulerunt …

Quod si, dicunt, non classe conjungi possunt, multo minus genera; sed non observant se 
construxisse Classes qualescunque, ipsum verò Creatorem Genera. Hinc tot falsa genera ! tot 
controversiae inter Authores ! tot mala nomina ! tanta confusio !

9…. Parum refert, qua methodo potestis pervenire ad genera facillimâ viâ. Istae reliquis 
preferenda est, quae certiori tramite securius ad ea ducit; quaeque maxime universalis est; vix 
enim credo ullos facili adeo natos esse memoria, ut, absque Systemate, genera tenere queant. 
Methodus itaque erit viae dux ; Ordines enim sunt Classes subalternae: & paucae distinguere 
genera facilius esse, quam omnia, nullus inficias ibit. Non quidem nego aeque dari Classes natu-
rales ac Genera naturalia ; non nego quin methodus naturalis & nostrae & omnium inventarum 
methodis longe praeferri deberet, sed rideo omnes methodos naturales hactenus exclamatas, &   
in me defensionem provocatus suscipio, quod nulla, ne unica classis, hactenus data, in ullo 
systemate, naturalis sit, quamdiu ista genera istique characteres, qui jam sunt, sub iisdem militant. 
Facile est plus quam dimidiam notorum generum partem ad suas classes amandare, at eo dif-
ficilius reliqua. Nec sperare fas est, quod nostra aetas Systema quoddam Naturale videre queat, &   
vix seri Nepotes. Attamen plantas nosse studemus ; ideoque interim Artificiales assumendae 
sunt Classes & Succedaneae.

10. Assumtis Generibus naturalibus [6, 7] ad ea tenenda pura & inculcata duo requiruntur, ut 
scilicet verae Species, nec aliae, ad sua genera reducantur; utque Genera singula veris circumscrib-
antur limitibus & terminis, quos Characteres vocamus genericos.

A.2.2  Buffon

A.2.2.1  Histoire Naturelle, tome 1er (1749: 13)

Mais la Nature marche par des gradations inconnues, & par conséquent elle ne peut pas 
se prêter totalement à ces divisions, puisqu’elle passe d’une espèce à une autre espèce, &   
souvent d’un genre à un autre genre, par des nuances imperceptibles ; de sorte qu’il se 
trouve un grand nombre d’espèces moyennes & d’objets mi- partis qu’on ne sait où placer, &   
qui dérangent nécessairement le projet du système général.

A.2.2.2  “Nomenclature des Singes,” Histoire naturelle, tome 14e (1766: 29– 30)

Si de ce grand tableau des ressemblances dans lequel l’Univers vivant se présente, 
comme ne faisant qu’une même famille, nous passons à celui des différences, où 
chaque espèce réclame une place isolée et doit avoir son portrait à part, on reconnaîtra 
qu’à l’exception de quelques espèces majeures, telles que l’éléphant, le rhinocéros, 
l’hippopotame, le tigre, le lion, qui doivent avoir leur cadre, tous les autres semblent 
se réunir avec leurs voisins et former des groupes de similitudes dégradées, des genres 
que nos Nomenclateurs ont présentés par un lacis de figures dont les unes se tien-
nent par les pieds, les autres par les dents, par les cornes, par le poil et par d’autres 
rapports encore plus petits. Et ceux même dont la forme nous paraît la plus parfaite, 
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c’est- à- dire la plus approchante de la nôtre, les singes, se présentent ensemble et 
demandent déjà des yeux attentifs pour être distingués les uns des autres, parce que 
c’est moins à la forme qu’à la grandeur qu’est attaché le privilége de l’espèce isolée, 
et que l’homme lui- même quoique d’espèce unique, infiniment différente de toutes 
celles des animaux, n’étant que d’une grandeur médiocre, est moins isolé et a plus 
de voisins que les grands animaux. On verra dans l’histoire de l’orang- outang, que 
si l’on ne faisait attention qu’à la figure on pourrait également regarder cet animal 
comme le premier des singes ou le dernier des hommes, parce qu’à l’exception de 
l’âme, il ne lui manque rien de tout ce que nous avons, et parce qu’il diffère moins 
de l’homme pour le corps, qu’il ne diffère des autres animaux auxquels on a donné 
le même nom de singe.

A.2.3  Lamarck: Philosophie zoologique (1809: 32)

On donne le nom de genre à des réunions de races, dites espèces, rapprochées d’après la considéra-
tion de leurs rapports, et constituant autant de petites séries limitées par des caractères que l’on 
choisit arbitrairement pour les circonscrire.

Lorsqu’un genre est bien fait, toutes les races ou espèces qu’il comprend, se ressemblent par 
les caractères les plus essentiels et les plus nombreux, doivent être rangées naturellement les unes 
à côté des autres, et ne diffèrent entre elles que par des caractères de moindre importance mais 
qui suffisent pour les distinguer. Ainsi, les genres bien faits sont véritablement de petites familles, 
c’est- à- dire de véritables portions de l’ordre même de la nature.

A.2.4  Cuvier: Le Règne animal distribué d’après son organisation (1817: 8– 9).

Presque aucun être n’a de caractère simple, ou ne peut être reconnu seulement par un des 
traits de sa conformation ; il faut presque toujours la réunion de plusieurs de ces traits pour 
distinguer un être des êtres voisins qui en ont bien aussi quelques- uns, mais qui ne les ont pas 
tous, ou les ont combinés avec d’autres qui manquent au premier être ; et, plus les êtres que l’on 
a à distinguer sont nombreux, plus il faut accumuler de traits ; en sorte que, pour distinguer 
de tous les autres un être pris isolément, il faut faire entrer dans son caractère sa description 
complète. C’est pour éviter cet inconvénient que les divisions et subdivisions ont été inventées. 
L’on compare ensemble seulement un certain nombre d’êtres voisins, et leurs caractères n’ont 
besoin que d’exprimer leurs différences qui, par la supposition même, ne sont que la moindre 
partie de leur conformation. Une telle réunion s’appelle un genre.
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9

Homology: an expression of 
generality in the life sciences

STÉPHANE SCHMITT

9.1  Introduction

The concept of homology, in its current biological sense, is used to refer to two or more 
organs, parts, or molecules (proteins, genes …) that belong to different species and yet 
show so much similarity in their structure, regardless of their function, that they are 
interpreted as coming from the same organ, part, or molecule in a common ancestor. 
One example is the arm of man, when compared with the forelimb of other vertebrates 
(forefoot of horse, wing of bird or bat, pectoral fin of fish …): the general morphology 
(number, mutual disposition of bones, muscles, etc.) is the same, but there are differ-
ences in the relative size that explain the differences of function, so that one says that all 
these limbs are homologous. In turn, similarity of function, regardless of morphology 
and evolutionary origin, corresponds to the notion of “analogy”: for example, an insect 
wing is analogous (but not homologous) to a bird wing. Today, even though evolutionary 
biologists (particularly cladists) attempt to replace these concepts by more precise notions, 
such as synapomorphy or symplesiomorphy, homology and analogy are still commonly 
used in most fields of life sciences. When a molecular biologist is working on mouse or 
Drosophila genes in order to understand a biological phenomenon in the human being, 
he or she is using (even if implicitly) the concept of homology at the level of the gene.

Given the current definition of homology, it seems to be closely linked to evolutionary 
theory. However, its history began long before, and it gradually emerged in contexts where 
knowledge or understanding of evolutionary theory was marginal (before 1850), or did 
not exist at all, in the modern sense (before 1750).1 From antiquity, there existed a more 

1 On the history of comparative anatomy, see, in particular Russell (1916), Cole (1944), and Schmitt 
(2006).
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or less vague concept of homology (even if it was not so named), in order to designate 
relations between structures in different species bearing similarities that were not (or not 
only) functional. Throughout its long history, it expressed a quest for generality in the 
understanding of animal anatomy by attempting to interpret a diversity of forms as result-
ing from modifications of a single “primitive” structure. But the meaning of this quest, 
and the practices associated with it, deeply changed with the different theoretical context 
of the life sciences. It was, thus, an element of continuity in the history of biology, and a 
central actor in the emergence of some developments, particularly evolutionary theory.

9.2  Homology in pre- transformist 
comparative anatomy

Homology is closely connected with the concept of “unity of plan,” namely, the idea 
that a general structure would be common to all animals, or, at least, to large groups 
such as quadrupeds, and of which the individual animals or species would be variations. 
Homology concerns single organs or structures, unity of plan entire organisms. Both ideas 
are very old. For example, we can find some passages in Aristotle’s biological treatises 
where the philosopher distinguishes between organs with a same function and of a same 
nature (we would say today “analogous” and “homologous,” in a wide sense), and those 
with a same function but of a different nature (i.e., “analogous” but not “homologous”).2 
More generally, during late antiquity and the Middle Ages, it was often accepted that 
man and animals (at least higher animals such as quadrupeds) shared the same plan of 
organization and had corresponding organs.

Generality in human/ animal structures was, thus, merely stated, with no further charac-
terization. It was sometimes implicitly admitted: this enabled physicians to extrapolate to 
human beings anatomical knowledge they had gotten from animals. It could also be used in 
a symbolic way: for example, in a Christian context, anatomical similarities were interpreted 
as resulting from the unity of God’s design and used as a rhetorical commonplace.3

These approaches to homology were common up to the sixteenth century. In the 
Renaissance, new considerations appeared. In 1555, French naturalist Pierre Belon (1517– 
1564) published a treatise on birds in which he represented, side by side, a human skeleton 
and a bird skeleton, with the same letters indicating corresponding bones (see Fig. 9.1).

This plate was often considered the starting point of comparative anatomy, not only 
because it emphasizes a general similarity between human and avian skeletons by giving 
to the latter an unnatural, more human attitude, but because it shows a precise relation 
between single, precise parts of them (Crié, 1882). This opinion was, however, chal-
lenged by Delaunay (1962)4 and Foucault (1966). Foucault thought that the status of this 

2 See especially Aristotle (1964– 9), Historia animalium: 486a– 487a.
3 See, for example, Lactantius (1974), De opificio Dei, chap. 5– 7.
4 According to Delaunay (1962:  189), Belon went not really farther than Aristotle in the comparative 

method.
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comparison in Belon’s work was the same as the status of the relations between plants, 
minerals, parts of the human body, etc., in traditional alchemy and astrology (Foucault, 
1966: 38). Certainly, these considerations are isolated in Belon’s books, and if the cor-
respondences between bones are rather precisely established, he does not try to invent a 
concept or to coin a word to designate this kind of anatomical relationship. But it cannot 
be denied that Belon introduced, at least implicitly, a new program concerning anatom-
ical generality, consisting of finding exact relationships between structures of different 
species. In turn, this idea of a precise correspondence between structures enabled one to 

Figure 9.1 Pierre Belon’s representation of a human, compared with a bird skeleton (Belon, 1555: 40– 1). 
The legend is: “Representation of the set of human bones, compared to the anatomy of those of birds, so that 
the letters of the latter are related to those of the former, in order to show how great the similarity between 
them is.” (left); “The comparison of the preceding representation of human bones with that of a bird, which 
follows, demonstrates how similar they are.”
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conduct anatomical observations on animals and man since, if a structure was found in 
one species, it was reasonable to research it in other species.

Such considerations became rather common, especially from the late seventeenth 
century (see Fig. 9.2). But a deeper investigation about the meaning, or the causes, of 
similarity between organs or organisms began emerging during the eighteenth century. 
We find an example of this exploration in Buffon’s text on the ass:

If, from the immense number of animated beings which people the universe, we select a 
single animal, or even the human body, as a standard, and compare all other organized 
beings with it, we shall find that each enjoys an independent existence, and that the 
whole are distinguished by an almost infinite variety of gradations. There exists, at the 
same time, a primitive and general design, which may be traced to a great distance, and 
whose degradations are still slower than those of figure or other external relations: For, 
not to mention the organs of digestion, of circulation, or of generation, without which 
animals could neither subsist nor reproduce, there is, even among the parts that con-
tribute most to variety in external form, such an amazing resemblance as necessarily 
conveys the idea of an original plan upon which the whole has been conceived and 
executed. When, for example, the parts constituting the body of a horse, which seems 
to differ so widely from that of man, are compared in detail with the human frame, 

Figure 9.2 Comparison of man and horse according to De Garsault (1741: plate II, fig. B).
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instead of being struck with the difference, we are astonished at the singular and almost 
perfect resemblance … Let us next consider, that the foot of a horse, so seemingly 
different from the hand of a man, is, however, composed of the same bones, and that, 
at the extremity of each finger, we have the same small bone, resembling a horse- shoe, 
which bounds the foot of that animal. From these facts we may judge, whether this 
hidden resemblance is not more wonderful than the apparent differences; whether this 
constant uniformity of design, to be traced from men to quadrupeds, from quadrupeds 
to the cetaceous animals, from the cetaceous animals to birds, from birds to reptiles, 
from reptiles to fishes, &c. in which the essential parts, as the heart, the intestines, the 
spine, the senses, &c. are always included, does not indicate, that the Supreme Being, in 
creating animals, employed only one idea, and, at the same time, diversified it in every 
possible manner, to give men an opportunity of admiring equally the magnificence of 
the execution and the simplicity of the design?5

This text is difficult to interpret and appeared in a polemical context. But what is import-
ant here is that Buffon considered anatomical similarity throughout the whole of the 
animal kingdom. Furthermore, he connected it with the idea of a common genealogical 
origin of all species. He eventually dismissed this hypothesis, but for the first time, a 
possible physical explanation of homology and unity of plan was given.

Even if this explanation was not widely accepted, it contributed to the spread of the 
idea that anatomical form could be interpreted independently of function and that there 
existed a kind of relationship between parts of different organisms that one could not 
make sense of by considering only similarity of function. The French anatomists Louis 
Jean Marie Daubenton (1716– 1800) and Félix Vicq d’Azyr (1748– 1794) in particular 
developed this theme, which became central in the life sciences around 1800. At that 
time, anatomists and naturalists, particularly in France and Germany, tried to clarify the 
definition of such morphological relations and to establish criteria enabling others to 
recognize them.

The term “homology” first appeared in life sciences at that time, but the terminology 
was not fixed until the mid- nineteenth century. The concept, however, was commonly used 
from the first decades of the century. Étienne Geoffroy Saint- Hilaire (1772– 1844) was 
one of its most famous supporters. He was convinced that all animals were built according 
to a single plan (théorie des analogues) and, as a consequence, that it was possible to find 
equivalents of every organ of a species in all other species. More importantly, he tried 
to establish a clear criterion for recognizing such correspondence between species and 
introduced the principle of connections: for him, an organ in one species was homologous 
to one in another species if it had similar connections with neighboring organs known to 
be homologous. Thus, even if two organs had completely different functions and if their 
forms were not similar at first sight, it was possible to demonstrate their homology (i.e., 
the essential similarity of their forms). This criterion led to the realization of the program 
of research already suggested by Belon nearly three centuries earlier. There was, then, a 
positive approach of generality in comparative anatomy.

5 Buffon (1753, vol. 4: 379– 81; transl. Smellie, 1781, vol. 3: 399– 401).



 9.2 Homology in pre-transformist comparative anatomy 291

   291

An important aspect for Geoffroy Saint- Hilaire was that unity of plan concerned the 
whole animal kingdom, and not only a single group such as vertebrates. For example, 
according to him, insects and other arthropods shared the organization of vertebrates, 
apart from the fact that they lived inside their vertebral column and that the mutual posi-
tion of nervous system and digestive tube was inverted. In 1830, he tried to demonstrate 
that the organization of mollusks was essentially the same as that of vertebrates and 
insects, but his rival, Georges Cuvier (1769– 1832), was strongly opposed to these views 
and attacked them energetically.

Cuvier had a very different view of animal anatomy. The key concept, in his thought, 
was the organism. According to him, an animal was a whole, each part being closely con-
nected to the others in a functional way, to the advantage of the whole. Each zoological 
group was thus characterized by a specific plan of organization that worked perfectly 
and could not be related to another one. He acknowledged four such groups (he named 
them embranchements): vertebrates, articulates (i.e., arthropods and annelids), radiates, 
and mollusks and, thus, could not accept Geoffroy’s attempts to unify at least three of 
them (vertebrates, articulates, and mollusks).

In a sense, the Geoffroy– Cuvier debate was about how to conceive of generality in 
animal anatomy, and also how much scope to give it. Geoffroy considered primarily 
morphological similarities and thought it was possible to find a unique plan for the whole 
animal kingdom, whereas Cuvier favored function and, thus, thought that anatomical simi-
larity existed within a given embranchment, but not between different embranchments.

This debate created a considerable “media sensation” (Appel, 1987). It is important 
to emphasize that the central point was not transformism. Geoffroy Saint- Hilaire himself 
never tried to explain the unity of organization of all animals by a common genealogi-
cal origin. Certainly, elaborate evolutionary theories did already exist at that time (cf. 
Lamarck, etc.), but anatomical thought mostly developed itself in a fixist context, or, at 
least, with no direct reference to the possibility of species transformation. Therefore, the 
concept of homology was not directly connected to the idea of evolution. It was mostly 
interpreted as the expression of a general “type” (or “archetype”) whose exact nature 
varied according to the different authors.

The English anatomist and paleontologist Richard Owen (1804– 1892) tried to make 
this notion precise. According to him, the vertebrate “archetype” was a Platonic idea, of 
which the real species were modified projections, and he represented its skeleton on a 
plate, next to the skeletons of each class of vertebrate.

Owen also contributed to the attempt to fix the fluctuating terminology and 
gave the following definition for the adjective “homologous” (or “homologue”) in 
1843: “Homologue … The same organ in different animals under every variety of form 
and functions.”6 This definition gradually spread. It is very close to the current definition, 
except that it was not connected in any way with any evolutionary theory. The debates 
on anatomical generality, up to the second half of the nineteenth century, took place at 
an ideal, not physical or historical level.

6 Owen (1843: 374, 379). See also Owen (1848).



292 Homology: an expression of generality in the life sciences

292

9.3  Homology and the evolutionary theory: a physical 
interpretation of generality

When Charles Darwin published the first edition of On the origin of species in 1859, 
transformation of species was not a new idea (in contrast to the idea of natural selection), 
but this publication contributed to a large- scale dispersion of this theory in the life sci-
ences. In relatively few years, most biologists accepted it and re- interpreted the data in 
their own field in the light of transformism. Darwin himself was aware of the advantages 
his theory could have for anatomical analysis and the concept of homology: he devoted 
one chapter to these questions in his book. He claimed that transformism could offer a 
satisfactory theory for all the homologies anatomists had found in the preceding decades, 
which could then be explained, not ideally, but physically, by a common genealogical 
origin of the considered organs or parts: different species had similar organs since they 
had common ancestors. Conversely, all these structural similarities were evidence in 
favor of evolution.

Thus, all concepts connected to structural generality in animals that had been intro-
duced in a fixist context could be re- interpreted in the new evolutionary frame. Homology 
was no longer an ideal relation, but a historical one. In 1870, Edwin Ray Lankester 
(1847– 1929), a disciple of Darwin, gave a new definition of this concept: “Without doubt 
the majority of evolutionists would agree that by asserting an organ A in an animal α to be 
homologous with an organ B in an animal β, they mean that in some common ancestor 
κ the organs A and B were represented by an organ C, and that α and β have inherited 
their organs A and B from κ.”7 In the same vein, Owen’s archetype could be considered 
as a common ancestor: it was no longer a Platonic idea, but acquired a physical reality. 
Indeed, in spite of the considerable conceptual change caused by evolutionary theory 
regarding the interpretation of generality among living beings, many concepts could 
paradoxically be re- used.

This continuity is particularly remarkable if we consider the anatomists’ practices and 
methods of investigation. Before and after 1859, they were looking for homologies between 
different species, and for that they used the same methods (i.e., anatomical observations 
on adult or embryonic forms) and the same criteria (e.g., principle of connections). The 
particular questions (e.g., “Are vertebrates’ eyes homologous to arthropods’ eyes?,” “Is 
there a homology between this bone of a fish and that bone of a mammal?,” etc.) did 
not change. Surely, their underlying meaning was not the same, since ideal homology 
was replaced by genealogical relations, and the aim of research program in comparative 
anatomy was, then, to understand (or reconstruct) the history of species; but the realiza-
tion of this program, that is, the daily work of anatomists, was not altered by this change. 
This was probably an important factor in the relative quickness of the shift from idealistic 
to transformist morphology in the 1860s,8 as if the most important thing was the quest 
for generality, whatever meaning this generality could have.

7 Lankester (1870: 36).
8 See Coleman (1976), Bowler (1989), Richards (1992), and Schmitt (2004: part 2).
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Deeper transformations in life sciences occurred only some decades later, in particular 
with the generalization of the experimental approach in such fields as embryology, and 
with the emergence of new biological disciplines such as genetics. But these new fields 
were also able to integrate the concept of homology, as we can see in the case of genetics.

9.4  The new meanings of homology in genetics

Genetics emerged as an autonomous field in the first decades of the twentieth century. 
Its position regarding homology was, at first, rather negative, and geneticists rejected this 
concept inherited from morphology and often considered obsolete and unclear. A good 
example of this attitude is given by the Scottish geneticist Francis Albert Eley Crew 
(1886– 1973), who wrote in 1925:

The feather of the bird is not necessarily the modified scale of a reptile but may be a 
distinctly different characterization based upon an entirely different genotype. A certain 
genotype results in a certain characterization— scales— ; mutation— alteration— in this 
genotype results in a new genotype and thus leads to another characterization. The old 
genotype is transformed into the new but the old characterization is not transformed, it 
disappears and is replaced. Scales and feathers are not homologous structures— homology 
attempts to establish a similarity in origin and nature of structures seemingly differ-
ent and is based on the assumption that during the course of evolution structures have 
undergone transformation yet remain fundamentally the same. In fact this conception of 
homologous structures cannot be accommodated by the chromosome hypothesis until it 
can be experimentally demonstrated that the genes themselves can pass through a process 
of gradual modification.9

Thus, what was important for Crew was the understanding of the proximal, genetic 
causes leading to the formation of an organ. For him, chromosomes (and, then, genes) 
were (discontinuously) modified in the course of evolution, so that it was meaningless 
to compare an organ in one species (controlled by certain genes) with another organ in 
another species (controlled by different genes): a feather was only a feather, and not a 
modified scale. Generality could not be conceived in absence of immediate causality and 
material continuity.

The geneticist point of view was also expressed by James Edwin Duerden (1869– 1937):

Following the older methods of comparative morphology, we can maintain that the 
relationship of scale and feather affords evidence that in the course of evolution the 
reptilian— scale has grown upwards into a filament, and by a complicated system of 
incisions of the epidermis, due to ingrowths of the dermis, the filament has frayed out, 
and given rise to the many structural divisions of the feather— shaft, barbs, and barbules. 
This is the view that has hitherto been largely accepted … But now, says the Mendelian, 
a feather is a new structure; it is sui generis: it is an epidermal mutation, the result of a 

9 Crew (1925: 152). The genotype is the set of genes of an organism.
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separate germinal change; its origin is quite apart from that of scales … The delight of the 
morphologist in the tracing of a corresponding structure through all its many transitional 
stages, from its one extreme to the other, is but a delusion if a genetic relationship is the 
underlying idea (Duerden, 1923– 4, quoted in Boyden, 1935: 449).

Homology as it was conceived by evolutionary comparative anatomy, thus, seemed to be 
very far from the scope and approaches of the first geneticists. But some of them soon 
found different ways to re- use this concept by adapting it to the new field. As early as 
1920, Alexander Weinstein introduced the notion of “homologous genes” to designate 
genes of different species for which mutations had about the same effect and with similar 
position on the chromosomes (Weinstein, 1920). This definition was similar to the def-
inition of homology by anatomists, but at the molecular level. Homology of genes, just as 
homology of organs, expressed the genes essential similarity (resulting from a common 
evolutionary origin). Similar criteria could be used to identify homologies between organs 
or between genes, since Weinstein considered the relation of each gene with its neighbors, 
just as Geoffroy Saint- Hilaire had introduced the principle of connections. The quest for 
biological generality was thus able to shift its conceptual tools from the macroscopic to 
the microscopic scale.

But genetics was also able to acknowledge homology on the scale of organs using 
genes as a new kind of criteria. Some authors began, in the 1930s, to try to find evidence 
for homologies by analyzing the genes that are involved during the development of the 
different organs. In 1935, Alan Boyden suggested that, since homology results from 
common descent, it was a “genetic phenomenon.” Therefore, according to him, “know-
ledge of gene action should therefore be able to illuminate and explain homology, and 
might even provide more precise criteria by which it might be recognized.” Since “the 
structure of any particular organ is determined by the interaction of many if not by all of 
the genes presents in the particular individual …, however discontinuous the changes in 
individual genes may be the fact is that through the interaction of many genes the organ 
is still essentially and fundamentally similar,” so that “the determination of taxonomic 
relationships and of homology could then be based on methods of testing identity of 
genes” (Boyden, 1935: 448– 51).

Homology at the microscopic (genetic) level was thus connected to homology at the 
macroscopic (anatomical) level. This link was not only a theoretical one, but it suggested 
new experimental approaches to find homologies and, then, new programs of research. 
This view was challenged in 1938 by Gavin De Beer (1899– 1972), who stressed that 
“the interesting paradox remains that, while continuity of homologous structures implies 
affinity between organisms in phylogeny, it does not necessarily imply similarity of genetic 
factor or of ontogenetic processes in the production of homologous structures” (De Beer, 
1938: 71). But Boyden’s idea remained, and it is behind many studies in evolutionary 
developmental biology today, a field of which a major aim is to find phylogenetic relations 
between structures of different species by analyzing and comparing gene expression in 
these species.

Homology thus represented an important factor of continuity in life sciences during 
the last 250 years and succeeded in being redefined and reused in different theoretical 
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contexts, in different disciplines and at different levels, in spite of the important changes 
undergone by biology (emergence of new theories such as evolution, of new fields such 
as genetics …). The reason for this is probably that it is one of the major concepts that 
fulfil the quest for unifying principles and generality in this field.
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The role of genericity in the history 
of dynamical systems theory

TATIANA ROQUE

10.1  Introduction

In mathematics, general descriptions of mathematical beings in a given universe often 
engage a tension between the generality of the description and the relevance of the proper-
ties chosen to be described. In the case under study, mathematicians’ aim, in their attempt 
to classify or, better, to provide a general description of dynamical systems, was to find 
a compromise between the two poles: generality and relevance. The notion of genericity, 
along with its different mathematical definitions, plays a fundamental role in the history 
of dynamical systems theory.

In his memoir “Sur les courbes définies par une équation différentielle,” published in 
four parts, from 1881 to 1886, and known as the starting point of the study of dynamical 
systems, Poincaré analyzed the behavior of curves that are solutions for certain types of 
differential equations.1 He succeeded in classifying them by focusing on singular points, 
described the trajectories’ behavior in important particular cases and provided new meth-
ods that proved to be extremely useful. Some historians have already analyzed these 
works: Christian Gilain in the context of research on differential equations in Poincaré’s 
time,2 Anne Robadey from the perspective of generality in a different sense from the one 
exposed here,3 and myself, in relation with stability issues.4

Despite its fundamental importance, this study was far from describing the classes 
of differential equations themselves. Over 20 years after this first breakthrough, during 

1 Poincaré (1881, 1882, 1885, 1886).
2 Gilain (1977).
3 Robadey (2006).
4 Roque (2011).
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the 1908 International Congress of Mathematicians in Rome, Poincaré announced his 
prospects for future research on differential equations as follows:

Much has already been done for linear differential equations, and one only needs to perfect 
what was started. However, concerning nonlinear differential equations, developments 
have been too modest. The hope of integrating with known functions was forsaken long 
ago; we therefore need to study in and of themselves the functions defined by differential 
equations, starting with an attempt to systematically classify them. A study of the growth 
mode in the vicinity of singular points will most probably provide the first elements for 
such a classification, but we will not be satisfied until some group of transformations has 
been found (such as the Cremona transformations), playing— vis- à- vis the differential 
equations— the same role as that played by the group of bi- rational transformations in 
the case of the algebraic curves. Then, we would be able to place in a single class all the 
equations derived from one of them by transformations. We would have the analogy with 
an existing theory to guide us: that of bi- rational transformations and the genus of an 
algebraic curve.5

The above quotation clearly demonstrates that Poincaré’s wish was that this classifi-
cation could have the same general character as that of the algebraic curves classified 
according to their genus. We need not go into the details of the analogy that Poincaré 
points to in this quote, but we ought to underline three elements that will play a part 
in this chapter.

First, Poincaré points to a shift in terms of objects and investigative means. In elem-
entary cases, one is accustomed to solving a differential equation by exhibiting a formula 
built from elementary functions (such as exponentiation or arctangent). Usually, a single 
formula describes a family of solutions, since it contains arbitrary constants. However, in 
all but the most elementary cases, this family fails to encompass all solutions: “singular” 
solutions are, more often than not, left out. In more complex situations, the functions 
that are solutions of a given differential equation usually cannot be expressed by simple 
formulas, hence the very meaning of what it means to solve a differential equation has to 
be altered. In his early work on the qualitative study of differential equations (1881– 6), 
Poincaré showed that a new viewpoint allowed for relevant information to be gained even 
when explicit formulas are beyond reach. This new and qualitative viewpoint relies on 
two significant shifts. First, Poincaré chose to focus on the curves that are defined by the 
solutions, hence a shift from the analytic to the geometric. Second, the theory does not 
deal with individual solutions (seen as functions or as curves), but with the system of all 
solutions. In particular, singular solutions must be taken into account from the beginning 
since they provide the first elementary pieces of information on the basis of which the set 
of solutions can be investigated as a geometric object.

Second, when it comes to studying the sets of solutions to all differential equations 
of a given type, some classification principle has to be devised. One needs to find a way 
of capturing technically the idea that two different sets of solutions are equivalent from 
the qualitative viewpoint. If that could be achieved, all equivalent sets of solutions could 

5 Poincaré (1908: 177).
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be “sorted into a single class,” leaving two tasks for the mathematician: identifying the 
relevant geometric properties that tell to which class a given differential equation belongs; 
and enumerating the different classes thus obtained. To serve this purpose, Poincaré 
suggests that groups should be brought into the picture: two differential equations (or 
two sets of solution curves) would be considered as equivalent if and only if they could be 
transformed one into the other by a transformation from a given group. In this framework, 
finding the right equivalence relation boils down to finding the right transformation group. 
More often than not, there are several possible groups to choose from, and hence several 
(possible) equivalence relations: the larger the group, the coarser the equivalence relation 
and the cruder the classification.6 This is one of the aspects for which the analogy with 
the theory of algebraic curves is enlightening. A fine- grained classification of algebraic 
curves relies on the group of algebraic isomorphisms. Using the larger group of birational 
transformations entails a loss of information (curves which are algebraically inequivalent 
can be birationally equivalent), but this is the price to be paid for a convenient classifica-
tion: algebraic curves (more precisely smooth, complex, projective algebraic curves) are 
birationally equivalent if and only if they have equal genus; the genus being a numerical 
invariant which can easily be computed, the coarser classification proves tractable. This 
coarse classification can be seen as a first step on the way to the finer classification.

Third, in this quotation, Poincaré presents a rather loose analogy between the theory 
of algebraic curves and that of systems of curves defined by differential equations. He 
merely suggests that a very general strategy, which had been successfully used in the case 
of algebraic curves, should be used in another theory. In this chapter, we will see several 
cases in which proof strategies and concepts were introduced in a given theoretical context 
by mathematicians who explicitly relied on an analogy with another theoretical context. 
This phenomenon is fundamental for the understanding of the relationship between the 
various concepts of genericity that we will encounter.

In this study, we will focus on the second half of the twentieth century, hence on a much 
later phase of the development of the qualitative study of differential equations. The theory 
would be re- christened the “theory of dynamical systems.” Sets of solutions would be 
tackled in the language of function sets, or function spaces. The progressive discovery of 
the complexity of systems of solutions would lead to several classification attempts, based 
on different groups; on different notions of equivalence or “sameness” or “proximity;” 

6 For the reader who is not familiar with these ideas, a geometric example can be given (in the spirit of 
F. Klein’s Erlangen program). In elementary plane geometry, one can consider three different groups, the 
group of translations (T), the group of direct isometries (I), and the group of similitudes (S). The second one 
is larger than the first one, since it also contains rotations; S is larger than I since it also contains homotheties 
(scalings). If only T is taken into account, plane geometric objects fall into a multitude of inequivalent classes; 
for instance, not all (infinite, straight) lines are equivalent, two lines being equivalent (up to a translation) if 
and only if they are parallel. If I is taken into account, all lines become equivalent and make up a single class; 
parallelism stops making sense. Yet I is enough to classify more complex geometric objects: for instance, two 
circles are equivalent relative to I if and only if they have the same radius (the “radius” thus forming a complete 
set of invariants). Moving on to S, all circles become equivalent and the notion of radius becomes meaningless. 
In Euclidean geometry (school variety), S is the standard group: the theorems proven for circles of radius 1 
hold for circles of radius 2 all the same, since in the wording of theorems only ratios of lengths are referred to.
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on different “suggesting sciences” (differential topology, then measure theory). All these 
elements fit the general scheme outlined by Poincaré in the above quotation.

However, one fundamental element is not related to this description. As we shall see, 
mathematicians would soon set themselves the more tractable task of classifying “almost 
all” solutions. To implement this strategy, two concepts must be defined:  that which 
characterizes the subset of solutions whose description is tractable; and that which gives 
a technical meaning to “almost all.” Our historical narrative will document the use of 
several pairs of concepts. From a more epistemological viewpoint, the core issue is that 
of the interdependence of the two concepts, and of the compromises that must be made: the 
subset picked out by the first concept must be small enough to exclude cases which are 
beyond our descriptive capacities, but large enough to be considered “generic,” that is, to 
satisfy the “almost all” requirement. This dialectic can be thought of as a productive tension 
in the development of the theory of dynamical systems; a tension which the historical 
development of the concept of genericity helps one to understand.

10.2  The influence of singularity theory on the first 
definitions of genericity

At first, the qualitative study of differential equations Poincaré proposed was explored by 
few mathematicians,7 the best known examples being Hadamard and Birkhoff. Dynamical 
systems, as mathematical objects, were defined in 1927 by Birkhoff,8 and his defini-
tion already implied a qualitative view.9 Nonetheless, it was only in the fifties that the 
theory gained a new impulse, mainly with the classification efforts which will be analyzed 
throughout this chapter.

The establishment of dynamical systems as a theory is related to classification goals, 
in close relationship with what was to be later called singularity theory of differentiable 
mappings. One of the major aims of the theory was to classify mappings by the type of 
their singularities. The classification of algebraic curves, mentioned by Poincaré, succeeds 
in explaining the type of all such curves by their genera. In singularity theory, mathemati-
cians also tried to classify all objects of a given universe, for instance mappings from Rn 
to R. However, they only obtained a classification of almost all objects of this universe. 
In dynamical systems theory, as the curves have much more complex behaviors, the 
maximum one could expect to obtain is a classification of almost all objects of a given 
universe. So, prior to classification, we must know if the classifiable objects are almost all 
objects in a universe.

7 This means that few mathematicians explored dynamical systems with the general perspective discussed 
here. Roque (2015) shows that a number of astronomers and mathematicians of Poincaré’s time employed 
some of the tools he proposed, as periodic solutions.

8 Birkhoff (1927).
9 For a discussion about qualitative implications in the definition of a dynamical system, see Roque (2007) 

and Roque (2011).
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The aim of that which would later be called singularity theory was to obtain a picture 
of the kind of singularities that an arbitrary function from Rn to Rp can have. Since it is 
impossible to characterize all functions in this way, the strategy used was to determine 
the kind of singularities a certain prototype function can have for each universe (obtained 
for fixed values of n and p), and then show that any function in such a universe can be 
approximated by the prototype. This means that we classify the prototypes and show 
that any being in the universe can be approximated by one prototype. It was René Thom 
who expressed this last property of prototypes in terms of genericity. In the search for 
generic properties, the question is to establish that almost all (and not necessarily all) 
beings are classifiable.

Beginning in 1925,10 Marston Morse studied the singularities of functions from a 
manifold M Rn⊂  to R. He found that any function of this type can be approximated 
by a function having only isolated singular points.11 A smooth real- valued function on a 
manifold M was later called a “Morse function” if it had no degenerate critical points12. 
Nowadays, the most important result of Morse theory says that almost all functions 
(in C2 topology) are Morse functions. Besides, as Morse functions have only one type 
of singularity, which may be easily characterized, it is possible to obtain a satisfactory 
description of almost all functions in the universe of real- valued functions.

In a paper published in 1955, on the singularities of mappings from R2 to R2, Hassler 
Whitney defined an “excellent” mapping as being a mapping for which all singular points 
are “folds” (analogous to singularities of Morse functions) and “cusps,” which are well 
characterized types of singularity.13 Then, he showed that, arbitrarily close to any mapping 
of the plane into the plane, there is an excellent mapping. This means that any mapping 
of that type can be approximated by a mapping having only well- characterized types of 
singularities (see Fig. 10.1).

The following year, in an article presented in the Bourbaki Seminar,14 Thom proposed 
studying, with the same methods as Morse and Whitney, the mappings from Rn to Rp 
and characterizing them by the type of their singularities. It was thus necessary to analyze 
mappings that can have well- determined singularities and that can approximate an arbi-
trary function in the space of functions from Rn to Rp. The question is to find classifiable 
prototypes and to show that any function can be approximated by one of them. So, the 
properties of the prototypes would be called generic. But we still do not know exactly 
what this means.

Thus, Thom defines a generic property P of a mapping of class Cm from Rn to Rp as a 
property verifiable by all functions belonging to the space of functions of this type, except 
for a “thin” subset of that space. This fact can be viewed as an extension to differentiable 

10 Morse (1925).
11 With the Hessian being non- zero at each.
12 A point p in a manifold M is a critical point if there is a local coordinate system ( ,..., )x xn1  about p such 

that ∇ =f p( ) 0. Such a critical point is non- degenerate if and only if the n × n matrix of second partial deriva-
tives, called the Hessian of f at p, is non- singular, that is, its determinant does not vanish.

13 Whitney (1955).
14 Thom (1956a).
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structures of the notion of genericity used in algebraic geometry. In this theory, a generic 
property was already defined as a property that can be satisfied for all points of a space, 
except for the points of a thin sub- manifold of that particular space. In the spring of 1952, 
while spending a year in Princeton University, Thom had, in his own words, “a striking 
conversation” with Claude Chevalley who suggested introducing the notion of genericity 
used by the Italian geometers to the world of differential structures.15

In a subsequent article, published a few months after the Bourbaki one, Thom explicitly 
notes the parallelism between the definition of genericity presented in his first article 
and the one employed in algebraic geometry, with the difference that, in the context 
of differentiable mappings, the functions studied constitute a functional space that is 
a Baire space and the exceptional thin sub- manifold is replaced by a closed subspace 
without interior points.16 But Thom was not completely satisfied with this terminology. 
Despite this fact, the adjective “generic” has been disseminated with the meaning that 
generic transformations are those that can approximate any transformation. This notion 
of “approximation” had a precise definition. A generic property was then known as a 
property that is satisfied by the elements that constitute an open and dense subspace of 
the domain, which is the complement of a closed subspace without interior points.

A successful classification program in the theory of singularities of differentiable functions 
should be able to define classes of functions with the following characteristics: (1) each class 
is sufficiently particular to be geometrically well described by the type of its singularities; and 
(2) such classifiable functions are sufficiently general to include “almost all” functions in 
the sense that they constitute an open and dense subspace of the domain of all functions.17

x1
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y1
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Figure 10.1 The Whitney cusp drawn by Vladimir I. Arnold (Arnold, 1992: 4). This kind of singularity 
arises when a surface like the one in the figure is projected onto a plane.

15 Thom (1989: 200).
16 “Une propriété (P) des applications f: R Rn p→ ,  définie localement en tout point de l’espace source sera 

dite générique, si l’ensemble des f qui ne présentent pas la propriété (P) en au moins un point d’un compact K 
de Rn  forme dans L(R Rn p : )r  un ensemble fermé rare (fermé sans point intérieur)” (Thom, 1956b: 52). See 
also Thom (1956c).

17 “Pour tout couple d’entiers n, p [concernant les applications de Rn  dans Rp] (…) on se propose de décrire 
et classifier un certain ensemble de singularités (S), tel que les applications qui présentent des singularités du 
type (S) et uniquement de celles- là forment um ensemble ‘générique’ ” (Thom, 1956c: 59).
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For differentiable functions, these two conditions express the compromise mathemati-
cians were searching for, between the relevance of the properties under study (given by 
the type of singularities) and the generality of these properties or its genericity (the size 
of the subset of entities satisfying these properties). The type of the singularities of a 
function successfully captures its qualitative aspect and, if the two conditions cited above 
are fulfilled, we can conclude that almost all functions are classifiable by their singulari-
ties. The importance of this conclusion justifies the search for classifiable functions that 
form a generic subset in the domain of all functions. A similar goal would motivate the 
development of dynamical systems theory in the fifties and the sixties.

10.3  Globally understanding dynamical systems 
through the notions of structural stability  
and genericity

During its renewal at the end of the fifties, the style that the theory of dynamical systems 
acquired was greatly influenced by the program of classifying singularities of real func-
tions, and vice- versa. In his doctoral thesis, David Aubin shows how the practices of what 
he calls “applied topologists”— working at IHES (Institut des Hautes Études Scientifiques) 
under Thom’s leadership and having inherited from the Bourbakists the interest in 
structures— influenced the style acquired by qualitative dynamics, notably in the pioneer-
ing works of Peixoto and Smale.18 An understanding of the way this style was transmitted 
involves, as we will see later, the direct collaboration among the three mathematicians, not 
only at the IHES but also at the Brazilian IMPA (Instituto de Matemática Pura e Aplicada).

The Brazilian mathematician Mauricio Peixoto was convinced that the main goal of 
the mathematics of his times was to classify mathematical objects, with emphasis on their 
structures, and by means of equivalence relations between them.19 He thought it would 
be a useful challenge to express the theory of differential equations in a set- theoretic lan-
guage. From his point of view, the suggestion given in Poincaré’s quotation (transcribed 
in the introduction) had to be fulfilled with notions extracted from set theory.

Poincaré’s and Birkhoff ’s work was certainly the point of departure for such a study, 
but in order to express their theory in a set theoretical basis it was still necessary to 
introduce two new elements:20

A)  A space of differential equations, or dynamical systems, possessing a topological 
structure.

B)  A notion of qualitative equivalence between two differential equations (analogous 
to Cremona transformations as was claimed by Poincaré).

Both requirements were fulfilled, primarily in two articles: the first written in 1958 and 
published in 1959 and the second published in 1962.21 Peixoto defines the space of 
dynamical systems by considering a dynamical system as a point of a Banach space, 

18 Aubin (1998).
19 Peixoto (2000).
20 Peixoto (1987).
21 See Peixoto (1959a) and Peixoto (1962), respectively.
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and proposes that an equivalence relation between two systems in this space should be a 
homeomorphism, transforming trajectories of one system into trajectories of the other. 
This last definition is inspired by the work of Andronov and Pontryagin.

In 1937, these two Soviet mathematicians had published a paper called “Systèmes 
grossiers,”22 in which they studied dynamical systems defined in a two- dimensional space 
and proposed that the trajectories of two systems should be considered equivalent if they 
could be transformed into one another by means of a transformation that is a homeo-
morphism (with the additional condition that this transformation is close to the identity 
transformation23). A system is called “grossier” (which means “coarse” and can also be 
translated as “robust”) if its trajectories remain qualitatively similar after a perturbation 
in the definition, and the homeomorphism is precisely the transformation considered in 
order to maintain trajectories that are “qualitatively similar.”

The importance of the coarseness property consists in the role it plays in modeling 
physical systems. If a system is not coarse, or robust, its fundamental properties are 
easily lost after a small perturbation. As mathematical models are just idealizations of 
physical realities, we cannot avoid perturbations in the definition of the mathematical 
system. Thus, a coarse system is a good candidate to serve as a model for a physical 
situation.

Around 1950, as Dahan- Dalmedico showed,24 “grossier” was renamed “structurally 
stable,” following a suggestion of Lefschetz. By this time, there were some researchers 
working on the subject in Princeton, and that led Peixoto to join them in 1957.

In 1952, a mathematician of Lefschetz’s team, De Baggis, managed to provide the 
demonstrations that were lacking in Andronov and Pontryagin’s article and alleviated 
some of the requirements they had recognized as necessary. He opens his article by 
claiming that:

In the study of nonlinear problems it is difficult for the mathematician to find rich clas-
sifications of nonlinear systems which are sufficiently homogeneous in their properties 
to yield an interesting theory.25

He explicitly refers, in this quotation, to the productive tension we claim is present in 
the efforts undertaken, during the fifties and sixties, by mathematicians trying to obtain 
some kind of classification of dynamical systems.

The difficulty of this research direction is due to the enormous variety of behaviors 
of trajectories of dynamical systems in the nonlinear case. In order to provide general 
descriptions it is necessary to impose some restrictions that make it possible to choose 
a subset of interesting systems in the universe of nonlinear systems. But what are the 
interesting properties that can be used to restrict this enormous universe?

22 Andronov and Pontryagin (1937).
23 In Peixoto (1962), Peixoto demonstrated this requirement was not necessary.
24 Dahan- Dalmedico (1994). See also Roque (2008).
25 De Baggis (1952: 37).
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Issues of physical relevance can provide a clue to the right concept of structural sta-
bility. From the standpoint of applied mathematics, a supplementary advantage of such 
a concept is that it would solve the problem of legitimacy of modeling raised by the 
Soviet mathematicians because, even if we know a model is never exact, it can always be 
approximated by a structurally stable one, which means it can be approximated by another 
model, similar to the original, that does not lose its main properties after perturbation.

Andronov and Pontryagin attempted to give a mathematical description of two- 
dimensional structurally stable systems, proposing that the essential features of these 
dynamical systems that are able to be preserved under small perturbations are: (1) it 
has a finite number of singularities, all of which are simple; and (2) no trajectory of 
the system goes from a saddle point (that is a type of singularity) to another saddle 
point. These features express the topological character of the set of trajectories of a 
dynamical system defined on a two dimensional manifold. In his article of 1959,26 Peixoto 
showed that structurally stable systems, having Andronov and Pontryagin’s features, 
form an open and dense subset in the space of all systems defined on a sphere. It is the 
first general result in the theory of dynamical systems.27 Even though it only holds for 
two- dimensional systems defined on a specific surface, Peixoto’s theorem is a general 
result, since it succeeds in describing the relevant features of almost all two- dimensional 
dynamical systems.

In the following years, the result was reformulated in the mode of singularity theory. 
Smale was introduced to Peixoto in the autumn of 1958, during his postdoctoral studies at 
Princeton. Less than two years later, at the beginning of 1960, the American mathemati-
cian went to Rio de Janeiro. In 1961, Thom also visited Rio and, after becoming familiar 
with similar problems from singularity theory, Peixoto reformulated his result in his 
paper of 1962,28 using the term “generic” for the first time in the context of dynamical 
systems theory.

Peixoto starts with the following assertion: the fact that structurally stable systems 
form an open and dense subset of the space of all systems means they are “generic.” It 
is something significant “because these systems are precisely the ones that exhibit the 
simplest possible features being amenable to classification.”29 Thus, Peixoto manages 
to show that structurally stable systems defined on a compact bidimensional orientable 
surface are generic. But how are these systems precisely the ones that are classifiable?

We know the special features of structurally stable two- dimensional systems, given 
in conditions (1) and (2) of Andronov and Pontryagin. If these systems are generic, 
we can hope to classify them by their topologically distinct types, for instance, by their 
number of distinct singularities, even if it can be a difficult task.30 That is why we can say 

26 Peixoto (1959a).
27 In the paper of 1962 he extended this result to orientable two- dimensional manifolds that are compact 

and differentiable.
28 Peixoto (1962).
29 Peixoto (1962: 101).
30 Later on, Smale classified the topological distinct types of structurally stable systems on a two- dimensional 

compact differentiable manifold. He shows there are only a finite number of topologically distinct types of 
structurally stable systems having a given number of singularities and closed orbits.
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that the goal of demonstrating that structurally stable systems are generic is to establish 
conditions that make obtaining a classification result possible. Thus we propose calling 
it a pre- classification program.

But we remind ourselves that this problem was solved only for dynamical systems 
defined on specific two- dimensional spaces, and that in general the models dealt with 
have more dimensions. What happens in larger dimensions?

In the history of dynamical systems theory, in order to get to a pre- classification 
result for larger dimensions, the notions of stability and genericity had to be redefined 
using different mathematical tools. First of all, it was necessary to extend the definition 
of structurally stable systems for any dimension, which was done by Peixoto in the same 
year (1959) using the language of functional spaces.31

On the basis of this new definition, mathematicians need to find ways of describing as 
explicitly as possible those systems which are structurally stable in any dimension. In other 
words, mathematicians need to generalize conditions (1) and (2) of the characterization 
of Andronov and Pontryagin.

The work of the American mathematician Steve Smale proved to be of fundamental 
importance for providing a solution to the problem. As we have said, he met Peixoto in 
1958 and the encounter, according to Smale, “sparked my interest in structural stability.”32 
That is why he went to Rio de Janeiro to visit IMPA in 1960.

The generalization of the conditions characterizing structurally stable dynamical sys-
tems for dimensions greater than two is inspired by the work of Morse, which attests to 
the influence of the singularity theory of differentiable mappings. Morse was responsible 
for associating the number of singularities of a function to the topology of the manifold on 
which the function is defined. This motivated Smale to obtain a similar result in 1960, as 
he related the number of periodic trajectories of a dynamical system to the homology of 
the manifold on which the system is defined.33 Inspired by this result, he proposed, in the 
same article, to study systems with a finite number of periodic trajectories, and in which 
all trajectories approach periodic trajectories. As a consequence, these periodic trajectories 
are the only attractors of the system. In addition, he showed the stable and unstable 

31 The definition chosen in Peixoto (1959b) can be summarized as follows:

Let X X X nn= ≥( ,..., ),1 2 be a differential system dx
dt

X x x i ni
i n= =( ,..., ), ,...,1 1  of class C1 defined in 

the unit ball B x xn
n, .1

2 2 1+ + ≤  The system X is said to be structurally stable in Bn  if:

(i) the vector field of X has no contact with the boundary Sn−1of Bn  and, say, always points inward;
(ii) there exists δ > 0 such that, whenever a system Y Y Yn= ( ,..., )1  satisfies  
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,
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we can find a homeomorphism T of Bn  onto itself mapping trajectories of X onto trajectories of Y.

32 Smale (1990: 45).
33 Smale (1960).
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trajectories associated with those periodic trajectories must intercept transversally.34 
Systems with these characteristics generalize the Andronov and Pontryagin conditions 
for higher dimensions and were called “Morse– Smale systems” by René Thom.

What we have here is the prototype for classifiable systems in higher dimensions that 
has been searched. The finiteness of the number of periodic trajectories satisfies the 
demand that attractors must be easily described for the purpose of classification. The 
demand that unstable and stable trajectories must intercept transversally35 is fundamental 
to establish robustness and genericity, something already suggested by Thom’s famous 
transversality theorem.36 It is not difficult to imagine that non- transversal intersections can 
be easily undone by very small perturbations. So, the qualitative aspect of trajectories in 
the presence of an intersection of this kind changes considerably after small perturbations. 
In Fig. 10.2, we show, respectively, a transversal and a non- transversal intersection of 
two curves in Rn. We can note that even if one perturbs the curves in Fig. 10.2(a), they 
remain transversal, whereas, in Fig. 10.2(b), a small perturbation can turn the intersection 
into a transversal one.

Yet, what remained to be shown is that Morse– Smale systems are open and dense, 
and therefore generic in the space of systems. This is the essential part of a famous 
conjecture proposed by Smale in 1960. If it were true, the classification program would 
be fulfilled, because it actually suffices to classify almost all systems by their number of 
attractors. Morse– Smale systems are classifiable systems and, if they are generic, it is 
possible to classify dynamical systems, in the sense that: (1) a system characterized by 
Morse– Smale properties is robust (its qualitative essential features are not destroyed by 
small perturbations); (2) any arbitrary system can be approached by a Morse– Smale, 
and, therefore, they are generic (dense).

34 The stable and unstable trajectories are those neighboring the periodic one that respectively approach it 
or recede from it as time grows. The fact that they intercept transversally means this intersection occurs in a 
point with non- collinear tangents.

35 The transversality property is satisfied only by these stable and unstable trajectories, which tend to peri-
odic trajectories with increasing or decreasing time.

36 Thom (1956b).

(a) (b)

Figure 10.2 (a) A local image of transversality.  We have a transversal intersection whenever we can 
locally find an image like this one. (b) A non- transversal intersection.
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10.4  The Smale conjecture proven 
wrong: hyperbolicity, homoclinic points,  
and “chaos”

A deeper inquiry into Morse– Smale systems showed that the first condition holds, that 
is, that they are robust. It has been proven by the Brazilian mathematician Jacob Palis.37 
Unfortunately, they are not dense in the space of systems. Smale’s conjecture is therefore 
false. In fact, a glance at some previous works of Poincaré, Birkhoff, or Hadamard would 
suggest that systems with a finite number of periodic points cannot be dense in the space 
of systems. Smale admitted that he did not know these works, and that is why he ended 
up being in error. However, beyond this first disappointment, the subsequent develop-
ments provide a very good example of how a wrong conjecture can become productive 
in mathematical research.

In his work on celestial mechanics, Poincaré had already noticed the possibility of 
what he called “doubly asymptotical points” or “homoclinic points.”38 They would be 
periodic points of a three- dimensional system’s dynamics, whose vicinity contains other 
trajectories with a very complex behavior. Poincaré studied the behavior of these trajec-
tories by means of their intersections with a two- dimensional section, which associates to 
one point the point of the next return of the trajectory to the section. Thus, the study of 
the original dynamics of this now called “Poincaré section” is reduced to an analysis of 
a two- dimensional map defined on the section. The intersection of a periodic trajectory 
with this section is a fixed point of this map, and the other trajectories in its neighborhood 
also intersect the section in points (not fixed).39 There is a special kind of fixed point, also 
studied by Poincaré, now called “hyperbolic,” for which the dynamics in its neighborhood 
can be characterized by means of a stable manifold and an unstable manifold. The stable 
manifold is the set of all points that approach the fixed point under iteration of the map 
(shown by the almost vertical line in Fig. 10.3),40 and the unstable manifold is the set 
of all points that approach the fixed point under iteration of the inverse map (shown by 
the almost horizontal line in Fig. 10.3). In two dimensions, a fixed point of this type is a 
saddle point (the point p in Fig. 10.3).

If we start with a small ball of initial points centered on a saddle point and iterate the 
map, the ball will be stretched and squashed along the line of the unstable manifold, and 
the opposite occurs along the line of the stable manifold. We have a homoclinic point if 
the stable and the unstable invariant manifolds, from this same fixed point, intersect again. 

37 At this time Palis was a doctoral student working with Smale and this was the subject of his thesis; see 
Palis (1969).

38 These names and the description of the dynamics associated with this kind of systems were introduced, 
respectively, in Poincaré (1890) and Poincaré (1892– 9). For a history of this discovery made by Poincaré, see 
Barrow- Green (1997) and Anderson (1994).

39 In Roque (2007) and Roque (2011), this method of Poincaré is explained in relationship with the defini-
tion of a dynamical system and with the problem of stability.

40 This figure and the next one were taken from the article “Unstable periodic orbit” from the site 
Scholarpedia, at the address: http:// www.scholarpedia.org/ article/ Unstable_ periodic_ orbits.

 

http://www.scholarpedia.org/article/Unstable_periodic_orbits
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On the Poincaré section, it gives rise to a very complex figure of trajectories. Figure 10.4 
shows the successive intersections between the stable and the unstable manifolds.

Birkhoff had shown that in the neighborhood of a homoclinic point there are infinitely 
many others.41 The dynamic associated with a homoclinic point is not easy to destroy, 
as Norman Levinson already knew in 1949.42 Smale tells how he received a letter from 
him suggesting that the conjecture on the genericity of systems with a finite number of 
periodic points should be false.43 If Morse– Smale systems were dense, in a neighbor-
hood of any system it would be possible to find a Morse– Smale system, which does not 
happen in the neighborhood of a system containing a homoclinic point. Indeed, in the 
presence of a homoclinic point it is possible to verify the phenomenon of infiniteness 
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Figure 10.3 Unstable and stable manifolds near a saddle point p are named respectively W ploc
u ( ) and

W ploc
s ( ). The map M gives the iterations of each point. The iterates of x and y near the stable manifold 

will get closer together and move toward the saddle while trajectories near the unstable manifold will 
diverge in time.

41 See Birkhoff (1920, 1935, [1927] 1966).
42 Levinson (1949).
43 Smale (1998).
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of periodic points and to affirm its persistence (in particular, that this is a structurally 
stable phenomenon).

Smale easily admitted his error and immediately proposed a model to describe the 
set found by Levinson geometrically.44 This study gives birth to his “horseshoe” (in 
Fig. 10.5)45 which became very famous afterward as the prototype of chaotic behavior, 
associated mainly with its sensitivity to initial conditions.46

In a horseshoe, the cross section of the final structure corresponds to a Cantor set.47 
This is one of its most interesting properties. Even if the complexity associated with a 
homoclinic intersection was already known, the model proposed by Smale allowed one to 
grasp the mechanism that produced its essential properties. In Section 10.5.1 we explore 
further the interesting phenomena with which these Cantor sets are related.

h–1

h–2

h–3

h3
h2

h1

h0

p

Figure 10.4 The homoclinic point.

44 Smale (1963).
45 I thank the Brazilian mathematician Maria José Pacifico for having offered me this beautiful image of a 

horseshoe.
46 Alain Chenciner (2007) comments on how unfortunate is the designation of “chaos” in this case. As we 

will see later, the structure of trajectories in hyperbolic systems is very well understood, and has no reason to 
be called “chaotic.”

47 Just to give an example, we explain how to obtain the Cantor ternary set. This set is created by repeatedly 
deleting the open middle thirds of a set of line segments. One starts by deleting the open middle third (1⁄3, 2⁄3) 
from the interval [0, 1], leaving two line segments: [0, 1⁄3] ∪ [2⁄3, 1]. Next, the open middle third of each of 
these remaining segments is deleted, leaving four line segments: [0, 1⁄9] ∪ [2⁄9, 1⁄3] ∪ [2⁄3, 7⁄9] ∪ [8⁄9, 1]. This 
process is continued ad infinitum. The Cantor ternary set contains all points in the interval [0, 1] that are not 
deleted at any step in this infinite process.
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In an article called “Finding horseshoes in the beaches of Rio”— actually a note 
presented for the birthday of the Brazilian National Center of Scientific Development 
(CNPQ) in 1996— Smale asserts that the work on the horseshoe is the byproduct of the 
opportunity of being at that moment (in IMPA) at the confluence point of three tradi-
tions: the field in which Levinson (but also Cartwright- Littlewood) worked; the traditional 
contributions of Poincaré and Birkhoff; and the writings about structural stability of Soviet 
mathematicians that he had come to know from Peixoto.

In an inspiring example of how a wrong conjecture can produce novelty in math-
ematical practice, Smale uses the counter- example of the horseshoe in his favor and 
proposes to incorporate this phenomenon into a new dynamics prototype that should 
renew the classification on another basis. The role that periodic trajectories played in the 
Morse– Smale prototype should be played now by hyperbolic sets (of which the horseshoe 
is a particular case).48 If hyperbolic sets were proved to be structurally stable, they would 
be good candidates to constitute the new prototype of dynamics, which received the 
unfortunate denomination of “Axiom A.”49

Figure 10.5 The Smale horseshoe map consists of a sequence of operations on the rectangular middle 
section in the first figure. Expand vertically by more than a factor of two, then compress horizontally by 
more than a factor of two. Finally, fold the resulting figure and fit it back onto the rectangle, overlapping 
at the top and bottom, and not quite reaching the ends to the left and right (and with a gap in the middle), 
as illustrated above. Repeat the same process indefinitely.

48 Intuitively speaking, all points in a hyperbolic set are locally similar to a saddle point. For a more techni-
cal explanation, a compact smooth manifold M is considered and f: M → M is a diffeomorphism, with Df:   
TM → TM being the differential of f. An invariant subset of M is said to be hyperbolic if the tangent bundle in 
this subset admits a splitting into a sum of two subbundles, called the stable bundle and the unstable bundle. 
In the stable bundle we have a contraction and in the unstable bundle, an expansion. We refer here to systems 
for which the entire manifold M is hyperbolic.

49 In Palis (1997), Jacob Palis notices the lack of creativity in the inventions of denominations in those times 
and gives, in particular, the example of this designation of Axiom A systems.
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In 1967, Smale published “Differentiable dynamical systems,” a long paper in which 
he summarized the advances of the theory up to that moment.50 At that point, the 
mathematical definitions needed to be adapted to the new classification program, and 
the concept of genericity itself underwent a transformation. In the first version of the 
conjecture, a certain kind of system was generic if it constituted an open and dense 
subset in the space of systems. Smale next proposes that the name “generic” must be 
associated with a property verified for a residual subset of systems. A subset of the space 
of systems is residual, in the Baire sense, if it is the intersection of a denumerable family 
of open and dense sets. Since, in the spaces here considered, a residual set is also dense, 
this new definition does not imply, from our point of view, a significant change in the 
conception of genericity.

Smale also suggested that it suffices to characterize the subsets of trajectories whose 
dynamics do not lead too far from their initial state (subsets of trajectories that do not 
escape). The subsets possessing this weak kind of recurrence are called “non- wandering.” 
They are all that mathematicians needed in order to describe the “interesting properties” 
of dynamical systems, since, in this domain, they are always considering phenomena that 
recur in some sense, and not the transient ones. In the new classification prototype, the 
non- wandering sets must be hyperbolic.

One more thing Smale did not know at the time was that in the Soviet Union, math-
ematicians, like Dmitri Victorovich Anosov, a student of Pontryagin, were already work-
ing to understand the structure of hyperbolic sets, in particular the one deriving from 
Hadamard’s example of geodesics on surfaces of negative curvature, later called Anosov 
diffeomorphisms.51

The definition of a new kind of system, based on homoclinic intersections was very 
proficuous to the research, since it can be associated with the existence of infinitely 
many periodic points. The work Anosov did on geodesic flows on surfaces of negative 
curvature showed that these are hyperbolic. Furthermore, this is a persistent behavior, 
something that could have already contradicted the first conjecture on the genericity of 
Morse– Smale systems.

Poincaré had suggested, in his writings on celestial mechanics, that periodic trajectories 
were the only breach52 through which we can penetrate in the space of trajectories in 
higher dimensions, in particular the trajectories in three- dimensional space, which he 
was studying at that time.53 Smale’s first conjecture asserted that periodic trajectories 
were effectively a good breach to penetrate the space of trajectories of a system of any 
dimension, which are far from being describable. Any system should be well under-
stood if it could be approximated by a system with a finite number of periodic sets that 
attract all trajectories. But this program failed, and the next attempt was to test whether 
hyperbolic systems could be the breaches needed to describe the great complexity of 

50 Smale (1967).
51 Anosov (1967)
52 The term in French is “brèche.”
53 Poincaré (1892– 9).
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dynamics. If hyperbolicity were a generic property of dynamical systems, it would be a 
very useful notion for furnishing a global theory, since hyperbolic systems can be very 
well understood (to such an extent that they can even be said to be “integrable”).54 But, 
once again, this is not true.

During the seventies, many examples were given revealing the existence of entire 
domains of dynamics covered with non- hyperbolic phenomena, which led to per-
plexity in the mathematical community.55 At this point, we must mention the influ-
ence of computational research— Lorenz and Hénon attractors are good examples 
as they exhibit a “persistent” non- hyperbolic dynamics. Besides those persistent 
non- hyperbolic attractors, there are other kinds of phenomena such as duplication 
of periods, coexistence of infinite pits in which the dynamics tend to disappear, and so 
forth.56 These are all “persistent” non- hyperbolic phenomena and Jacob Palis named 
them the “dark realm of dynamics.”57 We will see in the next section what “persistent” 
means in this context.

The perplexity that struck the researchers’ community in the seventies, generating a 
number of incomplete and challenging works, converged with the fact that, about this 
same moment, Western scientists became acquainted with the works of the Soviet school, 
leading the research in a new direction. These discoveries raised two new questions:

1) Would it be possible to find phenomena capable of generating non- hyperbolicity?

2) Are topological notions appropriate? Perhaps these notions, used in theory up to 
this time— such as structural stability or density as the definition for genericity58— 
were not appropriate for describing the behavior of the majority of dynamical 
systems.

Considerable efforts were made to penetrate the complement of the hyperbolic 
world— the “dark realm” of dynamics. Afterward, the research in the field took the two 
questions mentioned above as a point of departure, following two main directions: 1) the 
study of bifurcations of homoclinic tangencies (described in Section 10.5.1); and 2) erg-
odic theory (see Section 10.5.2). The latter theory uses probabilistic tools in a general 
study of dynamical systems, following the suggestion of the Soviet mathematicians. In 
the next topic we will briefly mention the relation these problems have to the issue of 
genericity.

54 For a discussion of this different meanings of integrability, see Chenciner (2007).
55 Palis (1997).
56 Palis recalls the “supreme humiliation” of mathematicians in the seventies because the major part of 

those examples came from physics. The tendency of referees in mathematical journals, in this time, was to 
refuse articles from experimentalists that exhibited these kinds of behavior. Only Ruelle was more receptive 
(Palis, 1997).

57 Palis (1997, 2000).
58 The Soviets realized this fact much earlier and used probabilistic notions instead, even in their study of 

hyperbolic systems. But their work started to have an influence on topological Western researchers by 1977, 
particularly during a meeting at Warsaw.
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10.5  The changing definitions of genericity 
in the attempts to describe the “dark realm 
of dynamics”

10.5.1  Bifurcation of homoclinic tangencies

Many examples exhibited during the sixties and the seventies suggested that complex non- 
hyperbolic dynamics arise in relation to an interesting phenomenon called the “unfolding 
of a homoclinic tangency.”

Transversal intersections between stable and unstable manifolds, associated with 
periodic points, became an essential property for ascertaining that a system is robust, 
because non- transversal intersections, as shown in Fig. 10.2(b), can be easily destroyed. 
We have seen that transversality is associated with hyperbolicity. So, it is not very difficult 
to imagine that, if we want to understand non- hyperbolic behavior, we must study those 
cases in which the homoclinic points are not transversal intersections between stable and 
unstable manifolds.

Suppose p is a periodic point, if in the homoclinic point q the stable and the unstable 
manifold do not intersect transversally but are tangents to each other, as in Fig. 10.6, we 
call this last point a “homoclinic tangency.”

In the neighborhood of a homoclinic intersection there must be infinitely more points 
of the same type, produced by the intersections of the stable and unstable manifolds in 
the vicinity of the first one. So, a homoclinic point is part of a family of points of the 
same kind. It had already been proven that in the hyperbolic case, when the homoclinic 
point is a transversal intersection, there is a horseshoe in the vicinity of this point. In his 
geometrical model, as we cited above, Smale had already showed that a horseshoe is the 
product of two Cantor sets.

In the universe of dynamical systems defined on two- dimensional manifolds, as math-
ematicians want to study the trajectories of dynamical systems in the neighborhood of 
one system containing a homoclinic tangency, they define a family of diffeomorphisms 
fµ such that for µ = 0 this tangency is exhibited. In Fig. 10.6, we can see a picture of what 
happens for f0. When this system is perturbed, the value of µ changes and the homoclinic 

q

p

Figure 10.6 Homoclinic tangency.
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tangency is unfolded. The system thus obtained can maintain the homoclinic tangency or 
can change it into a transversal homoclinic intersection. We can do an exercise to imagine 
the two curves in Fig. 10.6 are being perturbed— they can thus intersect in the same way 
or even transversally. As a consequence, the qualitative nature of the system can undergo 
an important change when homoclinic tangencies are unfolded. That is why this is called 
a “bifurcation point.”

In this context, genericity has to do with the following question: are tangencies a 
persistent phenomenon or can they be easily destroyed by small perturbations? What 
happens when we perturb (or unfold) a homoclinic tangency: “how many” phenomena 
arising after the perturbation are hyperbolic and “how many” are non- hyperbolic?

It was through the seminal works of Sheldon Newhouse59 that hyperbolicity was shown 
to be not dense in the space of a special kind of dynamical systems.60 The underlying 
mechanism here was the presence of a homoclinic tangency leading to the phenomenon 
called nowadays “Newhouse phenomena,” that is, non- negligible subsets of dynamical 
systems displaying infinitely many periodic attractors.

During the 1980s, mathematicians already knew some examples of non- hyperbolic 
behavior that functioned as prototypes.61 Some of them expected that a non- hyperbolic 
system containing a prototype could be approximated by another system containing a 
homoclinic tangency. If that happens, it would be possible to say that the unfolding of the 
tangency would give birth to the non- hyperbolic phenomena. There were many works 
of Jacob Palis, Floris Takens, Carlos Gustavo Moreira, Jean- Christophe Yoccoz, Sheldon 
Newhouse, and others in this direction.62 They tried to understand the appearance of 
complex non- hyperbolic behavior after the bifurcation of homoclinic tangencies.

Roughly speaking, mathematicians working in this field try to determine, in the space of 
parameters µ, of the dynamical systems fµ that are being unfolded, the size of the subsets 
that corresponds to transversal or tangent intersections. This is the main concern in the 
bifurcation theory of homoclinic tangencies: to understand complex phenomena in the 
complement of the hyperbolic world by means of homoclinic bifurcations.

Here, once again, we can see an attempt to draw a general picture of the major non- 
hyperbolic phenomena that can appear in dynamics. Yet, the goal is no longer to “classify” 
them, but to discover the phenomenon that triggers non- hyperbolicity. A system with a 
homoclinic tangency would indicate how to penetrate into the dark realm of dynamics.

In order to accomplish this project, it was necessary to describe the prevailing phe-
nomena in dynamics after unfolding a homoclinic tangency. We have said earlier that non- 
hyperbolic phenomena are “persistent,” but this notion had to be defined. Mathematicians 
thus proposed mathematical refinements related to the definition of genericity in order to 
express the complexities of this new universe. In their research, they used some numerical 
invariants of Cantor sets to understand exactly what “persistence” means.

59 Newhouse (1970, 1974, 1979).
60 However, let us point out that in the C1 topology it is still open.
61 The Lorenz attractor, which characterized the famous “butterfly effect,” is one of these prototypes.
62 For a complete reference, see Palis and Takens (1993).
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In this paragraph and the one that follows, we try to describe, as briefly and intuitively 
as possible, the mathematics involved in this direction of research. Suppose we have a fam-
ily of dynamical systems defined by fµ

 such that for µ = 0 the system exhibits a homoclinic 
tangency. We want to know, near the bifurcation point .., how big in the parameter space 
(in the space of µ) is the set of values that correspond to hyperbolic or non- hyperbolic 
dynamical systems. The answer to this question has to do with different types of Cantor 
sets appearing in the space of parameters µ.

A system containing a tangency corresponds to a parameter µ0 belonging to a Cantor 
set. Since a Cantor set is full of holes, we could imagine that, with a small perturbation 
of the dynamics, it is possible to make the tangency disappear. But this is not the case. 
In order to study the unfolding of homoclinic tangencies, mathematicians had to impose 
conditions on Cantor sets that concern some invariants describing whether a set of this 
type is “small” or “large.” So, the possibility of destroying a tangency depends on some 
numerical properties that make one type of Cantor set different from another. Even if a 
Cantor set has no interior points, it is possible to define a property of “thickness,”63 that 
determines how it behaves with respect to perturbations. When a system is perturbed, 
the homoclinic intersections may or may not be persistent and the exact meaning of 
“persistence” here refers to the previously mentioned numeral properties of Cantor sets.

A notion of genericity emerges combining the notion of denseness— already in 
use in the hyperbolic context— with other notions concerning dynamically defined 
properties of Cantor sets. The main proposition in the theory asserts that if there is a 
homoclinic tangency between the stable and the unstable manifold of some periodic 
point and the related Cantor sets are sufficiently thick, the tangencies are persistent.64 
In some sense, this result attests that when thickness is big enough, hyperbolicity 
cannot be generic.

Hopefully the brief explanations furnished thus far indicate how the concept of 
genericity necessarily changes in the development of research. As in the topological phase 
of dynamical systems theory, prevailing in the West up to the 1960s, the persistence of 
tangencies is mathematically expressed in terms of denseness. Nevertheless, denseness is 
studied by the authors cited in this section in relation with invariant numerical measures 
of Cantor sets.

10.5.2  Ergodic theory

Ergodic theory develops a probabilistic (i.e., measure- theoretic) approach in the study 
of determinist dynamical systems. Soviet mathematicians, such as Andrei Kolmogorov, 
had already introduced the idea of measure to describe the genericity of some kinds of 

63 The notion of thickness was introduced exactly to show that homoclinic tangencies are persistent. The 
precise meaning of this statement is that we can find a neighborhood U in the domain of dynamical systems 
treated here (C2diffeomorphisms of a two- manifold) in a way that for each f U∈ , there is a tangency between 
the stable and the unstable manifolds associated to a fixed point. Otherwise, this tangency can be obtained 
by a small perturbation of f  (the diffeomorphisms which have a homoclinic tangency are dense in U). The 
persistence of homoclinic tangencies can be defined by this denseness property.

64 For more mathematical details, see Palis and Takens (1993: chap. 6).
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systems. In the context of systems we are treating here, hyperbolic systems, the theory was 
proposed by Yacov Sinai, David Ruelle, and Robert Bowen. If we have a measure invariant 
by the dynamics, it is possible to describe “typical” properties of systems in the sense of 
the measure. This means that we do not describe the behavior of all the trajectories, but 
only that of “almost all” trajectories in a subset of trajectories with positive measure. What 
kind of properties can be studied in this way?

In the study of dynamical systems, sensitivity to initial conditions became a key notion, 
meaning that two motions departing from very close initial conditions can considerably 
diverge in the future. The systems presenting this behavior were called “chaotic.” In order 
to understand the behavior of trajectories, mathematicians first divide the space into cells 
and then study how often the trajectories pass into each cell (this implies that we do not 
consider individual trajectories anymore and that we do not need to know exactly where 
a trajectory is inside a cell). It is thus possible to analyze the dynamics by taking averages 
that constitute a probabilistic evaluation of deterministic dynamics.

The reason for the appearance of statistical laws is the instability of trajectories. There 
is such a variety of trajectories’ behaviors that the average aspect of trajectories in general 
tends to be stable.65 As an example of a general characteristic, there is the fraction of time 
that a trajectory spends in a given cell. The number of cells can get larger and we become 
interested in the time averages of the trajectories in each cell. This is a good example of 
a relevant statistical property that can be studied in deterministic systems.

Based on this property, it is possible to redefine the concept of stability in statistical 
terms. The topological definition of structural stability points out the qualitative (or topo-
logical) nature of the set of trajectories in a dynamical system. But in actual experiments, 
each time we observe the state of a system it is actually a different system that is being 
considered. Explained mathematically, suppose we have a system defined by means of a 
function f . When we study the iterations of xn, this leads to an xn+1 which is not exactly 
f xn( ), because there is an aleatory noise. Thus after each iteration, we are considering a 
slightly different system.

We say that a system is stochastically stable if time averages are not affected by this noise. 
The notion of topological equivalence employed in the definition of structural stability gives 
too much importance to the structure of trajectories and, consequently, to their patholo-
gies. From the viewpoint of stochastic research, structural stability does not eliminate a 
satisfactory number of pathologies and takes into account properties that are not sufficiently 
relevant. Furthermore, it is a typical property of hyperbolic systems. In order to study 
non- hyperbolic systems, it can be more appropriate to use a stochastic definition of stability.

Once stochastic stability is defined, the possibility of classification depends on the 
genericity of well- characterized stochastically stable systems. This characterization can 
be obtained with a defined system having a finite number of “good” attractors whose 
attraction basin covers “almost all” the ambient space, what means that the basin’s66 
measure must be equal to the measure of the ambient space. Systems of this kind are 

65 Sinai (1992).
66 For each attractor, its basin of attraction is the set of initial conditions leading to long- time behavior that 

approaches that attractor.



320 The role of genericity in the history of dynamical systems theory

320

significant in the description of the global aspect of dynamics since attractors characterize 
the asymptotical behavior of the system.

“Good” attractors are those with good measures, that is, physically relevant measures, 
and whose dynamics in attraction basins are stochastically stable. These can be non- 
hyperbolical attractors, but if they are finite, it is possible to classify dynamics by the 
number and nature of those attractors. Yet, this possibility relies on the genericity of such 
well- characterized stochastically stable systems.

Again, in the same style as the pre- classification program set by Peixoto and Smale, 
mathematicians in the 1980s proposed a conjecture regarding the genericity of stochasti-
cally stable systems. We note the central role that the research of IMPA, in Rio de Janeiro, 
played in this proposal, Jacob Palis being is a key figure in the general shape it acquired.67 
The meaning of genericity employed here is still translated by the denseness of stable 
systems, since it is hard to define a measure in the infinite dimensional space of all systems.

At the International Mathematical Congress of 1954, held in Amsterdam, Kolmogorov 
gave a closing lecture with the title “The general theory of dynamical systems and clas-
sical mechanics.”68 This event played an important role in the development of what is 
now called Kolmogorov– Arnold– Moser (or KAM) theory. In his lecture, Kolmogorov 
discusses the occurrence of some special kinds of motions in the space of trajectories of 
Hamiltonian dynamical systems. He proposes to investigate the persistence of properties 
that are known for integrable systems after small, non- integrable, perturbations of the 
equations describing the system. But once again, what does persistence mean?

The issue at stake is to state that if certain conditions are fulfilled, after a sufficiently 
small perturbation of the integrable system, the space of motions is “mostly” filled by 
deformations of the invariant tori whose existence is known for the unperturbed system. 
“Mostly” here means that the complement of the set where it occurs has small measure.69 
Starting with Kolmogorov’s version, the theorem was improved upon by V.I. Arnold and 
J. Moser in the 1960s, producing the result known nowadays as KAM theory.

It is not within the limits of our proposal to analyze the history or the implications 
of Kolmogorov’s theorem. We mention it only to show that the notion of “mostly” here 
becomes mathematically precise when a measure concept is employed.70 A phenomenon 
is persistent if it is frequent, that is, when the set of systems in which it is displayed has 
a big measure in the set of all systems.

In Section 10.1, we explained how the description of “almost all” systems in the 
universe of systems was translated in a topological language. In the study of bifurcations 
of homoclinic tangencies, some measure concepts were introduced. But before Western 
mathematics had gotten acquainted with the works developed in the Soviet Union, 

67 See Palis (2000) for more details.
68 Kolmogorov (1954).
69 The main question in KAM theory is to show that, generically, after small perturbations of integrable 

systems, the union of quasi- periodic tori has positive measure. The statement applies to many concrete models 
of classical mechanics, as in some versions of the n- body problem.

70 We must recall that the measure concept is in straight relation with probability, one of the major fields of 
Kolmogorov’s research.
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mathematicians such as Kolmogorov and Sinai had already suggested the inconvenience 
of topological notions to express the mathematical meaning of “almost all.”

The complement of a set of positive Lebesgue measure can be an open and dense set. 
Thus, a property that is topologically generic, fulfilled by an open and dense subset of 
systems, can be absent of all elements in a set of positive measure,71 which indicates that 
it is not generic in the measure- theoretic sense. So, a generic property should be defined 
as a property holding for a subset of “big” measure in the set of systems. A notion of 
genericity based on measures would be stronger than the notion based on denseness that 
is also used in the general study of dynamical systems. The only reservation with respect 
to this proposal is that it is hard to define an observable measure (a measure having a 
physical sense, such as Lebesgue measure) in the infinite dimensional space of all systems.

In the context of ergodic theory, generic properties must be related to statistical and 
probabilistic notions. But sometimes, it is necessary to use denseness as a definition for 
genericity, and in these cases, the mathematical tools with which genericity is assessed 
differ from those used to express the properties whose genericity is investigated.

10.6  Concluding remarks

We gave a very brief and panoramic report of different branches in dynamical systems 
theory, with special emphasis on the transformation undergone by key concepts, such as 
genericity. Our main goal was to furnish evidence for the thesis that mathematics very 
often develops under a tension in the search for a good compromise between a general 
understanding of mathematical objects and the properties making these objects relevant.

In the beginning, the definition of genericity was related to classification purposes, 
since not all systems are classifiable, and those that are classifiable have to be generic. 
The hitch is that both the concepts of “generic” and “classifiable” have to be defined. 
In an initial phase, a property was called generic if the subset of systems satisfying this 
property was dense in the space of all systems of a kind. As to the characterization of 
classifiable systems, it underwent quite a few changes. The topological aspect of the set 
of trajectories used by Peixoto and Smale, inspired by Andronov and Pontryagin’s works, 
was too restrictive and it was only appropriate for systems defined on two- dimensional 
manifolds. Even structural stability revealed itself as a property of hyperbolic systems, 
which are not very general themselves, even if they are very well understood. Bifurcation 
theory strived for an analysis of the mechanism that triggers non- hyperbolicity, noting that 
general results depend on numerical invariants of Cantor sets— some of which already 
existed and others had to be defined to advance the theory.

71 A variant of the Cantor set furnishes an example of a nowhere dense set with positive measure. Remove 
from [0,1] all dyadic fractions of the form a/ 2n in lowest terms for positive integers a and n and the intervals 
around them [a/ 2n − 1/ 22n+1, a/ 2n + 1/ 22n+1]; since for each n this removes intervals adding up to at most 1/ 2n+1, 
the nowhere dense set remaining after all such intervals have been removed has measure of at least 1/ 2 (in fact 
just over 0.535… because of overlaps) and so in a sense represents the greatest part of the ambient space [0,1]. 
Generalizing this method, one can construct in the unit interval nowhere dense sets of any measure less than 1.
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Finally, topological characterization turned out to be too restrictive, and only appro-
priate for the particular case of hyperbolic systems. Properties of a different nature, 
observed in the same systems, had to be expressed by statistical tools. From these tools, 
new stochastic definitions were proposed, which proved to be more useful for a general 
description of all systems, including non- hyperbolic systems. In turn, the advent of this 
new, probabilistic, notion of genericity triggered the search for new characterizations 
of what can be considered a good definition for “almost all” systems. From a certain 
perspective, the denseness definition is not as good as other ones using measure concepts. 
But, on the other hand, it is difficult to define a measure on the set mathematicians were 
working with.

Is there a definite answer to what is the best notion of genericity? That is not 
our point. As the complexity of the possible set of trajectories defined by a dynam-
ical system increases, new notions are invented to deal with unexpected behaviors. 
When the research turned from bidimensional to more general systems, the hope of 
classifying all systems vanished, but the search for a general theory still motivated 
mathematicians. The stages of the development of the theory analyzed here furnish 
a good example of how the compromise between the generality of the description 
and the relevance of the studied properties entails a very productive tension in actual 
mathematical research.
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Leibnizian analysis, canonical  
objects, and generalization

EMILY R. GROSHOLZ

11.1  Introduction

Leibniz’s notion of analysis can be understood as an art of both discovery and justification 
in mathematics that aims for generalization rather than abstraction, and explanation rather 
than formal proof. This characterization may seem odd to those whose view of Leibniz as 
the champion of formal proof was shaped by Bertrand Russell and Louis Couturat, and 
the later twentieth century philosophers who interpreted Leibniz under their influence. 
However, an attentive reading of Leibniz’s own practice as a mathematician supports my 
claim, as do many of his philosophical reflections on that practice. In this essay, I review 
aspects of his investigation of transcendental curves, focusing on the catenary, where 
analysis is the search for conditions of solvability of problems, and then go back to some 
of his pronouncements on analysis as the search for conditions of intelligibility. Finally, 
I bring his notion of analysis into relation with discussions by contemporary philosophers, 
including Carlo Cellucci, Herbert Breger, and Nancy Cartwright.

11.2  Leibniz on the catenary or la chainette

When Leibniz investigates a novel transcendental curve, he treats it as a paradigm in order 
to exhibit procedures or the algorithms that can be elicited from them. His working out of 
problems typically exhibits intermediary steps in a process of reasoning that contributes 
to the meaning of the final result and indicates how it might be extended. The exhibition 
of the meaning of procedures and the correctness of algorithms in terms of paradig-
matic problems and canonical objects for Leibniz typically involves the combination 
of distinct modes of representation, including figures that exhibit spatial articulation, 
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and descriptions of how to reason both upward and downward. It is a progressive and 
pedagogical search for the reasons that underlie general procedures and the constitution 
of objects, a search for deeper as well as broader understanding.

For Leibniz, the key to a curve’s intelligibility is its hybrid nature, the way it allows 
us to explore numerical patterns and natural forms as well as geometrical patterns; he 
was as keen a student of Wallis, Huygens, and Cavalieri as he was of Descartes. These 
patterns are variously explored by counting and by calculation, by observation and trac-
ing, and by applications of the language of ratios and proportions on the one hand and 
the new algebra on the other. To think them all together in the way that interests Leibniz 
requires the calculus of infinites as an ars inveniendi. The excellence of a characteristic for 
Leibniz lies in its ability to reveal conditions of intelligibility: for a transcendental curve, 
those conditions are arithmetical, geometrical, mechanical, and algebraic. What Leibniz 
discovers is that this “thinking- together” of number patterns, natural forms, and figures, 
where his powerful and original insights into analogies pertaining to curves considered 
as hybrids can emerge, rebounds upon the very algebra that allows the thinking- together 
and changes it. The addition of the new operators d and ∫, the introduction of variables 
as exponents (which changes the meaning of the variables), and the entertaining of 
polynomials with an infinite number of terms, are all examples of this. Indeed, the names 
of certain canonical transcendental curves (log, sin, sinh, etc.) become part of the standard 
vocabulary of algebra and analysis.

This habit of generalization is evident throughout Volume I  of the VII series 
(Mathematische Schriften) of Leibniz’s works in the Berlin Akademie- Verlag edition, 
devoted to the period 1672– 1676. As M. Parmentier admirably displays in his translation 
and edition Naissance du calcul différentiel, 26 articles des Acta Eruditorum, the papers 
in the Acta Eruditorum taken together constitute a record of Leibniz’s discovery and 
presentation of the infinitesimal calculus (Leibniz, 1989). They can be read not just as 
the exposition of a new method, but as the investigation of a family of related canonical 
items, that is, algebraic and transcendental curves. In these pages, sequences of numbers 
alternate with geometrical diagrams accompanied by ratios and proportions, and with 
arrays of derivations carried out in Cartesian algebra augmented by new concepts and 
symbols. For example, “De vera proportione circuli ad quadratrum circumscriptum in 
numeris rationalibus expressa,”1 which treats the ancient problem of the squaring of the 
circle (see Fig. 11.1), moves through a consideration of the series

π / / / / / ...4 1 1 3 1 5 1 7 1 9= − + − +

to a number line designed to exhibit the finite limit of an infinite sum. Various fea-
tures of infinite sums are set forth, and then the result is generalized from the case 
of the circle to that of the hyperbola, whose regularities are discussed in turn. The 
numerical meditation culminates in a diagram that illustrates the reduction: in a circle 
with an inscribed square, one vertex of the square is the point of intersection of two 

1 Acta Eruditorum Feb. 1682: Leibniz (1962, V: 118– 22).



 11.2 Leibniz on the catenary or la chainette 331

   331

perpendicular asymptotes of one branch of a hyperbola whose point of inflection C 
intersects the opposing vertex of the square. The diagram also illustrates the fact that 
the integral of the hyperbola is the logarithm. Integration takes us from the domain 
of algebraic functions to that of transcendental functions; this means both that the 
operation of integration extends its own domain of application (and so is more difficult 
to formalize than differentiation), and that it brings the algebraic and transcendental 
into rational relation.

During the 1690s, Leibniz investigates mathematics in relation to mechanics, deep-
ening his command of the meaning and uses of differential equations, transcendental 
curves and infinite series. In this section I discuss one of these curves, the catenary. In the 
“Tentamen Anagogicum,” Leibniz discusses his understanding of variational problems, 
fundamental to physics since all states of equilibrium and all motions occurring in nature 
are distinguished by certain minimal properties; his new calculus is designed to express 
such problems and the things they concern. The catenary is one such item; indeed, for 
Leibniz its most important property is the way it expresses an extremum, or, as Leibniz 
puts it in the “Tentamen Anagogicum,” the way it exhibits a determination by final causes 
that exist as conditions of intelligibility for nature. And indeed the catenary, and its surface 
of rotation, the catenoid (which is a minimal surface, along with the helicoid), are found 
throughout nature; their study in various contexts is pursued by physicists, chemists, and 
biologists (Leibniz, 1978 VII: 270– 9).

The differential equation, as Leibniz and the Bernoullis discussed it, expresses the 
mechanical conditions which give rise to the curve: in modernized terms, they are dy/ 
dx = ws/ H, where ws is the weight of s feet of chain at w pounds per foot, and H is the 
horizontal tension pulling on the chain. Bernoulli solves the differential equation by 
reducing the problem to the quadrature of a hyperbola, which at the same time explains 
why the catenary can be used to calculate logarithms (Bernoulli, 1742, III: 494). The 
solution to the differential equation proves to be a curve of fundamental importance in 
purely mathematical terms, the hyperbolic function y = a cosh x/ a or simply y = cosh x 
if a is chosen equal to 1.
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Figure 11.1 De vera proportione circuli ad quadratrum circumscriptum in numeris rationalibus expressa.
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In “De linea in quam flexile,” Leibniz exhibits his solution to the differential equation 
in different, geometrical terms; he announces “Here is a geometrical construction of the 
curve, without the aid of any thread or chain, and without presupposing any quadrature” 
(Acta Eruditorum June 1691; Leibniz, 1962, V: 243– 7). That is, he acknowledges various 
means for defining the catenary, including the physico- mechanical means of hanging 
a chain and the novel means of writing a differential equation; but in order to explain 
the nature of the catenary he gives a geometrical construction of it (see Fig. 11.2). The 
point- wise construction of the catenary makes use of an auxiliary curve labeled by points 
3ξ, 2ξ, 1ξ, A (origin), 1(ξ), 2(ξ), 3(ξ)…. This auxiliary curve, which associates an arith-
metical progression with a geometrical progression, is constructed as a series of mean 
proportionals, starting from a pair of selected segments taken as standing in a given ratio 
D : K; it is the exponential curve. Having constructed ex, Leibniz then constructs every 
point y of the catenary curve to be 1/ 2(ex + e−x) or cosh x. “From here, taking ON and 
O(N) as equal, we raise on N and (N) the segments NC and (N)(C) equal to half the 
sum of Nξ and (N)(ξ), then C and (C) will be points of the catenary FCA(C)L, of which 
we can then determine geometrically as many points as we wish.” (Acta Eruditorum June 
1691; Leibniz, 1962, V: 243– 7).

Leibniz then shows that this curve has the physical features it is supposed to have 
(its center of gravity hangs lower than any other like configuration) as well as the 
interesting properties that the straight line OB is equal to the curved segment of the 
catenary AC, and the rectangle OAR to the curved area AONCA. He also shows how 
to find the center of gravity of any segment of the catenary and any area under the 
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Figure 11.2 The catenary.
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curve delimited by various straight lines, and how to compute the area and volume 
of solids engendered by its rotation. It also turns out to be the evolute of the tractrix, 
another transcendental curve of great interest to Leibniz; thus it is intimately related 
to the hyperbola, the logarithmic and exponential functions, the hyperbolic cosine and 
sine functions, and the tractrix; and, of course, to the catenoid and so also to other 
minimal surfaces.

An important difference between Descartes and Leibniz here is that Leibniz regards 
the mechanical genesis of these curves not as detracting from their intelligibility, but as 
constituting a further condition of intelligibility for them. As new analogies are discovered 
between one domain and another, new conditions of intelligibility are required to account 
for the intelligibility of the hybrids that arise as new correlations are forged. The analytic 
search for conditions of intelligibility of things that are given as unified yet problematic 
(like the catenary) is clearly quite different from the search for a small, fixed set of axioms 
in an axiomatization. The catenary is intelligible because of the way it aids in the calcula-
tion of logarithms; and embodies the function that we call cosh, from whose shape we can 
“read off” its rational relation to both the exponential function and the hyperbola; and 
expresses an equilibrium state in nature; and displays a kind of duality with the tractrix; 
and whatever deep and interesting aspect we discover next.

Generally, we can say that the things of mathematics, especially the items that are 
fundamental because they are canonical, become more meaningful with time, as they find 
new uses and contexts. Thus the conditions of their intelligibility may expand, often in 
surprising ways. When the differential equation of the catenary is “fitted out” by a geo-
metrical curve or an equilibrium state in rational mechanics (to use Nancy Cartwright’s 
term), the combination of mathematical representations allows us both to solve problems 
and to refer successfully, that is, to discover new truths.

11.3  Leibniz on analysis

Leibniz’s method of analysis is a rational search for grounds of thinkability, and moves 
from something that is complex but unified to something simple and explanatory. In 
general, more than one way of proceeding from the complex to the simple is available, 
and what may play the role of the “simple” requires reflection, and may be revised. The 
complex is not, as it is on the reductive account of Descartes, exhaustively defined by 
means of the simple; rather, for Leibniz, the simple is defined in terms of the complex 
as a kind of degree zero, different from but standing in rational relation to it. The simple 
and the complex, while heterogeneous, are held together in virtue of Leibniz’s principle 
of continuity. Leibnizian analysis is not the unpacking of merely concatenated simples; 
mere concatenation, supposing there is such a thing, rarely appears in the constitution of 
complexes and when it does it is thoroughly problematized, as when the truths of arith-
metic are led back to the primitive notion of the unit. Thus Leibniz leads the labyrinth of 
the continuum back to the point, the phenomenon of motion to rest, vis viva to vis mortua, 
perception to petites perceptions, the complex forms of biology to rudimentary monads, 
and the projects of law and science to rational, self- conscious monads. This family of 
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methods related by analogy is fundamentally opposed to the method of Descartes, for 
the analysis it pursues is not reductionist.

Leibniz explains his principle of continuity in a public letter to Christian Wolff, written 
in response to a controversy over the reality of certain mathematical items sparked by 
Guido Grandi; it was published in the Supplementa to the Acta Eruditorum in 1713 under 
the title “Epistola ad V. Cl. Christianum Wolfium, Professorem Matheseos Halensem, circa 
Scientiam Infiniti” (A. E. Supplementa 1713, V, sec. 6; Leibniz, 1962, V: 382– 7). Toward 
the end, he presents a diagram and concludes, “All this accords with the Law of Continuity, 
which I first proposed in the Nouvelles de la République des Lettres of Bayle, applied to 
the laws of movement. It entails that with respect to continuous things, one can treat an 
external extremum as if it were internal [ut in continuis extremum exclusivum tractari posit ut 
inclusivum], so that the last case or instance, even if it is of a nature completely different, is 
subsumed under the general law governing the others.”2 He cites as illustration the relation 
of rest to motion and of the point to the line: rest can be treated as if it were evanescent 
motion and the point as if it were an evanescent line, an infinitely small line. Indeed, Leibniz 
gives as another formulation of the principle of continuity the claim that “the equation is 
an infinitesimally small inequality” (see Leibniz, 1962, VII: 25, for example).

For Leibniz, simplicity is the cardinal feature of the canonical; canonical items prove 
themselves fundamental to a discipline or inquiry. The discovery of canonical items is the 
outcome of philosophically and mathematically reflective analysis that typically results in 
a hypothesis that may need to be reconsidered; moreover, the ways in which canonical 
things may be associated also provides the occasion for further philosophical reflection 
and revision. Leibnizian analysis is thus not a trivial spelling out of what has already been 
thought in the terms involved in a claim, as Kant would have it, nor is it the extracting of 
an empty form that universally determines the truth of any contents inserted into it. It is 
not reductionist, and cannot be reversed into a Cartesian process of retrieving the complex 
from the simples. It is, rather, a method that works variously but analogously in many 
fields of human endeavor, a philosophical project that searches for the rational conditions 
underlying manifold complexity, but which can never come to a definitive conclusion.3

Leibnizian analysis lends itself to generalization in mathematics. Generalization starts 
from a set of solved problems, and asks how successful procedures may be extended to 
new problems and how their success may be explained. Problems involve problematic 
items, mathematical things that are intelligible but not wholly understood: a right triangle 
may be well defined, but we are still far from understanding the relation among its legs 
and hypotenuse. We may understand the relation among its legs and hypotenuse, but we 
are still far from understanding how a family of right triangles inscribed in a circle can 
define the transcendental functions sine and cosine. We may express the relation among 
its legs and hypotenuse in an equation, but we are still far from understanding the condi-
tions under which whole number solutions to that equation may or may not exist. In the 
course of mathematical history, certain items (like the right triangle and the circle) prove 
to be canonical; canonicity is not an intrinsic quality that we discern by a sixth sense, but 

2 ‘Réplique à l’abbé D.C. sous forme de lettre à Bayle,’ Feb. 1687; Leibniz (1978, III: 45).
3 See Grosholz (1991, Ch. 1) and Grosholz and Yakira (1998, Ch. 1).
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a feature of items that we discover in mathematical practice. Transcendental curves like 
sine, cosine, and logarithm, and those discussed above, the catenary and tractrix, were 
not canonical for the Greeks, who were aware of just a few transcendental curves, as it 
were by accident. They became canonical only in the seventeenth century, once their 
important geometrical and mechanical properties were discerned, and their relations to 
each other and to the conic sections were studied.

Leibniz characterizes his own mathematical practice vis- à- vis Descartes as a general-
izing search for the conditions of intelligibility of canonical items, and the conditions 
of solvability of the problems in which those items are involved. In the introductory 
paragraph of his essay “De la chainette,” he writes, “The ordinary analysis of Viète and 
Descartes consist[ed] in the reduction of problems to equations and to curves of a certain 
degree … M. Descartes, in order to maintain the universality and sufficiency of his 
method, contrived for that purpose to exclude from geometry all the problems and 
all the curves that one couldn’t treat by that method, under the pretext that they were 
only mechanics.” This kind of exclusion, however, cuts off the process of generalization 
artificially, and Leibniz criticizes it.

But since these problems and curves can indeed be constructed or imagined by means 
of certain exact [tracing] motions, and since they have important properties and since 
nature makes frequent use of them, one might say that he [Descartes] committed an error 
in doing this, rather like that with which we reproach some of the Greeks, who restricted 
themselves to constructions by ruler and compass, as if all the rest were mechanics (Journal 
des Sçavans 1692; Leibniz, 1962, V: 258– 63).

By contrast, Leibniz is inspired by the cogency and urgency of the excluded problems 
and curves to look for ways of expressing them in useful form and discovering conditions 
of solvability for them; he calls them “transcendental” problems and curves, because they 
go beyond ordinary algebra.

This is what he [Leibniz] calls the analysis of infinites, which is entirely different from the 
geometry of indivisibles of Cavalieri, or Mr. Wallis’ arithmetic of infinites. For the geometry 
of Cavalieri, which is by the way very restricted, is attached to figures, where it seeks the 
sums of ordinates; and Mr. Wallis, in order to facilitate research, gives us by induction the 
sums of certain sequences of numbers: by contrast, the new analysis of infinites doesn’t 
focus on figures or numbers, but rather on general magnitudes, as ordinary algebra does. 
But it [the new analysis] reveals a new algorithm, that is, a new way to add, subtract, 
multiply, divide and extract roots, appropriate to incomparable quantities, that is, to those 
which are infinitely big or infinitely small in comparison with others. It employs equations 
involving finite as well as infinite quantities, and among those that are finite, allows equa-
tions with exponents that are unknowns, or rather, instead of powers and roots, it makes 
use of a novel appropriation of variable magnitudes, which is variation itself, indicated by 
certain characters, and which consists in differences, or in the differences of differences 
of certain degrees, to which the sums are reciprocal, as roots are to powers (Journal des 
Sçavans 1692; Leibniz, 1962, V: 258– 63).

Analysis for Leibniz is thus the search for the conditions of solvability of problems and the 
conditions of intelligibility of the things involved in them. Mathematical things insofar as 
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they exist are intelligible unities, but they are also problematic because they do not wear 
the conditions of their intelligibility on their faces. These conditions must rather be sought 
in reflection that pursues both the inconstancy and the orderliness they present: things 
require explanation. Analysis is the search for the reasons or causes, the requisites, which 
are necessary for a thing to be what it is. This means, not to unpack a concept as if it were 
a concatenation of concept- parts nor to impose externally a set of relations on a thing as 
if it were a mere placeholder, but to distinguish or develop its content. The orderliness 
of a thing, expressed in its relations (both logical and analogical) to other things, is so to 
speak internal to it: things always have content. Thus for Leibniz, there are no surds or 
mere, mute givens: whatever exists has reasons or causes and therefore a logos.

For Leibniz, analysis guides any attempt to move from perceptual experience to sci-
ence, or from science to philosophy; and the intelligibility it pursues is objective, in the 
sense of being independent of the accidents of the empirical world, and in particular of 
human subjectivity. It is not a question of searching for the “necessary conditions of the 
possibility of human experience,” that is, Kant’s transcendental conditions, but for the 
conditions of the intelligibility of existing things. Though mathematical items do not exist 
in the way that material or perceived objects exist, their existence is called for in order 
to explain the intelligibility of the latter. Their formal unity answers to the (sometimes 
material and perceptual) unity or selfsameness of things, their extent and multiplicity 
to the differentiation and otherness of things, and their relations by analogy to relations 
discovered in the world.

Leibniz writes in a letter of 1702 to Sophia Charlotte, Queen of Prussia, that only the 
intelligible allows us to account for the force of demonstration, and to furnish rational 
explanations, explanations that do not merely correlate or describe but exhibit the reasons 
for things being as they are, adding “Intelligible truth is independent of the truth or exist-
ence of sensible and material things” (Leibniz, 1978, VI: 499– 508). To be intelligible is 
to be a possibility for thought, a possibility that may or may not ever be actualized. For 
Leibniz, of course, no mathematical thing is part of the created world; and yet mathemati-
cal things are not nothing. Intelligible things are neither mental acts nor extrinsically or 
“barely” given objects (no object exists without a reason or without intrinsic connection 
to other things); they are what is possible for thought independent of human subjectivity 
or the constitution of the world. And thought always outruns us: intelligible things are 
not contained by Cartesian or Lockean or Kantian strictures. To be intelligible is also to 
exhibit rational consistency, the absence of contradiction (for contradiction drives entities 
out of the realm of the possible); and to be expressive of other things, which is another 
way of saying that relations are intrinsic, and different kinds of things exist in different 
ways and yet as rationally related to each other.

11.4  Modern adumbrations of Leibnizian analysis

Analysis as the search for conditions of intelligibility entails a metaphysics of differentia-
tion, of heterogeneous things existing in different ways. The notion of intelligibility (as 
opposed to truth), like that of the sublime (as opposed to the beautiful), confesses that 
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knowledge lags behind being, and that in mathematics what we encounter transcends us 
and so prevents any complete determination, as Jules Vuillemin observed in a meditation 
on Gödel’s incompleteness theorems (Vuillemin, 1997). Leibnizian analysis admits that 
when we know, we may confront something highly infinitary and in a sense inhuman that 
both lends itself to knowledge and yet always outstrips us. All the same, analysis as the 
investigation of conditions of intelligibility avoids the traps of irrationalism: one might say 
it constitutes a rationalism of the sublime. The conditions of intelligibility of the human 
world then prove to be different in kind from that world, and both being and knowledge 
are differentiated. Leibniz, moreover, never falters in his faith that the infinitesimal, finite, 
and infinite can be held together in rational relation; indeed, the principle of continuity 
is the expression of this confidence.

The analysis of intelligible items, the explanation of problematic facts by plausible 
explanatory hypotheses, and the convergence of disparate traditions in the service of 
problem- solving take place within a mathematical tradition that continually reformulates 
and reorganizes its results in order to transmit them. Mathematics textbooks sometimes 
present material in axiomatic form: we are used to the axiomatic presentation of Euclid’s 
Elements, and of the highly abstract, highly axiomatized, diagram- free presentations 
of the twentieth century Bourbaki school and its offspring. However, there are other 
ways to analyze collections of problems and procedures and to teach the methods of 
mathematics. Many modern textbooks use an exposition that prizes generalization over 
abstraction, and the exploration of the meaning of procedures and algorithms in terms of 
paradigmatic problems that may be used to exhibit their correctness, clarify their domain 
of application, and indicate how that domain may be extended. Generalizing analysis is 
concerned with explaining why a result is correct and not just establishing that it is correct. 
Generalization as an ideal has not been wholly overshadowed by the ideal of abstraction 
and axiomatization in the twentieth century. On the contrary, the two ideals appear to 
co- exist dialectically.

If we consult, for example, the earlier textbooks cited in the Introduction to the Topologie 
of Paul Alexandroff and Heinz Hopf (Alexandroff and Hopf, 1935) we see that topology 
in 1935 had become divided into two distinct research programs. Pursuing one avenue, 
Oswald Veblen and Solomon Lefschetz write presentations of algebraic geometry and 
differential geometry, the study of algebraic varieties and differentiable manifolds by 
topological methods. Lefschetz’s presentation is generally historical; he shows the student 
where and why various problems arose, and how they have been addressed (Lefschetz, 
1924, 1929). Veblen explores the foundations of the field and offers an axiomatization 
of differential geometry (Veblen and Whitehead, 1932). The other avenue is explored by 
Maurice Fréchet and Casimir Kuratowski, who use topology to investigate the abstract 
function spaces (infinite- dimensional spaces) and infinitary point- sets that arise in real 
and complex analysis. Fréchet’s presentation (Fréchet, 1928), like that of Lefschetz, is 
historical, while Kuratowski concentrates on an axiomatization of topology. Kuratowski 
writes at the beginning of his textbook, “the methods of reasoning that I use in this volume 
belong to set theory; the methods of combinatorial topology (homology, Betti groups, 
etc.) in general don’t intervene in the questions treated here” (Kuratowski, 1933). The 
authors whose approach is historical— Lefschetz on the one hand and Fréchet on the 
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other— present the analysis of canonical objects in a process of generalization. The authors 
who aim at logical systematization— Veblen on the one hand and Kuratowski on the 
other— present axiomatizations that synthesize the whole domain by relating principles, 
rules, and definitions inferentially in a process of abstraction. Both approaches, in tandem, 
are needed to bring up students who will do research in topology.

Carlo Cellucci give a particularly lucid account of the process of Leibnizian analysis 
in his essay, “The growth of mathematical knowledge: an open world view” (Cellucci, 
2000), upon which he elaborates in Chapters 8 and 9 of his book Filosofia e matematica 
(Cellucci, 2002) He writes:

[The analytic method] consists in solving a problem by reducing it to another one, which 
is provisionally assumed as a hypothesis and shown to be adequate to solve that problem. 
Such a hypothesis in turn generates a problem to be solved in much the same way, that is, 
introducing a new hypothesis, and so on. Thus solving mathematical problems appears as a 
potentially infinite process that consists in introducing more and more general hypotheses 
and considering their consequences. Every new hypothesis establishes new connections 
between the given problem and other areas of mathematical or non- mathematical knowl-
edge, thus paving the way for a higher level of abstraction. From this viewpoint the 
growth of mathematical knowledge essentially consists in looking for new hypotheses to 
solve specific mathematical problems and establishing new connections between concepts 
involved in such problems and concepts in other areas” (Cellucci, 2000: 162).

The solution of a problem establishes a pathway through mathematics; but it is often, 
and perhaps typically, not a pathway through an axiomatized system, since it proceeds 
by means of provisional hypotheses (which are found in the process of proof generation) 
and often moves sideways into other domains by means of correlations.

It is a striking feature of the growth of mathematical knowledge that an important 
problem often leads the mathematician outside the domain in which it arose. Cellucci 
observes that these pathways “do not depend on permanent axioms but on provisional 
hypotheses that may be changed in the course of proof and are found by a trial- and- error 
process” and that “they involve constant interactions with other systems, where dialogue 
is essential because one cannot generally expect that solving a problem concerning a par-
ticular mathematical field will require only concepts and methods of that field” (Cellucci, 
2000: 162).

In his essay “Tacit knowledge and mathematical progress” (Breger, 2000), Herbert 
Breger describes a process of mathematical analysis which has two stages. The first is 
the rise of a specific “know- how” or knowledge at the meta- level as mathematicians 
come to know their way around certain objects and the problems associated with 
them, a know- how which at first they may not be able to articulate; it remains tacit, 
or partially expressed. The second step turns tacit knowledge at the meta- level into 
general principles or new abstract objects along with theorems that govern them. But 
for mathematicians, such generalization is not an end in itself; it is pursued only if it 
reorganizes knowledge in deep and novel ways, explaining the know- how and sug-
gesting ways to generate new problems. Thus, the investigation of particular things 
(e.g., transcendental curves like the catenary) leads to a partially formulated sense of 
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what methods work to solve what kinds of problems (e.g., methods of differentiation, 
integration, and the solution of differential equations). This consolidation leads in turn 
to presentations of “a method that works for every particular curve” and thence to 
a method whose validity for every curve can be proved, and a formal theory. Detlef 
Laugwitz (2000) adds that the virtue of formal theory is precisely that it makes explicit 
what is tacit in a family of problem- solutions or methods, so that these procedures can 
be taught; otherwise great mathematicians take their inventive know- how with them 
to the grave.

But Breger warns that not all know- how can be made explicit and translated into an 
abstract theory. The relation of an axiomatized system to a thinking person, the know- how 
we employ in interpreting and applying its symbolic knowledge, the relations among 
axiomatized systems, even the source of the axioms themselves: all these things remain 
unstated in an axiomatized system. (Cellucci reminds us that Gödel’s incompleteness 
results really mean that “any particular formal system is intrinsically provisional, subject 
to the eventual need to go beyond it” (Breger, 2000: 159).) Moreover, every advance in 
mathematical knowledge generates tacit knowledge: new tacit knowledge at the meta- level 
that will one day demand articulation, and older, more concrete levels of knowledge that, 
because they have been abstracted away from, have lost their articulation. The more 
concrete levels at one time constituted evidence for the more abstract levels, and yet they 
are often erased and cannot be read off the formal system. So there are always at least 
two dimensions of the tacit.

The accounts of both Cellucci and Breger reveal that the outcome of mathematical 
progress is not simply abstraction, even when abstract concepts are used to organize 
earlier results. Philosophers of mathematics often fail to reflect sufficiently on what they 
mean by the terms “abstract” and “concrete.” In The dappled world: a study of the bounda-
ries of science, Nancy Cartwright’s meditation on why we must reflect more deeply on the 
relationship between the abstract and the concrete bears directly on this point (Cartwright, 
1999: Ch. 2) She uses her argument to illuminate episodes in modern physics, yet clearly 
what she says bears on philosophy of mathematics. She argues, “First, a concept that is 
abstract relative to another more concrete set of descriptions never applies unless one 
of the more concrete descriptions also applies. These are the descriptions that can be 
used to “fit out” the abstract description on any given occasion. Second, satisfying the 
associated concrete description that applies on a particular occasion is what satisfying 
the abstract description consists in on that occasion” (Cartwright, 1999: 49). In other 
words, abstract descriptions can only be used to say true things if they are combined with 
concrete descriptions that fix their reference in any given situation. This insight holds for 
mathematics as well as for physics. When abstract schemata are applied in mathemat-
ics, their successful application typically depends on the mathematician’s ability to find 
a useful concrete description for the occasion, which will mediate between complex 
mathematical reality and the general theory.

This does not, however, entail that abstract concepts are no more than collections of 
concrete concepts. Cartwright argues, “The meaning of an abstract concept depends to a 
large extent on its relations to other equally abstract concepts and cannot be given exclu-
sively in terms of the more concrete concepts that fit it out from occasion to occasion” 



340 Leibnizian analysis, canonical objects, and generalization

340

(Cartwright, 1999: 40). The more abstract description of the situation adds important 
information that cannot be unpacked from any or even many of the concrete descrip-
tions that might supplement it, or from our awareness of the thing or things successfully 
denoted. Nor is the relation between the abstract description and the concrete descriptions 
the same as the Aristotelian relation between genus and species, where the genus- concept 
is arrived at by subtracting content from the species- concept. Likewise, the more concrete 
descriptions have meanings of their own that are to a large extent independent of the 
meaning of any given abstract term they fall under; we cannot deduce the content of the 
concrete descriptions by specifying a few parameters or by plugging in constants for 
variables in the abstract description.

Here is another way of putting the insight. Abstract terms may be used to say something 
true when they are combined with more concrete locutions in different situations that 
help us to fix their reference. And there is no complete sum of such concrete locutions 
that would be equivalent to the original term. Conversely, as Leibniz argues, concrete 
terms can be used to say something true only when they are combined with more abstract 
locutions that express the conditions of intelligibility of the thing denoted, the formal 
causes that make the thing what it is and so make its resemblance to other things possible. 
And there is no complete sum of the conditions of intelligibility of a thing (Grosholz and 
Yakira, 1998: 56– 72). We cannot totalize concrete terms to produce an abstract term and 
we cannot totalize abstract terms to produce a concrete term that names a thing; and 
furthermore we cannot write meaningfully and truthfully without distinguishing as well 
as combining concrete and abstract terms. So we are left with an essential ambiguity that 
results from the logical slippage that must obtain between the concrete and the abstract. 
There is an inhomogeneity that cannot be abolished, which obtains between the abstract 
terms that exhibit and organize the intelligibility of things, and the concrete terms that 
exhibit how our understanding bears on things that exist in the many ways that things 
exist. We need to use language that both exhibits the “what” of the discourse, and identifies 
the formal causes, the “why” of the things investigated. To do so, we need to use different 
modes of representation in tandem, or to use the same mode of representation in different 
ways, to use it ambiguously.

11.5  Coda

Breger’s examples of the articulation of tacit knowledge in the development of mathemati-
cal theories reminds us that bringing objects at higher levels of abstraction into focus 
entails the forgetting or obscuring by formal systems of the canonical objects that exist 
at more concrete levels, levels which cannot be retrieved from the formal systems that 
forget them. Students who study function spaces lack instruction in the peculiarities 
of various families of curves and differential equations; and this information cannot be 
read out of the formalisms they study, but must be sought in the textbooks of an earlier 
era. Mathematical analysis often leads from the study of the conditions of solvability 
of problems about more concrete objects, to the elaboration of general methods, to the 
construction of formal systems that both delimit and generalize the scope of a method, 
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processes which lead not only to new problems but to new, more abstract objects. Fermat’s 
methods, for example, led from the study of numbers to the study of polynomials; and 
Galois’s way of systematizing the study of the roots of polynomials led to group theory. 
The different levels of analysis are rationally related: indeed, I want to say that the integers 
serve as conditions of the intelligibility of polynomials, as the latter serve as conditions of 
intelligibility for group theory; yet the former cannot be retrieved from the latter. At the 
heart of mathematical analysis lies the solution of problems, even though problem- solving 
leads to methods and systems; methods and systems arise out of families of problems 
about related objects. And yet methods and systems often forget the original problems 
and objects from which they arose, their own conditions of intelligibility which in fact 
they cannot reduce; and so do the philosophers that contemplate them.

Andrew Wiles’ proof of Fermat’s last theorem establishes a “perfect” correlation 
between modular forms and “semi- stable” elliptic curves that we might call a reduction, 
but the correlation is established in the service of problem solving, and lies outside the 
bounds of any formal theory. It does not collapse the distinction between modular forms 
(which belong to complex analysis) and elliptic curves (which belong to algebraic number 
theory), but rather raises the question why they should share the same structure: it calls 
for explanation (Wiles, 1995). So too does Leibniz’s inauguration of the domain of higher 
analysis, which investigates families of transcendental curves by means of differential 
equations and infinite series.4 Typically, the mathematician posits a fragmentary formal, 
syntactic linkage between two heterogeneous domains; that link draws the two domains 
into a novel proximity, the link is extended and deepened, and the domains are altered and 
extended because of it. This procedure is useful in problem solving because mathematical 
domains tend to give rise to problems that can be articulated within that domain, but not 
solved there. To bring to bear another domain, with distinct but analogous ways of framing 
and solving problems, and to render it pertinent to the problem at hand by establishing 
relations of reduction between the domains, can be a very effective strategy. The problem, 
and the objects involved in it, can then be regarded from different perspectives simulta-
neously, and the resources for solving the problem are thereby enriched. The syntactic 
connectedness and the semantic heterogeneity are clearly both needed for this strategy 
to work. This heterogeneity corresponds to that located by Breger, between less abstract 
and more abstract stages held in rational relation by processes of analysis that move from 
the study of relatively more concrete objects to methods to systems or procedures.

One can react to the transcendence or sublimity or inhumanity of mathematical things 
by turning against the situation. One can become a sophist, content to shift appearances at 
the first level of the divided line, or a materialist, content to remain with the sensible at the 
second level, or an empiricist, who hopes that the third level of the line is just an abstractive 
or constructive extension of the second. And these are natural choices, to try to shelter 
oneself within the ambit of the human, the computable, and the visible. But philosophers 
who try to rest within what can be encompassed by finitary construction and perception 
in the end somehow never rest easy, and in any case never do justice to mathematics. 

4 Mancosu (1999). Paolo Mancosu here gives an instructive discussion of mathematical explanation.
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They are plagued by difficulties (revealed by reductio arguments), unanswerable questions 
(revealed by burden of proof arguments), and by the way even the constructions and 
perceptions to which they cling seem willy- nilly to point beyond themselves. The other 
option, besides fleeing reason altogether, is to engage in analysis, that is, to recognize 
the top half of the divided line and try to find a philosophical speech about it, which 
acknowledges that it is real, that it stands in rational relation to us, and that its reality is 
different from ours. Even the finitary parts of mathematics involve the infinitary and even 
the visible world- system involves the invisible, as conditions of intelligibility.

The project of philosophical analysis is also self- reflective: it puts into question the 
relationship of the human mathematician (or philosopher) to the things of mathemat-
ics. We must not only try to explain the way in which knowledge unifies but also the way 
in which it holds things apart. Human beings, and their perception and constructions, 
are finitary and fleeting; but the things of mathematics are infinitary and eternal. 
If we try to reduce mathematics to merely human terms, to perceptions or finitary 
constructions, we avoid rather than confront the question of our rational relation to 
it, and the differences involved in that relation. In a sense, such confrontation— which 
sets us beside the working mathematician— is an exercise of our freedom, something 
about us which is after all infinitary and eternal (Vuillemin, 1997). If we pay attention 
to how differentiation and rational relatedness accompany each other, then not only the 
systematic unity of mathematics becomes salient but also the way in which systematic 
unities change over time as mathematicians explore the analogical likenesses of unlike 
things, or conversely try to articulate and conserve the intrinsic features of things 
apart from pressures exerted upon them by impinging analogies, or finally even try 
to consider likenesses in themselves, as novel methods and systems precipitate new 
items. In other words, the history of mathematics becomes pertinent to the philosophy 
of mathematics.

Logic, especially the expressive and subtle instrument of modern predicate logic, 
helps philosophers to examine mathematical systems considered as fixed and sta-
ble; but history provides evidence to help us understand how and why mathematics 
changes, and why it always moves beyond systematization. More generally, history is 
pertinent to the question of how mathematics brings very different kinds of things into 
determinate but revisable rational relation, and how this bears upon our philosophical 
understanding of rationality itself. Mathematics inspires us because it is at once inhu-
man and intelligible; it outstrips our finitary powers of construction, our perception, 
even our logic, at every turn, and nevertheless guides us because it stands in rational 
relation to us. The things of mathematics are problematic and yet intelligible, severely 
constraining what we can say about them; however, because they are so determinate, 
they render the little that we do manage to say about them necessary. Any finite thing in 
mathematics is at the same time an expression of the infinite, and the infinitary things 
that occur in our mathematics find finitary expression. This tension between the infinite 
and the finite in all of mathematics insures that our knowledge, despite its precision, 
must remain incomplete. Mathematics also stands at the crossroads of history and 
logic: essential as logic is to the articulation of relations among mathematical items, the 
very constitution of a problem in mathematics is historical, since problems constitute 



 References 343

   343

the boundary between the known and the yet to be discovered. We cannot explain the 
articulation of mathematical knowledge into problems and theorems without reference 
to both logic and history.

The philosophical reconstruction of mathematical practice is thus a delicate task, which 
requires scholarly familiarity with the detail of the mathematics of a given period, as well 
as the imaginative ability to go beyond the perspective of the mathematicians of that 
period and a respectful sense of their rationality. The problem with logic is its penchant 
for totalization and its intolerance of history; the outcome of mathematical progress is not 
always, and perhaps only rarely, an axiomatized system, where solved problems recast as 
theorems follow deductively from a set of special axioms, logical principles, and defini-
tions. Careful study of the history of mathematics, even twentieth century mathematics, 
may discover that mathematicians pursue generality as often as they pursue abstraction, 
and sometimes prefer deeper understanding to formal proof. An axiomatic system is not 
the only model of theoretical unity, and deduction from first principles is not the only 
model for the location and justification of mathematical results.
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12

Models, structure, and generality 
in Clerk Maxwell’s theory 
of electromagnetism

OLIVIER DARRIGOL

12.1  Introduction

In La théorie physique of 1906, Pierre Duhem opposed the “factory” of English physics 
to “the tidy and peaceful abode of deductive reason.” He reproached his most eminent 
British colleagues, William Thomson and James Clerk Maxwell, with accumulating com-
plex and disparate models at the expense of rigor and generality. This caricature has 
affected Maxwellian historiography, which often harbors the idea that Maxwell’s taste 
for mechanical pictures ran against abstract generality.1

In the present essay, I defend the opposite thesis, namely: Maxwell aimed at general 
structures through his models, illustrations, formal analogies, and scientific metaphors. 
To this end, I analyze the gradual development of his electromagnetic theory, from his 
extension of an analogy invented by William Thomson to the great Treatise on electricity 
and magnetism of 1873. I also discuss a few texts in which Maxwell expounds his concep-
tion of physical theories, of their construction, and of their relation to mathematics.

12.2  An analogy by William Thomson (1842)

In 1842, the sixteen- year old William Thomson published a brief article in which he 
exploited an analogy between Fourier’s theory of heat propagation and Poisson’s theory 
of the equilibrium of electricity. According to the latter, the electric potential
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created by a charge distribution ρ satisfies the equation

∆φ ρ+ = 0.

According to Fourier’s theory, the steady flow of heat in an unlimited homogenous 
medium of unit specific heat and unit thermal conductivity satisfies the similar relation

∆θ + =s 0
between the temperature θ and the density s of the heat sources included in the medium. 
In the latter system, it is physically evident that the heat flux −∇ ⋅∫ θ dS across a surface 
enclosing all sources must be equal to the total quantity of heat s rd3∫  emitted by the 
sources per unit time. By analogy, Thomson deduced the theorem according to which 
the integral E S⋅∫ d  of the electric force E = −∇φ (that would act on a unit point charge) 
over a surface enclosing all charges must be equal to the total charge. He also established 
similar theorems by similar means.2

Through this recourse to physical intuition in the demonstration of a mathematical 
theorem, Thomson contradicted the idea of an abstract generality of mathematics. Yet 
he did not generate a physical kind of generality, because he shrank from defending a 
profound similarity between heat propagation and the mode of action of electricity. His 
interest in Faraday’s ideas only began three years later, after he had understood that the 
properties of Faraday’s electric and magnetic lines of force were very similar to those of 
the lines of heat flow in Fourier’s theory.3

12.3  Maxwell on Faraday’s lines of force (1855)

Some ten years later, James Clerk Maxwell saw in Thomson’s analogical reasoning an 
opportunity for giving a precise geometrical expression to Faraday’s ideas. Instead of 
taking heat propagation as a model, Maxwell considered the steady flow of an incom-
pressible fluid through a resisting, porous medium in which the current is proportional 
to the pressure gradient. The latter relation plays the same role as the proportionality 
between heat flux and temperature gradient in Fourier’s theory— to such an extent that 
one may wonder why Maxwell did not content himself with Thomson’s thermal model. 
The reason probably is that the ideal character of the new model was more apparent and 
that it remained within the more primitive framework of mechanics.4

Thanks to adequate notions of tubes of flow and isobaric surfaces, Maxwell obtained 
a simple, rigorous, geometric description of his resisted flows, from which he drew a 
few useful theorems. For example, the pressure within an isobaric closed surface must 
be a constant if this surface does not contain any source. In order to show that, Maxwell 
reasoned that when there is no source, a thin tube of flow passing through a point of the 

2 Thomson (1842) and Wise (1981). These theorems were in part known to Green, Gauss, and Chasles.
3 Smith and Wise (1989).
4 Everitt (1975: 87– 93).
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internal volume would either form a loop within this volume or connect to points of the 
isobaric surface; since in the porous medium a pressure gradient must exist along any 
tube of flow, there cannot be any flow nor any pressure gradient in the internal volume.5

Maxwell related his ideal flows to three kinds of phenomena: steady electric currents in 
conductors, the electrostatics of linear dielectrics, and the magnetostatics of linear media. 
To the current of the ideal fluid corresponded, respectively, the electric current (j), the 
“electric quantity” (D), and the “magnetic quantity” (B). To the sign- reversed pressure 
gradient corresponded, respectively, the “electric intensity” (E), the same vector, and 
the “magnetic intensity” (H). In Maxwell’s later notation, to the proportionality between 
current and pressure gradient corresponded the three relations:

j E D E B H= = =σ ε µ, , ,   and

wherein σ is the electric conductivity, ε the dielectric permittivity, and μ the magnetic 
permeability. On the one hand, these notions corresponded to concepts already introduced 
by Faraday for experimental reasons. On the other, they permitted a precise mathematical 
theory of the three relevant classes of phenomena. To give only one example of this fecund-
ity, the electric realization of the aforementioned theorem yields the uniformity of the 
electric potential within any equipotential closed surface that does not contain any charge.6

Maxwell explained the philosophy of his method in the following terms:

The first process … in the effectual study of [electrical] science, must be one of simplification 
to a form in which the mind can grasp them. The results of this simplification may take the 
form of a purely mathematical formula or of a physical hypothesis. In the first case we entirely 
lose sight of the phenomena to be explained; and though we may trace out the consequences 
of given laws, we can never obtain more extended views of the connexions of the subject. If, 
on the other hand, we adopt a physical hypothesis, we see the phenomena only through a 
medium, and are liable to that blindness to facts and rashness in assumption which a partial 
explanation encourages. We must therefore discover some method of investigation which 
allows the mind at every step to lay hold of a clear physical conception, without being com-
mitted to any theory founded on the physical science from which that conception is borrowed, 
so that it is neither drawn aside from the subject in pursuit of analytical subtleties, nor carried 
beyond the truth by a favorite hypothesis.— In order to obtain physical ideas without adopting 
a physical theory we must make ourselves familiar with the existence of physical analogies.

Thus, Maxwell regarded his method of physical analogy as a via media between the 
Charybdis of mathematical formalism and the Scylla of physical hypotheses. His aim 
was to grasp a formal analogy between two domains of physics without taking the risk 
of confusing the nature of the phenomena. Regarding the imaginary flows on which he 
based his memoir, he wrote:

By referring everything to the purely geometrical idea of the motion of an imaginary 
fluid, I hope to attain generality and precision, and to avoid the dangers arising from a 
premature theory professing to explain the cause of the phenomena.

5 Maxwell (1856).
6 Wise (1979).
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Maxwell believed he had succeeded in conciliating generality and ontological neutrality for 
the following reason: a single model, the steady flow of an incompressible fluid through a 
porous medium, served to illustrate three distinct classes of phenomena. Hence it was clear, 
on the one hand, that the model served as the paradigm of general structure belonging to at 
least these three classes of phenomena. On the other hand, the same model could evidently 
not represent the deeper physical nature of each of the three classes at the same time.7

Maxwell here defended a conception of generality similar to that detected by other 
historians in quite different contexts. In her studies of ancient Chinese mathematics, 
Karine Chemla has shown that the common practice of expressing algorithms through a 
typical concrete application did not imply the ignorance of their generality. In her study 
of Poincaré’s seminal works on topology, Anne Robadey found that Poincaré frequently 
preferred to express general relations through paradigmatic examples and let his reader 
imagine abstract statements of more explicit generality.8

In Maxwell’s memoir, however, the hydrodynamic model was not the only way to point 
to a general structure. Maxwell encountered the following difficulty: his model was only 
pertinent for electrokinetic, electrostatic, and magnetostatic phenomena taken separately. 
As soon as electromagnetic phenomena came into play, this model was no longer of any 
help. In particular, electromagnetic induction according to Faraday called for a concept of 
“electro- tonic” state of which Maxwell knew no mechanical counterpart. Facing this tem-
porary failure of the illustrative approach, Maxwell retreated to mathematical formalism:9

The idea of the electro- tonic state, however, has not yet presented itself to my mind in 
such a form that its nature and properties may be clearly explained without reference to 
mere symbols, and therefore I propose in the following investigation to use symbols freely, 
and to take for granted the ordinary mathematical operations.

Accordingly, Maxwell introduced the Latin letters a, b, c for the three Cartesian com-
ponents of a “quantity” analogous to the current of an ideal fluid, and the three Greek 
letters α, β, γ for those of an “intensity” analogous to a force. The indices 1 and 2 specify 
the magnetic or electric nature of these vectors; the index 0 corresponds to an electro- tonic 
magnitude. For the sake of transparency, I here use Maxwell’s later terminology in which 
E and H denote the electric and magnetic “forces,” D and B the electric and magnetic 
“fluxes.” From the Amperean equivalence between a current loop and a double magnetic 
sheet, Maxwell deduced the relation

H l j S⋅ = ⋅∫ ∫d d

between the circulation of the force H along a closed curve and the flux of the electric 
current j across a surface delimited by this curve, as well as its infinitesimal counterpart

∇ × =H j.

In a general manner, the operation ∇ × relates a flux to a force, since by definition a 
force naturally occurs in linear integrals (which give the work done) and a flux naturally 

7 Maxwell (1856: 156, 159).
8 Chemla (2005); Robadey (2004).
9 Maxwell (1856: 187).
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occurs in a surface integral. Next, Maxwell expressed Faraday’s law of electromagnetic 
induction in the form

E l B S⋅ = − ⋅∫ ∫d
d
d

d
t

.

With the flux B he associated the force A such that

B A= ∇ × ,

which allowed him to rewrite the law of induction in the form

E
A

= − ∂
∂t

,

in conformity with Faraday’s intuition according to which the electromotive force of 
induction (E) is the temporal variation of the electro- tonic state (A).

Maxwell thus exploited the symbolic expression of his distinction between intensity 
and quantity (alias force/ flux) in order to generate the equations that capture Faraday’s 
empirical laws. This distinction kept playing an important role in his electromagnetic 
theory. Even though he did not dwell on its hydrodynamic origins in his subsequent 
writings, it would be wrong to believe that the words of flux and force became mere 
residues of an obsolete mode of illustration. On the contrary, Maxwell kept emphasizing 
the importance of scientific metaphors and refused to separate mathematical symbols 
from simple intuitive illustrations of their functioning, no matter how incompatible these 
illustrations could be with the global theory in which the symbols were used.

12.4  Maxwell’s honeycomb (1861– 2)

A few years elapsed before Maxwell discovered a satisfactory model for all known phe-
nomena of electricity, magnetism, and their interactions. The aim of this model no longer 
was to clarify and sharpen Faraday’s ideas; it rather was to demonstrate the mechanical 
essence of electromagnetic phenomena. The model consisted in an array of hexagonal 
cells separated by a layer of idle wheels— hence Duhem’s name of “honeycomb.” The 
cells’ rotation corresponded to the magnetic field; the circulation of the idle wheels to the 
electric current. Elastic deformations of the cells corresponded to an electric field; their 
variation implied an additional shift of the idle wheels, thus causing the “displacement 
current” which entered Maxwell’s final system of equations.10

Although Maxwell firmly believed in the reality of certain aspects of this model, he 
promptly remarked that the details of the suggested mechanism were too artificial to be 
plausible:

The conception of a particle having its motion connected with that of a vortex by perfect 
rolling contact may appear somewhat awkward. I do not bring it forward as a mode of con-
nexion existing in nature, or even as that which I would willingly assent to as an electrical 
hypothesis. It is, however, a mode of connexion which is mechanically conceivable, and 

10 Maxwell (1861– 2). See also Siegel (1991).
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easily investigated, and it serves to bring out the actual mechanical connexions between the 
known electro- magnetic phenomena; so that I venture to say that anyone who understands 
the provisional and temporary character of this hypothesis, will find himself rather helped 
than hindered by it in his search after the true interpretation of the phenomena.

As Maxwell more briefly explained in a contemporary letter to his friend Peter Guthrie 
Tait, “The nature of this mechanism is to the true mechanism what an orrery is to the 
solar system.” In his Treatise of 1873, Maxwell underlined that an infinite number of 
distinct mechanisms were able to produce the same connections between two parts of a 
mechanical system.11

In sum, Maxwell obtained his celebrated system of equations and the concomitant 
unification of electricity, magnetism, and optics through a model which he himself judged 
largely arbitrary. In order to consolidate his results, he had to provide a proof that they did 
not depend on the details of the model. In other words, he needed to identify a general 
structure shared by all the possible mechanical models of the electromagnetic field. He 
reached this goal three years later, in his memoir entitled “The dynamical theory of the 
electromagnetic field.”12

12.5  The Lagrangian approach

In an electrodynamics system, the empirically controllable quantities are the currents 
and the positions of the conductors in which they circulate. In conformance with the 
general assumption of the mechanical nature of physical systems, Maxwell assumed 
that these quantities completely determined the motion of a mostly hidden mechanism. 
Consequently, for a given value of impressed electromotive and mechanical forces these 
quantities evolve according to Lagrange’s equations. These equations only depend on 
the expressions of the kinetic and potential energies of the system as functions of the 
observable quantities, which can be determined empirically.

Maxwell thus replaced the choice of a specific model of the underlying mechanism 
with the broader requirement of the Lagrangian structure of the fundamental equations. 
This requirement, together with Faraday’s assumptions about the electric current and 
with the empirically known expressions of electric and magnetic energies, led to the same 
field equations as his model of 1862. It did so in a more economical and less specula-
tive manner, since any consideration of the true mechanism chosen by nature was thus 
short- circuited. Only the possibility of a mechanism mattered, not its knowledge. Maxwell 
privileged this point of view in his Treatise of 1873, and so did three of his most emi-
nent readers: Hermann Helmholtz, Henri Poincaré, and Hendrik Lorentz. The modern 
requirement of the Lagrangian form of the fundamental equations of physics is a direct 
descendant of this new style of theoretical physics.13

11 Maxwell (1861– 2:  486); Maxwell to Tait, 23 December 1867, in Harman (1990– 2002, vol. 2:  337); 
Maxwell (1873: §531).

12 Maxwell (1865).
13 Moyer (1977); Stein (1981); Buchwald (1985: 20– 3).
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It would nonetheless be excessive to believe that Maxwell accorded to the Lagrangian 
structure the same status as it now has in field theories. He kept hoping that a mechanical 
model of the ether, simpler and better than the honeycomb of 1862, would someday 
enlighten his theory. Moreover, he did not regard the Lagrangian form of the fundamental 
equations of a physical theory as a purely formal requirement. Along with his friends 
Thomson and Tait, he interpreted Lagrange’s equations as an extension of Newton’s 
second law in which generalized forces were equated to the temporal derivatives of 
generalized momenta. He concretely defined the generalized forces through the work 
produced during an infinitesimal change of configuration, and the generalized momenta 
as the impulses needed to suddenly start the motion of the system from rest.14

Thus, Maxwell’s striving for structural generality did not eliminate concrete reference. 
We earlier saw that his distinction between force and flux kept bearing the trace of the 
hydrodynamic metaphor that engendered it. Similarly, Maxwell accompanied his require-
ment of a Lagrangian structure with metaphors borrowed from the energetic theory 
of machines. The most famous of these metaphors is that of the belfry, which Maxwell 
included in a review of Thomson and Tait’s Treatise on natural philosophy.15

Granted that the angles of the bells are completely determined by the vertical shift of 
the driving cords of the belfry, a learned clerk could in principle predict the spontaneous 
motion of these cords from the initial value of their shifts and velocities. To this end, he 
would only have to determine, by a preliminary experiment, the value of the impulses
p q qi ( , )  necessary to communicate to the cords any given sequence of velocities qi for any 
given sequence of values of the shifts qi. In the general case, if the forces applied to the 
cords have the values fi, the motion is then given by Lagrange’s equations

f
t

p q qi i= d
d

( , ).

It is therefore possible to determine this motion without knowing the hidden mechanism 
of the belfry, just as it is possible to determine the evolution of an electrodynamic system 
without knowing the hidden mechanism of the ether.16

12.6  Maxwell’s ulterior reflections

All along the elaboration of his electromagnetic theory, Maxwell was guided by gen-
eral structural requirements that were inspired by partial and temporary models. 
The Treatise on electricity and magnetism contains a systematic exposition of these 
requirements. Through this voluminous and dense treatise, Maxwell not only aimed at 
gathering contemporary experimental and theoretical knowledge but also at illustrat-
ing a new style of theory construction. This style implied two basic ingredients: the 

14 Smith and Wise (1989: 390– 5).
15 Maxwell (1879: 783– 4).
16 For the sake of simplicity, I have neglected the potential energy.
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classification of physico- mathematical quantities, and the Lagrangian structure. 
In a long “Preliminary on the measurement of quantities,” Maxwell arranged the 
various quantities according to their dimension (Fourier), to their continuous or 
discontinuous character, to the scalar/ vector distinction (Hamilton), to the force/ 
flux distinction which he had himself invented, and to topological properties. In a 
separate chapter devoted to connected systems, he propounded a proof that the energy 
principle by itself implied the Lagrangian structure which he subsequently applied 
to electromagnetism.17

That Maxwell treated the classification of physical quantities and the Lagrangian 
structure in different parts of his treatise clearly shows that he did not place them on the 
same footing. The reason for this separation is not difficult to guess: in the first case, it 
was a matter of partial structures controlling the insertion of the quantities in particular 
sectors of the theory; whereas in the second case it was a matter of a structure globally 
imposed on the theory.

We may now compare the kinds of generality implied in these two kinds of require-
ments. In the case of the force/ flux distinction, Maxwell meant to identify the common 
structure that made various partial theories (electrokinetics, electrostatics, and magne-
tostatics) analogous to the same hydrodynamic model. In the case of the Lagrangian 
structure, Maxwell associated a single theory (the global electromagnetic theory) with 
an infinite class of mechanical models that were all able to mimic its laws; and he meant 
to identify the structure shared by all these model representations.

While he was composing his treatise, Maxwell gave some thoughts to the merits of the 
kind of classification and illustration that he had developed. These thoughts can be found 
in two conferences which he gave in 1870, one for the London Mathematical Society 
and the other for the British Association for the Advancement of Science. In front of the 
mathematicians, he emphasized the economy of time that resulted from the “mathematical 
classification of physical quantities”:

It is evident that all analogies of this kind depend on principles of a more fundamental 
nature; and that, if we had a true mathematical classification of quantities, we should 
be able at once to detect the analogy between any systems of quantities presented to 
us and other systems of quantities in known sciences, so that we should lose no time in 
availing ourselves of the mathematical labours of those who have already solved problems 
essentially the same.

As examples of such classifications, he gave those he included in the Treatise. He also 
introduced the terms convergence, curl, and concentration for the operators −∇·, ∇ ×, and −∇2  
formed from the gradient operator ∇ (nabla). And he drew field archetypes for which 
these quantities had a local extremum. In general, Maxwell did not introduce a symbol 
without accompanying it with a simple geometrical or mechanical illustration. While 
he emphasized the benefits that physics drew from the mathematical classification of 

17 Maxwell (1873: §§ 1– 26, 553– 68). Cf. Harman (1987). Maxwell’s proof that the Lagrangian structure 
derives from the energy principle is flawed.
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quantities, he also reminded his audience that mathematics could benefit from associated 
physical contents.18

The latter idea of the symbiotic development of mathematics and physics provides the 
central theme of the conference that Maxwell pronounced in front of the mathematical 
and physical sections of the British Association:

If the skill of the mathematician has enabled the experimentalist to see that the quantities 
which he has measured are connected by necessary relations, the discoveries of physics 
have revealed to the mathematician new forms of quantities which he could never have 
imagined for himself.

Maxwell meant that physics borrowed from mathematics the arithmetic needed for 
the measurement of quantities while the classification of the various kinds of quanti-
ties and the mathematics associated with this classification proceeded from physical 
ideas.19

More broadly, Maxwell distinguished between two kinds of “clear” thinking:

The human mind is seldom satisfied, and is certainly never exercising its highest 
functions, when it is doing the work of a calculating machine. What the man of science, 
whether he is a mathematician or a physical enquirer, aims at is, to acquire and develop 
clear ideas of the things he deals with. For this purpose, he is willing to enter on long 
calculations, and to be for a season a calculating machine, if he can only at last make 
his ideas clearer.— But if he finds that clear ideas are not to be obtained by means of 
processes the steps of which he is sure to forget before he has reached the conclusion, 
it is much better that he should turn to another method, and try to understand the 
subject by means of well- chosen illustrations derived from subjects with which he is 
more familiar.

Formalist and algorithmic clarity had to give way to the clarity of familiar pictures when 
the complexity of the subject defied computational methods. Formal analogies or illustra-
tions not only permitted the more efficient and pleasant teaching of a subject, they also 
enriched our knowledge of the two compared domains.20

Maxwell’s preference for the illustrative approach is evident in his researches. Unlike 
most of today’s physicists, he did not regard the equations that he wrote in his memoirs as 
mere concatenations of symbols according to rigid rules. To each equation or to each part 
of an equation he associated images and processes, most often geometrical or mechanical. 
Instead of algebraically combining a few equations in order to generate new laws, he 
mentally combined the images associated with these equations. Even though this way 
of thinking generated Maxwell’s most shining successes, it is not without dangers. The 
images associated with two differential equations may be incompatible, in which case 
their combination leads to aberrant conclusions.21

18 Maxwell (1870b: 258).
19 Maxwell (1870a: 218).
20 Maxwell (1870a: 219).
21 Achard (2003).
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To cite only one example of the latter pitfall, in his memoir of 1865 on the dynamical 
theory of the electromagnetic field, Maxwell illustrated the equation D E= ε  (relating the 
“polarization” D to the “force” E) by microscopic shifts of electricity within the molecules 
of the medium. This picture, borrowed from Poisson’s and Mossotti’s theories of magnets 
and dielectrics, implied the macroscopic electric charge

ρ = −∇ ⋅ D

in a medium of heterogeneous polarization. In addition, Maxwell admitted Faraday’s 
idea that the source of the magnetic field must be the total electric current J made of 
the displacement current ∂ ∂D / t and of the conduction current j. Through the relation

∇ × =H J

this assumption leads to

0 = ∇ ⋅ = ∂
∂

∇ ⋅ + ∇ ⋅ = − ∂
∂

+ ∇ ⋅J D j j
t t

ρ
,

whereas the conservation of electricity requires

∂
∂

+ ∇ ⋅ =ρ
t

j 0.

As Maxwell did not combine the equations in a purely algebraic manner, he did not see 
this contradiction in this memoir of 1865. He solved it much later, in his Treatise of 1873.22

Even though Maxwell favored the illustrative approach in his own researches and in his 
teaching, he acknowledged the existence of two kinds of minds, somewhat like Duhem’s 
French and English physicists:

There are men who, when any relation or law, however complex, is put before them in a 
symbolical form, can grasp its full meaning as a relation among abstract quantities. Such 
men sometimes treat with indifference the further statement that quantities actually exist 
in nature which fulfill this relation. The mental image of the concrete reality seems rather 
to disturb than to assist their contemplations.— But the great majority of mankind are 
utterly unable, without long training, to retain in their minds the unembodied symbols 
of the pure mathematician, so that, if science is ever to become popular, and yet remain 
scientific, it must be by a profound study and a copious application of those principles 
of the mathematical classification of quantities which, as we have seen, lie at the root of 
every truly scientific illustration.

Accordingly, Maxwell recommended a balanced pedagogy, one that would satisfy the 
two kinds of minds:23

22 Maxwell (1865, 1873: §64).
23 Maxwell (1870a: 219– 20).
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For the sake of persons of these different types, scientific truth should be presented in 
different forms, and should be regarded as equally scientific, whether it appears in the 
robust form and the vivid colouring of a physical illustration, or in the tenuity and paleness 
of a symbolical expression.

12.7  Conclusions

Maxwell’s pedagogical precepts reflect the ambiguity inherent in his use of formal analogies, 
illustrations, or scientific metaphors. On the one hand, his artistic sensitivity and his impreg-
nation with Scottish Common Sense philosophy induced him to define the intelligibility 
of phenomena through their representation by geometrical or mechanical constructs.24 
On the other hand, he was completely aware of the arbitrary and particular character of 
these representations and he sought to extract from them universal structures expressible 
in mathematical symbols. Three forms of generality resulted. In the first form, a specially 
clear and simple model played the role of a common paradigm for a substructure frequently 
encountered in theoretical physics. In the second form, specific notation and adequate sym-
bolic rules permitted a direct imposition of these substructures. In the third form, a general 
principle such as the energy principle or the principle of least action served to express the 
possibility of a mechanical model of the global theory without explicating this model.

Some of Maxwell’s readers, Helmholtz and Poincaré notoriously, saw in his use of 
models a springboard toward a more modern theoretical physics based on very general 
structural requirements. This is what Poincaré called “the physics of principles,” the 
principles being energy conservation, least action, equality of action and reaction, etc. 
Maxwell, for himself, did not wish to relegate mechanical images to the attic of science. 
In his eyes, a lively, clear, and intuitive physics needed a constant recourse to images. 
Generality was better conceived as the focal point of a beam of sensible specificities.25
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Biological generality: general anatomy 
from Xavier Bichat to Louis Ranvier

JEAN- GAËL BARBARA

Avis au lecteur, Cet ouvrage est très différent de ceux qui ont paru sur le même sujet. 
Les uns remplis de préceptes communs, rebutent par leur longueur : les autres bornés 
à de simples catalogues …

Le Cuisinier Gascon, Amsterdam, 1741.1

13.1  Introduction

Epistemological studies on generality in the life sciences have primarily focused on the 
concept of natural law and the generality of theories. Contemporary philosophers often 
conclude that no such laws or theories, nor natural kinds,2 or even generalizations3 exist 
in biology. Similarly, Richard Burian and coworkers have suggested that generalizing had 
its dangers in the philosophy of science. Consequently, these authors have argued that 
the philosophy of science should study how biological knowledge developed locally. They 
advocate a descriptive epistemological approach4 within precisely defined historical and 
geographical contexts. Even so, we may ask why and how generality was occasionally seen 
to possess great importance. In keeping with these views, studies focusing on the latter 
questions are more likely to bring answers if they focus on specific historical milieus. This 
is precisely the way, in this chapter, that we suggest addressing the following issues: How 
was generality built and expressed locally? What did it mean?

1 “Note to readers, this work is far different from those published on the same subject. Some full of com-
mon precepts discourage by their length: others are limited to simple tables …” Louis- Auguste de Bourbon 
(1700– 1755), Prince de Dombes, expresses a common idea in the eighteenth century, a middle way between 
the art of dealing with details (“simple catalogues”) and the aim of highlighting general principles (“préceptes 
communs”), in agreement with the spirit of analysis (Bourbon, 1741). All translations by the author.

2 I. Hacking, 25 April 2006 Lecture at the Collège de France. See the paper by Y. Cambefort in this volume.
3 Burian et al. (1996).
4 Burian et al. (1996: 25).
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The discipline of anatomie générale was founded in France in 1800 by Xavier Bichat 
(1771– 1802). Shortly after his death, it was taken as a model throughout Europe for the 
study of medicine, human anatomy, and pathology. Bichat’s anatomy was later developed 
in the 1870s in France by Louis Ranvier (1835– 1922) at the Collège de France, by means 
of microscopy. Contemporary debates in science studies suggest paying attention to 
local epistemic cultures and usually deny general biological laws. This chapter echoes the 
first suggestion while rejecting the second; it is intended to study Bichat’s and Ranvier’s 
interests in generality as an actor’s category. We hope that such an approach can renew 
discussions on the role of generality in the life sciences.

Bichat’s concern regarding generality was not a simple consequence of his vitalism. 
In fact, Bichat claimed not to rely on a unique and mysterious vital principle, but 
rather to study particular and complex properties of living matter. Nevertheless, his 
approach focused on the observation of more or less strict experimental regularities 
in biological phenomena and observations of structures, an attitude which we will try 
to account for. Bichat’s work is of interest for understanding which kind of concept of 
generality gained favor in the life sciences at the start of the nineteenth century, and 
why that happened. Moreover, it sheds light on its present- day status in experimental 
biology.

The later career of Louis Ranvier, who held the first chair in Anatomie générale in 
France, will inform us about the ways that generality was searched for at the micro-
scopic level and its significance in the discovery of real and minute biological objects. 
With Ranvier, we will get closer to our understanding of the value of generality in 
biology today. We will study the context in which Ranvier came to value generality as 
a heuristic category and how this led him to discover new microscopic objects. We will 
concentrate in particular on the role of cellular theory and Claude Bernard’s experi-
mental physiology.

These case studies will allow us to analyze the changes in meanings and expressions 
of generality in Bichat and Ranvier. In both cases, generality was at the heart of a new 
disciplinary approach. The search for generality promoted the search for general facts— 
common traits encountered in multiple observations, thought of as being part of one 
ensemble, defined by a criterion— and their use to define the objects of study. The works 
of both Bichat and Ranvier involved the two disciplines of anatomy and physiology. The 
sense of generality in biological sciences changed in this cross fertilization. Their studies 
aimed to correlate facts common to anatomy and physiology and to search for criteria 
which did not rely solely on either one of them. Consequently, their method could define 
biological objects and categories by spatially overlapping anatomical and physiological 
traits.

13.2  Bichat’s anatomie générale

Xavier Bichat is usually considered the founder of general anatomy. This young surgeon 
had a private course in anatomy and edited, after the death of his master Pierre Joseph 
Desault (1744– 1795), his courses in surgery. Bichat died prematurely at age 31, after 
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publishing two anatomical books, Traité des membranes5 and the Anatomie générale,6 which 
had profound impacts on the teaching and future directions of research in human anat-
omy and medicine.

His work was based on a new concept borrowed from the English school of surgery, 
the concept of “tissue.” The study of such tissues, namely “histology,” now relies on subtle 
microscopic observations and selective staining procedures that were not available in 
Bichat’s time. Rather, Bichat made use of physiology and pathology to make distinctions 
between anatomically similar tissues.

Bichat’s method can be most easily understood by using the example of the first 
type of tissue in his first category of membranous tissues, mucous membranes.7 A first 
approach was to search for general traits defining an ensemble of anatomical parts as a 
specific tissue. This search was guided by a priori criteria which could be changed after 
study. Bichat’s criterion for mucous membranes defined them as those inside cavities in 
continuity with the skin (mouth and nose, for example). Using another criterion of spatial 
continuity, Bichat divided mucous membranes into two ensembles, whose membranes 
were in continuity. Accordingly, a first ensemble lay in the interior of nose, mouth, phar-
ynx, larynx, esophagus, stomach, intestine, and anus, while a second is in the urethra, 
ureter, kidneys, and prostate or vagina. At a physiological and pathological level, a com-
mon pathological property of the first kind of membrane seemed apparent when, during 
a cold, inflammation of the mucous membrane spread from nose to throat, or vice versa, 
possibly to sinus or bronchi. In case of stomach acid reflux, inflammation can invade the 
esophagus to larynx and ears. This example shows how a priori criteria were used to define 
kinds of tissues, and how tissue categories were defined a posteriori, by reference not 
only to anatomical, but also to physiological and pathological properties. This approach 
enabled Bichat to build a single category for membranes of nose, mouth, pharynx, larynx, 
esophagus, stomach, intestine, and anus, which is referred to as a single mucous tissue.8 
The novelty of this approach relied on defining anatomical parts of the body using non 
anatomical properties, and the discovery of converging criteria from different disciplines, 
in the partition of the human body, for defining single types of tissues.

Consequently, the discipline that Bichat established is usually described as a “physi-
ological anatomy.”9 Defining general anatomical categories as types of tissues (general 
anatomy), Bichat attempted to describe their organization within organs in a new manner 
(descriptive anatomy), as well as to understand their functional properties and functions 
(physiology). His systematic use of the concept of tissue revolutionized anatomy, descrip-
tive anatomy, physiology, pathology, and medicine. After his death, Bichat’s method was 
recognized as the future direction to follow in all of these fields. Its main feature was the 
expression of the general and the particular in a new physiological perspective, following 

5 Bichat (1799).
6 Bichat (1801).
7 Bichat (1799: art. II).
8 Bichat will later make other, finer, distinctions in his tissue categories and his system of tissues will be later 

criticized for its overwhelming complexity.
9 See, for example, Flourens (1858: 244– 7).
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the work of Haller (1708– 1777), in correlating anatomy and pathology. This required a 
diversity of practical procedures, that is, experimental physiology performed on animals, 
human dissections of healthy and diseased bodies, and the inspection of sick persons, 
which Bichat skillfully used within a single perspective. In all these studies, Bichat was 
focused on general facts in order to compare each of them to others obtained with 
different procedures from other disciplines. This explains how and why generality as he 
practiced it was central to his approach.

13.2.1  Bringing anatomy and physiology closer together

We shall now analyze Bichat’s work within a historical perspective, in order to highlight 
the contexts in which he came to study anatomy, surgery, and medicine conjointly in this 
new way. However, before addressing this issue, let us make some preliminary remarks 
on the way generality had been used as a category for comparing knowledge coming 
from different disciplines. In the history of biology, generality has often been associated 
with explanation and causality. The central goal of Bichat was not only a new description 
of the human anatomy. For medical practice, he also wished to understand the function 
of each type of tissue and the causes of pathological lesions. Such relations between 
generality and causation appear in ancient Greek physics and medicine. In his Physics, 
Aristotle claimed to look for general causes within general facts, and particular causes 
within the particular.10 The study of general facts was considered a path to discover the 
general causes involved.

In eighteenth-  and nineteenth- century anatomy and physiology, general anatomical 
facts were extracted from observations and considered as possible causes of the func-
tion of organs in an Aristotelian perspective.11 As late as the nineteenth century, Rudolf 
Virchow expressed a similar opinion, when he asserted that new general anatomical 
observations had to be developed prior to making any physiological discovery.12 General 
anatomical categories were thus frequently sought in order to explain function.13 This 
is what, for instance, Georges Canguilhem (1904– 1995) stressed, in his comment on 
Galen’s approach in De usu partium:

Anatomy describes organs, physiology explains their functions. How can one claim to 
deduce physiological rules from anatomical techniques? In fact, any form of physiology 
understood in this way amounted more or less to a discourse on the utility and use of 
parts of organisms.14

10 Aristotle (Physics, Book II, part 3).
11 Debru (1996: 28).
12 Virchow (1861).
13 Hall (1968).
14 The discourse on the use of parts of animals refers to Galen’s project to deduce the function of organs from 

the knowledge of their structures. “L’anatomie est la description des organes, la physiologie est l’explication de 
leurs fonctions. Comment prétendre déduire des techniques de la première les règles de la seconde ? En fait, 
toute physiologie ainsi entendue revenait plus ou moins … à un discours sur l’utilité et l’usage des parties de 
l’organisme” (Canguilhem, 1968a: 227).
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By contrast, Claude Bernard’s experimental physiology was built against such a prin-
ciple.15 However, even if, before Claude Bernard, physiology was already empirical and 
often experimental, on a theoretical level it provided merely a discussion of general ana-
tomical facts to explain the functions of organs. Haller referred to it as Anatomia animata. 
Although generality was central in discussions linking anatomy and physiology, the rela-
tions between these fields were teleological and polarized from anatomy to physiology, 
never relying systematically on experimental physiology or pathology.

In the eighteenth century, physiologists did not only seek to explain function in terms 
of general structures, but they also began to propose physiological principles— vitalist or 
mechanist— to account for life. The vitalist approach defined functional properties, for 
which no causal explanation was sought. For example, irritability was defined as the prop-
erty of muscles to contract, without inquiring into its origin. Haller avoided any discussion 
of the causes of physiological properties, referring to Newton’s lack of discussion of the 
origin of gravitational force. Sensibility, the power of a stimulated tissue to alert an animal, 
and irritability, the power of inducing contraction in a stimulated tissue, were considered 
two general physiological properties to be studied. Experimental physiology established 
these concepts as properties mapped onto organs throughout the body. These researches 
invented a generality of physiological facts and subsumed them in broad categories of 
vital properties, which Bichat adopted.

Such physiological studies did not try to account for vital properties in terms of under-
lying anatomical structures and mechanisms, but rather aimed to understand how they 
contributed to specific functions. However, such studies were not made without reference 
to anatomy. Why, then, were general anatomical facts of interest in such an approach?

Bichat answered this question in a specific way. He was among the leading anatomists 
adopting Haller’s style of physiological research. His personal interest was in establishing 
correlations between the general physiological properties described by Haller and general 
anatomical descriptions in order to define tissues as overlapping categories between those 
of anatomy and physiology. As we have sketched above, since, for instance, inflammation 
of the mucous membranes of the urethra never occurred after a cold, for him it belonged 
to a different tissue category than that of the membrane of the respiratory and digestive 
tracks. Therefore, he correlated anatomical, physiological, and pathological properties 
to define categories of tissues. All such observations converged on precisely determined 
surfaces of the body to define a tissue as a single and general object. Bichat considered 
tissues as anatomical entities “carrying”16 specific properties. His goal was, on the one 
hand, to describe functional differences in apparently similar anatomical objects which 
could account for specific physiological properties and pathologies, and on the other hand, 
to search for functional similarities between anatomical objects with different textures, 
colors, or tastes. Bichat conducted all possible confrontations between classical anatomy 
and medicine, by relying on the senses and new experimental physiology. He wished to 
arbitrate between structure and function, to discover a middle way of defining tissues. 

15 Bernard advocated that functions should be discovered by experimental physiology alone, without prior 
reference to structures. Accordingly, physiology should, in his view, be independent from anatomy.

16 Bichat’s term.
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Locating physiological and pathological properties on anatomical maps allowed him 
to localize them onto particular territories, defined as tissues. Although Bichat adopted 
Hallerian physiology, he no longer associated anatomy and physiology in a unidirectional 
and causal relationship. Their connections relied on overlapping generalities in the organi-
zation of life, described only in terms of visible entities, where anatomy and physiology 
could compare, correlate, and combine their spatial partitions of the body.

13.2.2  The choice to focus on tissues within  
a historical perspective

Let us now examine the historical contexts in which Bichat decided to found his research 
on tissues. Bichat’s approach is both original and representative of anatomy in the second 
half of the eighteenth century. As we have already suggested, his quest for generality is 
apparent in the identification of general anatomical entities and their spatial correlations 
with physiological properties, which led to the creation of new objects. The history of 
this approach has been studied by Othmar Keel,17 who discovered that the concept of 
tissue was first described by students from John Hunter’s school of surgery (1728– 93), 
followed by Philippe Pinel (1745– 1826), and later Bichat. Tissues were initially identified 
by their distinct sensitivity to inflammation, and thus spatially localized by the extension of 
physiopathological properties.18 The attention paid to such properties is representative of 
Bichat’s method, which he used systematically. However, Bichat distinguished himself as 
the only author to make use of general anatomy in this context. Most authors, including 
British scientists, agree on this fact. We may account for this feature of his approach by 
referring to his personal method of searching for generality. This search is characteristic 
of his dominant style of research, as he was the only one who required that a collection of 
specific practices define the topography of physiological and pathological properties, and 
demanded their spatial correlations with anatomical observations. Moreover, Bichat gave 
a theoretical content to the use of the tissue as a concept, and made it the centerpiece of 
his new method of anatomy. Practices from different disciplines, systematically developed 
conjointly, were for him a means of avoiding the limitations of anatomy alone and of 
defining real biological objects.

Bichat’s starting point was anatomy studied by the senses. He inspected hundreds of 
cadavers and believed that the repetition of dissections led to clear and general ideas, since 
“in this matter, observation is all, as in most physical sciences…. Images last only when 
they are repeated: the first image is fleeting, the second confused and the third is often 
indistinct. Senses can teach us better than books.”19 For Bichat, general facts emerged 
from repeated observations and were those which most struck the mind and represented 
the common denominator of all the observations.

17 Keel (1979, 1982).
18 According to Flourens, the term tissue was taken by Bichat from Bordeu (Flourens, 1858: 235).
19 “Ici, l’inspection est tout, comme dans la plupart des sciences physiques … Les images ne sont durables 

qu’autant qu’elles sont répétées : la première fuit ; la seconde est confuse ; souvent la troisième n’est pas dis-
tincte. Les sens, mieux que les livres, peuvent nous instruire” (Bichat, 1829: xxv).
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Bichat emphasized the primary importance of the senses in observation, advising that 
one should “point out phenomena, and even often refrain from looking for the connection 
between them;” [Bichat added], “this is most often what we ought to.”20 But Bichat’s 
own practice seemed to some of his contemporaries to contradict this claim. François 
Magendie (1783– 1855) emphasized this point in a note to the 1827 edition of the Traité 
des membranes: “Principles given here by Bichat are wise and truly philosophical; we 
regret his active imagination led him away from them too often.”21 While Magendie’s 
specific approach advocated against extracting general facts from observations, Bichat 
used “connections” and “analogies”22 freely for grasping generality. Thus in Bichat’s 
practice, constructing and deriving general facts relied on a psychological procedure, 
which actively drew on connections and analogies to reach a higher level of generality in 
a rational manner.

Thus, we come across two modes of creating generality in Bichat’s method:

(1) One is based on spatial correlations between anatomical boundaries and the exten-
sion of pathophysiological properties, which leads to the definition of general 
tissues. Such tissues are general in the sense that they represent general entities 
within three sets of orders: anatomical, physiological, and pathological. They are 
also general since they can be found in different organs of the body. However, this 
latter form of generality derives from the former since the properties under con-
sideration and their associations are general and consequently occur in different 
areas of the body.

(2) A second mode of achieving generality is present in each of these disciplines— 
anatomy, for example— when similar observations are abstracted by mental pro-
cessing to build a single and general representation. In this case, this representation 
is what remains in memory or is actively built. Moreover, it has an educational 
virtue for teaching.

All these processes for achieving generality require comparing abstractions derived by 
focusing on similarities and differences. Bichat’s way of observing evokes later practices of 
nineteenth- century anatomists, as described by Ranvier or Mathias Duval (1844– 1907). 
In these practices, the search for similarities belongs to the domain of the senses, a domain 
of unconscious perception, from which generality emerges. It also belongs to the domain 
of the rational construction of analogies.

20 “Indiquer les phénomènes, s’abstenir même souvent de rechercher la connexion qu’ils ont entre eux, c’est 
presque toujours ici ce que nous avons à faire” (Bichat, 1829: 116– 17).

21 “Les principes qu’émet ici Bichat sont très sages et vraiment philosophiques ; il est à regretter que son 
imagination active l’ait trop souvent conduit à s’en écarter” (Bichat, 1829: 117). These words show the weight 
that Magendie placed on facts, an emphasis later criticized by Claude Bernard and Louis Ranvier.

22 “Connexions,” “rapprochements,” and “analogies.” In the introduction of a new edition of Bichat’s Traité 
des membranes, F. Magendie wrote “anyone will understand the shortcomings of his book if one observes the 
necessity he [Bichat] felt to connect similar facts, in ways that were often more unexpected and newer than 
true;” “son besoin de rapprochements, souvent plus nouveaux et inattendus que vrais, expliqueront à chacun 
les défauts de l’ouvrage …” (Bichat, 1827: viii).
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Were these methods specific to Bichat, or can one find such principles at play in other 
circles? Bichat’s principles seem to have been shaped in opposition to the traditional 
anatomical teaching he received from his physician father and his master, Parisian surgeon 
of the Hôtel- Dieu, Pierre Joseph Desault. This education was based on memorizing large 
collections of particular facts. Desault was aware of this fact and criticized it. He therefore 
developed a pragmatic aspiration, common to many surgeons of his time, to rationalize 
the anatomical knowledge compiled over past centuries.23 Bichat’s biographer, Husson, 
noted how:

[Desault] had long wished to collect in a regular and methodical framework all the discov-
eries he added to surgery; he wanted to transform his journal, removing all isolated facts, 
keeping only those which allowed general inductions; in a word, he wished to establish a 
code of surgical doctrine.24

Desault advocated an analytical surgical anatomy, in which each chapter would begin with 
general facts. Thus, generality was already praised in some circles of surgeons in order to 
organize and simplify the anatomical knowledge used in the art of surgery.
This search for generality reveals a trend in all areas of knowledge typical of the eighteenth 
century. While the progress of surgical knowledge, on the smallest parts of the body, 
attracted students to this discipline, this material could seem “full of scholarly minutiae, 
so dry that it discouraged young people who were to study the art of healing.”25 After 
Desault’s premature death during the French Terror, Bichat continued his lectures on 
surgery, and published them,26 with a synopsis for each chapter on the organization of 
general facts. Bichat was conscious of the necessity of assembling both general know-
ledge and relevant particular observations. This same approach is found in his studies 
on membranes, where Bichat noted that “this science lacks … some of these general 
thoughts which begin the treatise of each organic system in our anatomical textbooks …”27   
Bichat’s teaching perspective was clear. He stressed that “method in the sciences is the 

23 Barbara (2008a).
24 “Depuis longtemps Desault formait le projet de rassembler dans un cadre régulier et méthodique toutes 

les découvertes dont il avait enrichi la chirurgie ; il voulait refondre son journal, en retrancher tous les faits 
isolés, conserver ceux dont l’ensemble pût fournir des inductions générales ; en un mot, il voulait créer un code 
de doctrine chirurgicale” (Bichat, 1827: xviii).

25 L’anatomie est “hérissée des minuties scolastiques, [elle rebute] trop souvent par sa sécheresse les jeunes 
gens destinés à l’étude de l’art de guérir” (Bichat, 1827: xxv). In the preface of the Œuvres chirurgicales of 
Desault, Bichat commented on the state of the teaching of anatomy: “The teaching of anatomy was isolated at 
the time within boundaries that contingency had drawn and that were maintained by usage. It was on the one 
hand characterized by an actual lack of details in descriptions, and, on the other, by a mass of superfluous and 
almost isolated facts. The former needed to be enlarged and the latter diminished. Anatomy ought to present, 
in a more methodical table, a better way to conceive all organs, and a more reliable guide to surgeons through a 
description of their relations, in less inaccurate terms.”; “L’enseignement anatomique, alors enfermé dans des 
limites que le hasard avait posées & que l’habitude entretenait, offrait d’un côté une insuffisance réelle dans 
les détails de la description ; de l’autre, un amas superflu de faits presqu’isolés. Il fallait, en ajoutant aux uns, 
retrancher à l’autre ; présenter dans un tableau plus méthodique, un ensemble mieux conçu de nos organes, 
& donner sur- tout dans une histoire moins inexacte de leurs rapports, un guide plus fidèle aux chirurgiens” 
(Desault, 1798).

26 Bichat (1827).
27 Bichat (1827: 2).
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link joining those who learn and those who demonstrate…. [Teaching methods] become 
the sharing of judgment which classifies, arranges, and coordinates this scattered and 
confused material.”28 In my view, Bichat’s interest in generality may have initially been 
dictated by the need to teach and thereby rationalize anatomical knowledge so that it 
was correctly used in surgery and medicine. This trend occurred within a wider cultural 
context in the eighteenth century, whereby various fields of knowledge underwent similar 
reorganization. However, Bichat later imported this practice into research, taking other 
disciplines as a guide, such as philosophy, mathematics, and botany, where the question 
of the value of generality was under discussion.

Bichat intended to simplify anatomical knowledge with a concept of generality that 
would enable the building of a large framework that embraced a selection of interdepend-
ent facts.29 This was achieved in line with a new philosophical and analytical method. He 
recommended relying on philosophy, the humanities,30 physics, chemistry, and math-
ematics in particular, since in his view “mathematics … educates our spirit of method 
and analysis.”31 In this context, Bichat praised the geometrical spirit of Blaise Pascal 
(1623– 1662), which “defines all terms and proves all statements.”32 Bichat makes use 
of specific criteria and principles to precisely define his categories. He also followed the 
anatomist Félix Vicq d’Azyr (1748– 1794), who adopted anatomical nomenclature and 
the use of language as an analytical method,33 in agreement with Fontenelle’s ideas34 on 
the spirit of analysis and the thoughts of Étienne Bonnot de Condillac (1714– 1780) on 
language.35 Bichat appreciated these ideas, asserting:

Language influences the sciences to a certain point. Condillac says, ‘there is a true method 
of analysis which guides us all the more safely that it is exact.’ In the descriptive sciences, 
the perfection of language lies in attaching images to each term, tying memory to nomen-
clature, and describing many objects by means of a few words. Language ought to be … 
an abridgment of science itself.36

28 “La méthode, dans les sciences est le lien qui attache celui qui apprend à celui qui démontre…. [Les 
méthodes d’enseignement] deviennent le partage du jugement, qui classe, arrange, coordonne ces matériaux 
confusément épars” (Bichat, 1829: vii).

29 On studies devoted to membranes: “a science, subject of so numerous discourses, where what is to be 
removed exceeds plausibly what is to be added.”; “une science où l’on a déjà tant écrit, et où ce qui est à 
retrancher surpasse sans doute ce qui reste à ajouter” (Ibid., xiv).

30 “les sciences humaines” including “les belles- lettres,” “la morale,” and “la philosophie universelle.”
31 “Nous aimons les sciences mathématiques, parce qu’elles forment l’esprit de méthode et d’analyse” 

(Bichat, 1798: ix).
32 “définir tous les termes et à prouver toutes les propositions” (Pascal, 1985).
33 Vicq d’Azyr commented: “Since the whole of language is an analysis, how important it is, in the study 

of the sciences, to improve the methods thanks to which diverse parts of a whole are dissociated, examined, 
known, named, compared, and united! For long, only geometers know how to use these procedures: physicists, 
naturalists have at last learnt to use them.”; “Puisque tout le langage est une analyse, combien n’importe- t- il 
pas, dans l’étude des sciences, de perfectionner des méthodes à l’aide desquelles les diverses parties d’un tout 
sont séparées, examinées, connues, nommées, comparées et réunies ! Longtemps les seuls géomètres surent 
employer ces procédés utiles : les Physiciens et les naturalistes ont enfin appris à s’en servir” (Vicq d’Azyr, 
1805, vol. 4: 210).

34 Fontenelle (1708, vol. I: 17– 18).
35 Condillac (1780).
36 “Le langage, dit- il, influe jusqu’à un certain point sur l’étude des sciences. ‘Il est, dit Condillac, une 

véritable méthode analytique, qui nous dirige d’autant plus sûrement qu’elle est plus exacte.’ Dans les sciences 
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Thus, the manner Bichat envisaged to express generality was closely associated with new 
ways of using language and analysis in many areas of science.

In addition, the eighteenth- century “spirit of analysis” also related to scientific practices, 
which Condillac described using the metaphor of the dressmaker able to take apart and 
reassemble a dress.37 Bichat considered this spirit crucial in studies of general anatomy. 
Such an analysis was, in his mind, akin to that “practiced by an architect who, before build-
ing a house, attempts to know in detail the distinct materials he will have to use.”38 Thus, 
Bichat’s rationality is not only expressed with language, but it also involves decomposing 
and reassembling parts in the body with the practical procedures of dissections, the latter 
being carried out with a superimposed and operation- associated descriptive terminology. 
In this respect, analysis allows practical anatomy and fictive anatomy, as often practiced 
in teaching, to be closely associated, while remaining distinct.39

Asking whether anatomy must name all details, Bichat warned: “anatomy has two pitfalls 
that must be equally feared: superfluous details … exaggerate precision on the one hand …, 
too narrow a framework [which] only allows us to catch a glimpse of the whole picture that 
it contains …”40 Naming all details characterizes descriptive anatomy, in which generality 
is absent, whereas using only gross categories misses essential points. In Bichat’s work, a 
middle way was to be found at two levels, between things and words, but also among anat-
omy, physiology, and pathology, in line with evolutions in eighteenth- century life sciences.

Concerning the second level, where a middle way was needed, the method of Bichat 
consisted of an analytical approach to both physiology and anatomy. Marie- Jean- Pierre 
Flourens (1794– 1867) distinguished between Haller’s analyse physiologique and Bichat’s 
analyse anatomique. Bichat’s method relied on a new analytical anatomy developed con-
jointly with physiology. Consequently, Bichat’s analyse anatomique did not limit itself to 
favor general forms of objects, since “differences in form may only be accessory, and the 
same tissue sometimes shows different states…. Main differences must therefore also be 
derived from the organization of properties.”41 This principle was also justified by the 

de description, attacher des images à chaque terme, enchaîner, pour ainsi dire, la mémoire à la nomenclature, 
exprimer beaucoup d’objets par un petit nombre de termes, voilà la perfection du langage. Il faudrait, si je puis 
m’exprimer ainsi, que le langage fût un abrégé de la science elle- même” (Bichat, 1829: xx– xxi).

37 “[Dressmakers] will imagine how to take apart and reassemble again the dress you ask naturally. Thus, 
they know analysis as well as philosophers.”; “[Les couturières] imagineront naturellement de défaire & de 
refaire la robe que vous demandez. Elles sçavent donc l’analyse aussi- bien que les philosophes” (Condillac, 
1780 : 23).

38 “[L’analyse] à laquelle se livre un architecte, qui, avant de construire une maison, cherche à connaître en 
détail tous les matériaux isolés qu’il a à employer” (Bichat, 1829: x).

39 Foucault (1966).
40 “prenons- y garde, répond Bichat, l’anatomie a deux écueils également à craindre : d’un côté les détails 

superflus … une précision exagérée … [de l’autre] un cadre trop étroit [qui] ne laisse qu’entrevoir le tableau 
qu’il renferme ; de même une méthode trop concise ne présente qu’à demi les objets qu’elle embrasse”(Bichat, 
1829: xiii).

41 “Les différences de formes peuvent n’être qu’accessoires, et le même tissu se montre quelquefois sous 
plusieurs états différens…. C’est donc de l’organisation des propriétés, que les principales différences doivent 
se tirer” (Bichat, 1799: lxxx– lxxxi). The analyse anatomique criticized those who put too much emphasis on 
differences in structures: “anatomists, struck by differences in the structure of organs, have forgotten that 
their distinctive membranes could be analogous; they neglected to establish relations between them and this is 
an essential lacuna”; “les anatomistes, frappés de la différence de structure des organes, ont oublié que leurs 
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over generality of observations emerging from analyses of form alone, as Bichat’s critique 
showed Haller had done on membranes.42 Bichat found the scope of Haller’s generaliza-
tions on membranes too large,43 since he himself described three types of membranes, 
where Haller, judging on a similar appearance, had only considered one. Bichat’s middle 
way thus relied on associating disciplines to define the right level of generality. Physiology 
regulated the shaping of generality in anatomy and vice versa, by correlating specific 
criteria from each of these fields in the definition of tissues.

In doing so, Bichat aimed at founding new objects. He considered that putting together 
general facts from anatomy, physiology, and pathology was a means to define real objects. 
In procedural terms, Bichat’s general anatomy begins by abstracting from physiological 
and pathological observations, and then relates the abstractions obtained to abstrac-
tions of anatomical structures. For Bichat’s biographer, Husson, there is “more merit 
in anticipating differences in the organization of anatomical parts from the diversity of 
diseases, than in classifying disorders by anatomical knowledge of these same parts.”44 
From this perspective, Bichat did not aim to construct a new classification of disorders, 
but he wished to order them according to a new anatomy. His method proceeded from 
knowledge on both healthy and sick anatomical organs and tissues to define general and 
real anatomical categories, which were impossible to define with anatomy, physiology, 
or pathology alone.

Establishing a specific web of complex relations between normal and pathological 
anatomy and physiology represented Bichat’s own way of finding a middle ground. This 
explains why Bichat advocated the unification of anatomy and physiology. This thesis 
became a major idea which Auguste Comte (1798– 1857) developed in his philosophy 
of biology.45 Physiological properties were already central to Desault’s surgical anatomy. 
Bichat regretted that other scientists, physicians in particular, considered these disciplines 
separately:

Struck by this difference between the parts of a same science, physicians had drawn 
between them a line of demarcation which was established and respected with time. 
Cadavers belonged to the domain of anatomy; physiologists were concerned with phe-
nomena attached to life, as if the studies of the former were not inextricably linked with 
the researches of the latter; as if the knowledge of an effect could be separated from that 
of the agent that produced it…. One could wonder here which of the two, anatomy or 
physiology, lost more from this long separation.46

membranes respectives pouvaient avoir de l’analogie ; ils ont négligé d’établir entre elles des rapprochements, 
et c’est là un vide essentiel” (Bichat, 1827: 2).

42 It is also reminiscent of Bernard’s later attack of anatomical deduction of organic functions.
43 Bichat (1827: 3).
44 “il y a plus de mérite à pressentir, d’après la diversité de nos maladies, la différence dans l’organisation 

de nos parties, qu’il n’y a de difficulté à classer nos affections d’après la connaissance parfaite de ces mêmes 
parties” (Bichat, 1827: xx– xxi).

45 Comte (1830: Leçon 44).
46 “Frappés de cette différence entre les parties d’une même science, les médecins avaient tiré entre elles 

une ligne de démarcation que l’habitude consacra et que le temps a respectée. Les dépouilles des morts furent 
le domaine de l’anatomiste ; le physiologiste eut en partage les phénomènes de la vie : comme si les travaux 
de l’un n’étaient pas immédiatement enchaînés aux recherches de l’autre ; comme si la connaissance de l’effet 
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Accordingly, Bichat’s anatomical generality has multiple facets, taking advantage of struc-
tures, illness, and experiments which make use of desiccations, putrefactions, macerations, 
boiling, cooking, treating with acids or alkali, etc.47 Furthermore, as we have already 
suggested, Bichat’s emphasis on generality is motivated by his conviction that such an 
approach will bring out real entities. He asserts:

The idea of considering thus abstractively the different simple tissues of our parts is not 
an imaginary conception; its basis is most real and will exert, I think, a most powerful 
influence on physiology, as well as on medical practices. Indeed, tissues never appear 
similar, whatever our point of view is. Nature delineated them, not science.48

The search for truth by means of generality relied on assembling homologous observa-
tions to provide natural divisions among things and on defining tissues as real objects.

13.3  Classifying tissues by combining different 
frameworks: another eighteenth century legacy

Bichat arrived at a certain generality through the use of a multidisciplinary strategy that 
aimed to define biological objects from complementary analyses. He himself perceived 
that this was another legacy of Desault. This point appears clearly in Bichat’s own descrip-
tion of his master’s work as:

A vast framework split into secondary ones by salient lines. External form belongs to a 
first framework; structure to a second one; another one deals with properties; the last 
one is for functions: each is subdivided into several sections linked to each other without 
merging together and following each other without overlapping. Their union gives a 
general formula applicable to organs from all systems, every point being described 
and located, when previously omissions left empty spaces in previous descriptions, 
leaving to the reader following this sketch the exact knowledge to be remembered on 
each part.49

pouvait se séparer de celle de l’agent qui le produit…. On pourrait se demander ici laquelle, de l’anatomie ou 
de la physiologie, a le plus perdu à ce long isolement” (Bichat, 1829: vi).

47 Bichat (1801: vi).
48 “L’idée de considérer ainsi abstractivement les différens tissus simples de nos parties, n’est point une 

conception imaginaire ; elle repose sur les fondemens les plus réels, et je crois qu’elle aura sur la physiologie 
comme sur la pratique médicale, une puissante influence. En effet quel que soit le point de vue sous lequel on 
considère ces tissus, ils ne se ressemblent nullement. C’est la nature, et non la science, qui a tiré une ligne de 
démarcation entre eux” (Bichat, 1801: lxxx).

49 “C’est un vaste cadre que des lignes saillantes séparent en plusieurs autres cadres secondaires. Dans l’un 
se range la conformation externe ; à l’autre appartient la structure ; un autre embrasse les propriétés ; le dernier 
est réservé aux usages : chacun se subdivise en plusieurs sections qui s’enchaînent sans se confondre et se suc-
cèdent sans empiéter sur leurs limites. De leur réunion naît une formule générale, applicable aux organes de 
tous les systèmes, offrant à chaque point de leur description, une place à occuper, indiquant ce qu’on omet par 
les vides qu’elle présente, & laissant à celui qui l’a parcouru, le tableau exact de tout ce qu’il faut apprendre sur 
chaque partie” (Desault, 1798: préface, 11).
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Bichat claimed that the reality of tissues was grounded in the combination of such 
frameworks. It was his work to put Desault’s ideas into practice in his definitions and 
classifications of tissues.

Bichat’s studies led to complex classifications. His first study of membranes proposed 
categories of elementary tissues, which provided a partial classification of tissues. Aspects 
of Bichat’s method also reflected new trends in eighteenth- century taxonomy. As a matter 
of fact, Bichat described his method as “natural”:

It must be precisely determined which membranes belong to the same class…. The group-
ing of two membranes into a single class must rely only on the simultaneous identity 
of their external configuration, structure, vital properties, and functions. Only natural 
methods can lead us to useful results.50

How should we understand “natural method” here? Probably the term referred 
to discussions in botany and in natural sciences more generally. The idea of a natural 
method was the object of much discussion in the second half of the eighteenth century. 
Methodological advances in botany were strikingly similar to those in Bichat’s anatomy. In 
both fields, there emerged the conception that Nature was a continuous ordering of things 
with relative affinities, defined from similarities and differences among them, and that 
it could be described by a single— natural— classification. Carl von Linné (1707– 1778) 
suggested that elements and groups of elements should be delineated as a function of 
all fundamental affinities and distinctions between them.51 Antoine Laurent de Jussieu 
(1748– 1836) warned that anatomical characteristics should be used and that they should 
be weighted according to their relative importance and contribution to the function 
of organs.52 Georges Cuvier (1769– 1832) acknowledged this shift toward a more nat-
ural method and influenced in that respect the botanist Augustin Pyramus de Candolle 
(1778– 1841).53 For the latter, equivalent distinctions should be made whatever main plant 
function was chosen.54 For these authors, a natural method required studying various 
morphological and functional traits, if they were to define real categories of plant species 
which reflected the order of Nature. This approach is similar to that of Bichat, who also 
used as many characteristics as possible, both anatomical and physiological, to identify 

50 “Il faut donc fixer avec précision quelles membranes appartiennent à la même classe…. Ce n’est que 
sur l’identité simultanée de la conformation extérieure, de la structure, des propriétés vitales et des fonctions, 
que doit être fondée l’attribution de deux membranes à une même classe…. ce n’est que par les méthodes 
naturelles que nous pouvons être conduits ici à d’utiles résultats” (Bichat, 1827: 5– 6).

51 Larson (1968: 312– 13).
52 Jussieu (1789: 5– 9).
53 Lorch (1961: 284– 5).
54 “The author of a natural method is not free to choose [characteristics]; he follows rigorous principles in 

the observation of all organs, and in attributing to each of them a relative importance, which does not rely on 
the facility to see them, but to the part that the organs play in the life of beings.”; “L’auteur d’une méthode 
naturelle n’a pas la liberté du choix [des caractères] ; il est conduit par des principes rigoureux à observer tous 
les organes, et à donner à chacun une importance relative, non à la facilité que nous avons de le voir, mais au 
rôle que cet organe joue dans la vie des êtres” (Candolle, 1819: 52– 53); “… truly natural classes, established 
according to the one of the major functions of plants, are necessarily identical to those established upon 
another.”; “… les classes vraiment naturelles, établies d’après une des grandes fonctions du végétal, sont néces-
sairement les mêmes que celles qui sont établies sur l’autre” (Candolle, 1819: 79).
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tissue classes. Bichat’s method also relied implicitly on the equivalence of the distinctions 
that could be derived from anatomy, physiology, or pathology. Hence, the routes to gen-
erality that Bichat developed had affinities with the natural methods of botany. Bichat’s 
conviction that his tissue classes represented real distinctions of Nature,55 since they were 
founded on a sum of anatomical and physiological characteristics, in agreement with 
their function, is an echo of contemporary attitudes toward botanical systems. One may 
thus assume that Bichat was inspired by practices in botany when he defined his natural 
method. This method was thought of as natural because it was seen as the single and 
correct way to approach and define real categories, botanical taxa, or tissues.

Like botanical and zoological taxa, Bichat’s objects remained theoretical. In his Traité 
des membranes, Bichat defined three classes of simple membranes: serous, fibrous, and 
mucous; and three complex mixed membranes: fibro- serous, sero- mucous, and fibro- 
mucous.56 In the eyes of some of his contemporaries, his method showed some weak-
nesses. An astute choice of the characteristics observed would have been crucial for such 
a comparative approach, as it had been in botany. Magendie felt that choices made by 
Bichat led him into “foolish views and even mistakes.”57 Nonetheless, Bichat’s concep-
tion of generality had an indisputable heuristic potential that enabled him to access new 
objects, with a combination of physiological and anatomical facts that were later ignored 
when anatomists, including Geoffroy Saint- Hillaire,58 developed analogies based on form 
alone. Bichat’s classifications were later much criticized— because of the multiplication 
of the tissues he defined— but his method remained used.

Other scientists followed quite parallel paths. In his Encefalotomia nuova universale,59 
Vicenzo Malacarne (1744– 1816) had initiated a systematic, universal, and topographical 
study of the anatomical parts of the brain, using geometrical and geographical abstractions 
to highlight the stable configurations of elements. Malacarne used form, physiology, and 
pathology to classify fibers, membranes, and humors. This similarity of Malacarne’s and 
Bichat’s approaches can be traced back to the work of the pathologist Giovanni Battista 
Morgagni (1682– 1771). They both finally came to consider tissues as general entities,60 
while both rejecting microscopy.61 Malacarne’s ideas can thus be perceived as another 
outcome of a reflection on generality, the results of which are convergent with Bichat’s. 

55 Bichat (1801).
56 Bichat (1801: 8).
57 “… vues hasardées et même [les] erreurs” (Bichat, 1799: viii– x).
58 See paper by S. Schmitt in this volume.
59 Cherici (2005); Malacarne (1780).
60 Cherici (2005).
61 In Bichat’s days, microscopy was tricky and often led to great variety in the descriptions of minute ana-

tomical entities. Magendie attacked Bichat’s opinion that each observer could see what he himself imagined 
(Bichat 1799: 35, 35- 36n). However, Ranvier recognized the inadequacy of microscopical instruments at that 
time. According to him, they could have brought only confusion to Bichat’s general anatomy: “Bichat was a 
thousand times right when he refused to use such defective instruments”; “Bichat a eu mille fois raison de 
ne pas vouloir se servir d’instruments aussi imparfaits [comme les microscopes de son époque]” (Ranvier, 
1880: 4). Bichat’s rejection of microscopy perhaps reflects his idea that general microscopic observations could 
not be gathered, if one used the instruments of his time, and that a diversity of particular observations could 
not help anatomy.
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However, Bichat’s work is more explicit regarding the ways that generality is searched 
for, expressed, and separated from mere speculations.

In conclusion, we see that Bichat lies at an epistemological crossroad, where the con-
vergence of several mature disciplines (anatomy, physiology, and pathology) raised a new 
question regarding how these distinct bodies of knowledge could be combined. Bichat 
wished to compare and link together general facts that had been defined in each of these 
disciplines. The search for generality within each of these disciplines was previously felt 
to be necessary for teaching and for the light it cast on the question of causation. These 
were ancient questions requiring generality built on the basis of sense perception and 
actively created with analogies. However, the comparison of several orders of generality, 
each perceived from within a given discipline, raised the question regarding at which level 
generality was to be grasped within different disciplines. A balance was to be achieved 
between concrete and abstract facts to establish connections between general facts from 
different disciplines. Within disciplines, categories were to be defined at the right level 
of generality, because broad categories making connections easier would not be of great 
interest for defining generality across disciplines. The search for such a balance can be 
seen in the anatomists’ interest in terminology as well as in the new method that was 
shaped in eighteenth- century botany in order to get closer to natural classifications.

In all these cases, the key issue was that of discovering reality as such, and not simply 
what was visible. Whereas different disciplines focus on particular aspects of reality, real 
objects are not readily accessible to our senses, but require different orders of analyses. 
Convergences between different disciplines are necessary to create a novel rationality 
leading to the definition of real objects.

Thus, Bichat embodies an epistemological model in the way in which he brought 
anatomy, physiology, and pathology closer to each other. His great emphasis on generality 
provided him with the means to create a new science. However, Bichat remained closer to 
anatomy. Therefore his work leads to the characterization of anatomy in a novel manner, 
with using the concept of tissue. Nevertheless, general anatomy allowed new researches 
in other disciplines and made possible closer connections between them.

In order to perceive the future of Bichat’s epistemological approach, it is possible 
to draw parallels between Bichat’s concept of tissue and the foundation of the neuron 
as a biological object in the twentieth century.62 The construction of the neuron from 
an ensemble of concepts taken from different disciplines (histology, electrophysiology, 
pharmacology) required the correlation of both structural and functional data. Thus, dif-
ferent and partial visions, deriving from multiple techniques, encouraged the convergence 
of incomplete descriptions of the neuron into a single biological object. Twentieth- century 
neuroscientists were guided by homologies between concepts of the nerve cell, led as they 
were by the conviction that different structural and functional techniques clarified distinct 
facets of a general object. Thus, we now accept that the generality of a biological object 
derives from homologies among general facts from various disciplines. In the eighteenth 
century, the generality of Bichat’s tissue was also achieved by combining disciplines. 

62 Barbara (2007a, 2010a).
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As demarcations among tissues were shown not to rely on particular techniques, it was 
possible to accept that they reflected real partitions among the objects themselves. The 
underlying assumption was that the objects under study were all the more real when 
general observations made by different approaches converged, the idea being that all 
means of investigation are appropriate if we are to reach real objects. In this scheme, the 
pursuit of generality means to abstract general facts from various disciplines, in order to 
draw parallels and define homologies among them, and then combine them with each 
other so as to define the single and real objects toward which these various general facts 
converge. The greater the diversity of the techniques used, the higher the probability that 
homologies between different observations reflect the true nature of biological objects. 
Such ideas were original in Bichat’s time and, as we shall see, became central in the 
nineteenth and twentieth centuries.63

13.4  Ranvier’s anatomie générale at the Collège 
de France

Louis Ranvier became the French leader in microscopic anatomy, when he was given a 
chair of Anatomie générale at the Collège de France in 1876. In the 1850s, he was trained 
as an anatomopathologist in Lyons and Paris, and opened a private course in microscopy 
when the use of microscopes was under discussion in medical faculties.64

The anatomies of Bichat and Ranvier differ in the size of their objects of enquiry 
and the consequent need for microscopy. Ranvier’s observations focused on subcellular 
elements such as the myelin sheath of nerve fibers. As in Claude Bernard’s texts, “ana-
tomical elements” were not only cells, but also cell parts— “anatomical details,” to use 
Bernard’s term— , the definite and stable structures which could be explained in terms 
of local  functions. Even with these differences in scale, Ranvier and Bichat conceived of 
generality in a similar way. However, the examination of Ranvier’s studies is essential for 
understanding one of the meanings of generality in present- day biology, since Ranvier 
needed to extend generality to the microscopic world. Moreover, Ranvier’s research illus-
trates how Bichat’s wish to discover real objects was tenable at lower scales, if one merges 
together different technological procedures, as well as both anatomical and physiological 
observations.

In the first phase of the use of microscope in life sciences, the inadequacy of the 
instruments and the abundance of microscopic observations of living or dead materials 
favored passive descriptions of an infinite world of microscopic entities. In this context, 
one cannot perceive an interest in general facts from which theoretical explanations of 
the functions of organs could be derived.

Speculative approaches developed in this domain. Leibniz’ ideas were influential from 
the perspective of defining life by general components. Their impact can be traced in the 

63 See the quotation from Renaut (1889) in note 86.
64 Barbara (2007b).
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works of Maupertuis, Buffon, and Lamarck in France, or Oken in Germany.65 The cellular 
proto- theories defined by François Duchesneau66 were developed, in a similar context, to 
deduce function from analytic dissections of organs into micro- systems. A fibrillar theory 
took shape, in which the contractile property of muscles was explained by the fibrous and 
geometrical aspects of its fibers.67 However, none of these theories relied on unquestioned 
observations and precisely defined general microscopic elements.

The development of cell theory was a major and initial step in defining general 
microscopic observations. In Germany, Matthias Schleiden (1804– 1881) and Theodore 
Schwann (1810– 1882) based their explanations of the development of living structures 
on general mechanisms involving the cell concept, and Rudolph Virchow (1821– 1902) 
further generalized the concept to pathology.

Microscopic anatomy rested on ideas of generality similar to those of Bichat. As a 
result, German histologists considered Bichat a prominent reference. Along the lines 
promoted by Bichat, comparison and observation were systematically used to derive 
general characteristics. The French histologist of the Strasbourg school, Mathias Duval 
(1844– 1907), described how these ideas influenced microscopy:

We must remember that, in addition to the education of the eye and the hand that lead 
to certifying the facts, it is even more important to observe. Any observation, like any 
experience, requires successive comparisons that highlight the reason of the things certi-
fied through mere contemplation. This is especially true for all microscopic observations 
which imply continual comparisons.68

This recalls Bichat’s ideas on observation, which were similar to those developed later 
by Ranvier.69

However, this approach was much criticized in France, where German cell theory was 
regarded as highly speculative in Ranvier’s time. For most French scholars, generality 
could not be extended to the microscopic world. They believed in a diversity of elements. 
In their views, this diversity paralleled that of molecules in the realm of chemistry.70 These 
ideas were developed under the influence of Comte’s philosophy of biology. Such stands 
derived from an adoption of Bichat’s views in two respects: his rejection of microscopy, 
and his project to build generality from human senses alone.71

65 Canguilhem (1952: 187).
66 Duchesneau (1987).
67 Canguilhem (1952: 185– 6).
68 “Rappelons qu’indépendamment de cette éducation de l’œil et de la main qui mène à constater le fait, il 

faut plus encore observer, toute observation comme toute expérience exigeant une succession de comparaisons 
qui donnent la raison des choses constatées par la simple contemplation. Cela est surtout vrai pour les obser-
vations microscopiques qui toutes impliquent cette comparaison d’une manière incessante” (Duval, 1878).

69 Ranvier (1863, 1865).
70 Robin often referred to the chemist Eugène Chevreul (1786– 1889); see Robin and Verdeil (1853). 

Charles Robin (1821– 1885) was the first professor of histology at the Faculté de Médecine de Paris. He rejected 
the generality of the cell, as the single anatomical unit of life, and cell theory.

71 See note 61 for Ranvier’s opinion on Bichat’s rejection of the microscope. Microscopes in Bichat’s time 
were not reliable instruments.
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In France, Ranvier’s general anatomy developed thanks to the help of Claude Bernard 
(1813– 1878) and the extension of experimental physiology, as separate from anatomical 
and anatomopathological studies. The medical milieu was hostile to Ranvier’s personal 
project. Detractors of microscopy flourished,72 and some of its prominent partisans, 
including the first professor of histology at the Faculté de Médecine de Paris, Charles Robin 
(1821– 1885), rejected what he perceived as the German style of research, characterized in 
his view by a preeminence given to abstraction, the search for generality, and cell theory.

Claude Bernard helped Ranvier develop a cell- theory- based histology combining 
anatomy and physiology to search for general structures, in a small histological laboratory 
at the Ecole Pratique des Hautes Etudes, which was later transferred to the Collège de France 
(1867). Thus, generality at the microscopic level, as a natural extension of Bichat’s work 
at a lower scale, was pursued despite the hostility of French scientists.

How did Ranvier manage to define new and real microscopic objects, which allowed 
him to found Anatomie générale at the Collège de France, along the same lines as Bichat’s? 
Ranvier developed a physiological form of anatomy, as Bichat had done. In addition, the 
relationships between Bernard and Ranvier were closer than usually thought. Ranvier 
trained as a physiologist and practiced vivisection with Bernard. His biographer, Justin 
Jolly, insisted that Ranvier should be considered a physiologist, with a special interest 
in anatomy. I have shown elsewhere that Ranvier’s program was based on Bernard’s 
principles as laid out in his Leçons sur la physiologie et la pathologie du système nerveux,73 
which Ranvier attended when he was a student.74 Bernard urged that the study of nerve 
fiber sheaths, ganglion cells, tactile corpuscles, that is, all structures which he considered 
as “anatomical details” and which constituted “anatomical elements,” should be integrated 
into physiological explanations of tissue functions. Bernard did not doubt that these 
structures were cells or cell parts.75 The cell concept allowed Bernard to consider the 
functioning of organisms as a whole built from the coordinated activity of elementary 
parts.76 With such an integrated interpretation of life, Bernard avoided turning away a 
narrow physicochemical determinism77 by adopting what he named in one of his note-
books the “true vitalism of B(ichat).”78 Embracing Bernard’s perspective, Ranvier created, 
through the observation of both dead and living tissues, a new field of enquiry devoted 
to anatomical details, which he studied with microscopy from both an anatomical and a 
physiological point of view.

The articulation of anatomy and physiology in Ranvier’s work, in the context of cell 
theory and the development of histology, led to a new disciplinary approach. Ranvier 
contributed to the establishment of the generality of the cell. Later, he demonstrated 
general subcellular structures, including regularly spaced constrictions in the nerve myelin 

72 La Berge (2004).
73 Bernard (1858).
74 Barbara (2007b).
75 Schiller (1962: 65).
76 Canguilhem noted the complexity of relations between the parts and the whole in the views of Bernard.
77 Canguilhem (1968b).
78 “Le vrai vitalisme de B(ichat)” is the expression used by Bernard in one of his laboratory notebooks and 

which he crossed out. Bichat was alluded to by the letter “B” (Canguilhem, 1968b: 157).
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sheath of a nerve fiber (the “nodes of Ranvier”). Thus, as Bichat had done, Ranvier man-
aged to define anatomy from a new perspective, in which closer relations to physiology 
were made at the microscopic scale.

While Bichat usually began his studies by delineating the spatial extent of a physiologi-
cal property and localizing it in anatomical elements, Ranvier first focused on describing 
anatomical details that he later studied physiologically in diverse experimental conditions. 
For example, Ranvier examined the penetration of a dye into a nerve fiber through a node 
in the myelin sheath, and concluded that this structure was important to the nutrition of 
the nerve fiber. Physiology thus met general anatomy in the search for the function of 
cell parts. Anatomical generality was combined with a physiological generality created by 
experimental histology as envisaged by Bernard and founded by Ranvier. The combina-
tion of these approaches was facilitated by Ranvier’s method, which consisted of working 
on dissociated living elements, rather than on the fixed stained specimens used by most 
contemporary histologists. Thus, Ranvier’s generality may be considered the counterpart 
of Bichat’s in the field of microscopy. It contributed to the rise of physiology to the extent 
that physiology could then rival the status of anatomy. Scholars of the Paris science faculty 
and the faculty of medicine considered such an achievement impossible. It relied on 
great technical advances and the construction of histology as a renewed discipline both 
in France and Germany.

The theoretical context of Ranvier’s work was also of major importance in the founda-
tion of microscopic histology. At the moment when his chair of general anatomy was cre-
ated, during his opening lecture, Ranvier recalled how Bernard’s principles underpinned 
his methods of enquiry:

The goal of physiology and general pathology is to study the most intimate and most 
essential parts of organs, the tissue elements…. Anatomical knowledge of these organic 
elements is not enough. One needs to study their properties and functions by means of 
the most delicate experiments; in a word, experimental histology is needed. That is the 
ultimate goal of our research. That is the basis of future medicine.79

Ranvier also stressed his debt to Bichat. In parallel with the way that Bichat had proceeded, 
Ranvier’s anatomy was intimately linked to physiology:

When a part of any one of these systems has been observed, as a histological configuration, 
it must be compared with the same disposition that can be recognized in other parts of 
the same system. Then, we must pursue the work still further to establish the generality of 
observed facts, comparing them with each other in the various systems of the organism. 
This is general anatomy, since it takes as its object not only the structure or texture of 
tissues (Bichat),80 but also, and above all, their relations. When searching for a definition 

79 “Le problème de la physiologie et de la pathologie générale a pour objet les parties les plus intimes et les 
plus essentielles des organes, les éléments des tissus … Il ne suffit pas de connaître anatomiquement les élé-
ments organiques, il faut étudier leurs propriétés et leurs fonctions à l’aide de l’expérimentation la plus délicate 
; il faut faire en un mot, l’histologie expérimentale. Tel est le but suprême de nos recherches, telle est la base de 
la médecine future.” Ranvier’s quotation of Claude Bernard (Ranvier, 1880: 1). This is the text from Ranvier’s 
opening lecture to his course at the Collège de France (Ranvier, 1876: 1).

80 Added by the author.
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of this science, I already confessed that general anatomy could be viewed as comparative 
anatomy restricted to a single organism. It represents the science dealing with the plan of 
organization par excellence.81

Of prime importance was the role played by cell theory. Other schools of general anatomy, 
apart from that of Ranvier, flourished at the time. However, most of those in France 
rejected cell theory.82 Duval reports Robin’s opinion: “According to him, general anatomy 
is a part of anatomy. Its name indicates both its object and aim. Its aim is to determine 
the intimate and real nature of things, whose activity and movement is called life.”83 This 
statement illustrates that general anatomy could be used as a tool to classify most struc-
tures, whether or not cell theory was used as a framework for morphological comparisons 
and analogies. Ranvier accepted cell theory as propagated by the teaching of Bernard 
and used it to suggest experiments, provide hypotheses, and coordinate results.84 While 
Robin’s ideas also certainly played similar roles, cell theory demonstrated greater utility in 
providing links between anatomy and the physiology of histological elements. This is why 
we can consider that Ranvier’s work extended to the microscopic scale the methodological 
generality proposed by Bichat, in which the combination of multiple techniques validated 
the reality of objects.

French histologist Joseph Louis Renaut (1844– 1917) expressed a similar idea from 
the perspective of the techniques used:

If a fact is real, all technical methods applied to the same object will concur to prove its 
existence: each showing one or several details not revealed by others. If, on the contrary, 
the fact that one believed one had observed is not real, any method other than that which 
created the illusion will not allow the illusion to persist, and the mistake will no longer 
occur as would be the case if one contented oneself of a single method of observation for 
the object to be analyzed.85

Renaut referred to this approach as the “principle of converging methods.”86

81 “Lorsque nous avons observé un département de quelqu’un de ces systèmes, une disposition histologique, 
il importe de le comparer avec celle que l’on peut reconnaître dans d’autres départements du même système. Il 
convient ensuite d’aller plus loin encore et d’établir la généralité des faits observés en les comparant entre eux 
dans les divers systèmes de l’organisme. C’est en cela que consiste l’anatomie générale, puisqu’elle a pour objet 
non seulement la structure et la texture des tissus, mais encore et surtout leurs rapports. En cherchant la défi-
nition de cette science, je vous ai déjà dit que l’anatomie générale pouvait être considérée comme l’anatomie 
comparée limitée à un seul organisme. C’est, par excellence, la science qui s’occupe du plan de l’organisation” 
(Ranvier, 1880 : 10).

82 Robin’s introduction (Cadiat, 1871: 111).
83 “L’anatomie générale est, selon lui, une partie de l’anatomie dont le nom indique à la fois l’objet et le but. 

Ce dernier est la détermination de la nature intime et réelle des choses dont l’activité, le mouvement, s’appelle 
la vie” (Duval, 1886).

84 Ranvier (1880: 14).
85 “Si le fait est bien réel, toutes les méthodes techniques appliquées à un objet concourront à mettre son 

existence hors de conteste : chacune indiquant un ou plusieurs détails laissés dans l’ombre par les autres. Si 
au contraire le fait qu’on avait cru observer n’est pas réel, toute autre méthode que celle qui avait engendré 
l’illusion ne laissera plus subsister cette dernière, et l’erreur ne pourra plus être commise comme il arriverait 
si l’on se contentait, pour l’objet à analyser, d’une seule et unique méthode d’examen” (Renaut ,1889– 99: ix).

86 “L’importance du principe des méthodes convergentes” (Renaut, 1889– 99: ix).
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Ranvier’s school of general anatomy was clearly a successful multidisciplinary effort. 
Even so, the histology Ranvier practiced had moved closer to physiology than that of 
Bichat. Accordingly, Ranvier did not share Bichat’s and Bernard’s doubts about ana-
tomical deductions of physiological functions and their insistence on its indispensable 
cooperation with physiology. Bichat and Bernard thought that approaches other than 
purely structural observations were needed to understand function. Bichat had attacked 
Haller on an over- reliance on visual analysis of membranes. In a similar line, Bernard 
argued that cell types in the pancreas with similar morphologies had distinct functions. 
However, in his dispute with Haller, Bichat in fact deviated from his conception of anat-
omy and physiology as two facets of an underlying and single reality.87

This paradox was resolved by Ranvier, leading him to advocate in a new manner for 
the principle of anatomical deduction. Ranvier claimed that combining morphological 
and physiological evidence to define an object helped to lead to an understanding of its 
function. For example, the anatomical demonstration of a few muscular fibers in an organ 
would always indicate a local contractile function, since the intimate role of muscle fibers 
is to contract surrounding tissues. Therefore, Ranvier associated observations of muscle 
fibers with their contractile function. His anatomo- physiological correlations considered 
anatomy and physiology as equivalent. This was the key condition for deducing local 
functioning from structures and vice versa. Ranvier’s confident correlations between 
anatomical and physiological properties were an important feature of his general anatomy. 
Cell types, and not tissues, became the new general categories of anatomy. And generality 
became possible at this smaller scale, because cell types shared common organizations 
in different organs. Later, in the 1890s, neurons were defined and found not only in the 
brain, but in the spinal cord and nervous ganglia. Thus, while Bichat gave a method for 
building generality and discovering possibly real objects in the realm of the common 
senses, Ranvier’s studies showed how anatomy and physiology could converge to define 
cell types and their functions in all organs at a microscopic level.

Anatomy and physiology have continued an intimate association with the emergence of 
recent disciplines such as cellular physiology or cellular and molecular biology. The ascen-
sion of experimental physiology and belief in determinism have been crucial. Modern 
biology has added statistics to deal with the essential variability of complex biological 
systems.88 Moreover, experimental reductionism has also improved our understanding 
of the determinism of such systems,89 and made the search for general facts easier, with 
experiments tending to give more stable results. Similarly, the search for anatomical 
generality became dependent on modern histological techniques, which included complex 
processes of dissociation, slicing, or staining to objectivize properties of the objects under 
study. The methodological convergence formulated by Renaut, at play when two staining 
procedures reveal a similar object,90 applies more generally to all recent biotechnologies 
in the definition of new objects. In Ranvier’s time, microscopic biological objects were 

87 Béclard (1827).
88 Hacking (1983).
89 Rheinberger (1997).
90 For example, methylene blue was shown to stain neurons similarly to the Golgi method.
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not created by means of single theoretical concepts, but they emerged rather from closely 
compatible scientific practices and the coalescence of different modes of objectivization 
linked to specific experimental systems.91

13.5  Conclusion

This chapter has focused on generality through the studies of two French schools of 
anatomy, at the beginning and at the end of the nineteenth century. Let me now formulate 
my main conclusions and discuss them in a broader framework, including my current 
ideas on the concept of scientific object.92

Bichat’s work cannot be solely analyzed as resulting from a simple shift in ways of 
creating knowledge at the turn of the nineteenth century. Some aspects of his method 
are representative of the early eighteenth century, while others already belonged to the 
nineteenth century and formed the basis of many of Auguste Comte’s ideas on biology.93

In particular, the concept of generality in Bichat’s work embodies more than an 
eighteenth- century principle in the ordering of things, depending on their specific aspects 
and distinguishing levels of generality. It is true, however, that such a principle, rooted in 
botany, was fundamental to him and in keeping with the spirit of analysis and eighteenth- 
century paradigms for teaching in anatomy and many other fields.94 Bichat’s method 
is consistent with such a perspective, as is evidenced by his references to mathematics, 
philosophy, and humanities. His method rested on the belief in a general order of things 
on the basis of which real objects could be discovered and defined.

What else characterizes Bichat’s method? We agree with Foucault’s rejection of the 
idea that progress in eighteenth- century natural history depended only on a novel use 
of analysis to provide order and enable discovery.95 Alternatively, natural history, as well 
as Bichat’s anatomy, can be considered as also depending on new practical procedures, 
while for them philosophy and mathematics represented simply parallel paradigmatic 
methods used as metaphors in defining new goals.

There is however one essential difference between natural history and Bichat’s anatomy. 
In natural history, objects are conceived of as natural and concrete, whether they are rocks, 
animals, or plants. Classification and analysis represent the means for ordering them. In 
contrast, Bichat created his objects as categories, through an observation of structures and 

91 The birth of the neuron in the twentieth century represents one such field of investigation (Barbara, 
2007a, 2010a, 2010b).

92 Cf. the concept of scientific object developed in Barbara (2007a, 2010a).
93 Comte (1830: Leçons 40– 5). Comte considered as outdated some of Bichat’s ideas, such as his oppo-

sition between life and death, rooted in eighteenth- century philosophy. However, Comte shared many of 
Bichat’s ideas, such as the need to combine anatomy, physiology and pathology.

94 Cooking, for example. See note 1.
95 “La constitution de l’histoire naturelle, … il ne faut pas y voir l’expérience forçant … l’accès d’une 

connaissance qui guettait ailleurs la vérité de la nature ; … l’histoire naturelle, c’est l’espace ouvert dans la 
représentation par une analyse qui anticipe sur la possibilité de nommer…. L’instauration à l’âge classique 
d’une science naturelle n’est pas l’effet direct ou indirect du transfert d’une rationalité formée ailleurs (à pro-
pos de la géométrie ou de la mécanique). Elle est une formation distincte” (Foucault, 1966: 142).
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their variation in different physiological and pathological contexts. These observations 
were used as partial representations of the objects to be defined. So, unlike natural history, 
Bichat’s anatomical classification was concerned with ordering general properties to define 
tissue categories as concepts, rather than as concrete objects of nature.

As a matter of fact, Bichat’s objects were not visible. For example, where Haller saw 
one type of membranes, Bichat defined three, which were not readily discernible with the 
naked eye. In the Birth of the clinic,96 Foucault described changes in the relations between 
the visible and the invisible at the end of eighteenth century. He suggested that invisible 
objects were progressively clarified via the emergence of a novel, clear, and objective 
language. Foucault interpreted Bichat’s work by stressing his advances in deciphering the 
body, according to a two- dimensional order and based on similarities between surfaces.97 
He examined how a new and unitary discourse could emerge to represent and classify 
both organs and their diseases. Foucault insisted that Bichat’s work was established at 
the level of visible things. Consequently, Bichat’s quest for invisible aspects of things 
was only partially clarified by Foucault’s analyses. For instance, these analyses did not 
place emphasis on Bichat’s method as an integrated system of practices engaged in the 
search for invisible objects. Bichat’s classifications were not analyzed with the intention of 
showing how they created invisible objects. These questions are nonetheless at the heart of 
Bichat’s concept of generality, and are crucial for understanding how eighteenth- century 
scientific analyses of visible things moved toward an acknowledgment of invisible objects 
by specific practices and the definition of objects as new concepts.

With Ranvier, multiple factors such as cell theory, Bernard’s physiology, the rise of 
experimental histology, and especially exploration at microscopic scales all changed the 
ways scientific objects were studied. The objects created by Bichat from physiological, 
anatomical, and pathological observations remained essentially anatomical. In contrast, 
Ranvier used anatomy to construct objects that could be studied from a physiological 
perspective. Placing himself at the level of cell parts allowed him to localize unitary proper-
ties to subcellular parts. His descriptions at the sub- cellular level permitted correlations 
between their structure and function. Such microscopic studies were possible, because 
all living organizational levels possess general structures.

Closer to our time, the constitution of the neuron in the twentieth century can be seen 
as a later multidisciplinary coalescence of distinctive generalities from physics, chemistry, 
pharmacology, electrophysiology, histology, histochemistry, biophysics, and immuno-
histology: a coalescence which constituted a common and general scientific object.98 
In this case, a form of generality was reached by means of the convergence in the ways 
objects were described within particular experimental set ups. When different scientific 
communities realized their objects of inquiry (partially artificially created to make them 
suitable to experimental work, such as a “synaptic potential” or an isolated synaptic 
vesicle) were homologous, measures and concepts could merge in a single description.

96 Foucault (1975).
97 Foucault (1975: 130).
98 Barbara (2007a, 2010a, 2010b).
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This shift to the present permits us to conclude with two remarks on the article in which 
Richard Burian and coworkers consider generality in biology.99 We agree with them that 
epistemology and philosophy need local studies and must escape from the search for abso-
lute, general views. We hope that our examination of eighteenth-  and nineteenth- century 
anatomies has shown the utility of studies on specific schools to clarify how generality 
was valued, built, and what it meant. Such interpretations seem likely to lead to novel, if 
local, conclusions whose generality can then be examined. We suggest that our analyses 
of generality, in the works of Bichat and Ranvier, provide new and general insights into 
the relations between general observations and the creation of biological objects.

Furthermore, Burian et  al. (1996) discussed how the gene was constructed as a 
scientific concept, from different, and sometimes complex, structural and functional 
representations, originating in diverse disciplines. This leads to our second remark which 
expresses our difference with these authors with respect to general biological findings. 
They argued that a general understanding of the gene was hindered by the multiplicity 
of its representations. I would suggest instead that the essence of the biological object 
is a single representation highlighting and taking into account the complexity of partial 
representations attached to particular concrete objects, to the moment when all the bodies 
of knowledge, developed in different contexts, can be unified. Perhaps the gene is not 
yet a single concept, and, in a similar way, categories of biological objects may share the 
complexity of the gene. However, we are learning how to describe, model, and manipulate 
different related objects at any required level of generality, according to our specific needs 
and, in a dialectic process, these objects may appear as a single representation. This is 
what the history of the neuron shows. In this case, all the representations of the neuron 
converged when polemics died out. The search for generality is thus characterized by 
an unremitting attempt to assemble and manipulate what appears to be distinct objects, 
rather than by a passive process looking for homologies between possibly heterogeneous 
observations. Convergence of knowledge is the way to the essence of biological objects. 
The passive and archaic form of generality is almost useless for biology at the present time 
and it can be easily criticized. As a tool to manipulate objects however, we would argue 
that the active search for generality has become a route to creation, which is distinct from 
paths by which real objects were formerly sought for. Such a route is characterized by 
processes whereby distinct objects are built and then coordinated into single objects.100 
This new path involves a plurality of object phenomenologies which evolve, merge, or 
sometimes disappear as science progresses.
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Questions of generality as probes 
into nineteenth- century 
mathematical analysis

RENAUD CHORLAY

At the beginning of the century, the idea of a function was a notion both too narrow and 
too vague…. It has all changed today; one distinguishes between two domains, one is 
limitless, the other one is narrower but better- cultivated. The first one is that of functions 
in general, the second one that of analytic functions. In the first one, all whimsies are 
allowed and, every step of the way, our habits are clashed with, our associations of ideas 
are disrupted; thus, we learn to distrust some loose reasoning which seemed convincing 
to our fathers. In the second domain, those conclusions are allowable, but we know why; 
once a good definition had been placed at the start, rigorous logic reappeared.1

In this passage from Poincaré’s 1898 eulogy of Weierstrass, the French mathematician 
gave his version of the classical description of the rise of rigor in mathematical Analysis2 in 
the nineteenth century. Though the quotation is quite straightforward, two elements raise 
questions. First, it is customary to associate vague ideas with limitless object- domains, and 
precise definitions with clearly bounded object- domains;3 conceptual clarification walks 
hand in hand with domain- restriction. However, Poincaré described here the passage from 
a vague to a distinct notion of function as walking hand in hand with domain- extension. 
Second, after reading the last sentence, one would expect Poincaré to give this “good 
definition,” which took one century to emerge and whose emergence eventually put 
mathematical Analysis back on the safer track of rigor. However, this definition is nowhere 
to be found in Poincaré’s paper and, as we will see, this feature is in no way specific to 
Poincaré: the “function in general” is not something one defines but something one points 

1 Poincaré (1899: 4). Trans. RC.
2 For the sake of clarity, we will systematically write “Analysis” with a capital A to denote mathematical 

Analysis (function theory). Thus, we will present an analysis of Analysis.
3 To prevent any misunderstandings: the objects referred to here are functions; the object- domains are func-

tion classes or function- sets.
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to; it is not an object to be studied but the background on which objects can be studied. 
These topics will be discussed in the first part of this chapter.

This first part will provide the background against which we will endeavor to delineate 
two other historical interactions between generality issues and function theory in the 
nineteenth century. We will first focus on the first years of the nineteenth century and use 
questions of generality to attempt a comparison between two major treatises on function 
theory, one by Lagrange and one by Cauchy. We will attempt to show how Lagrange and 
Cauchy chose different strategies to take up the same threefold generality challenge: to 
give a general (uniform) account of the general behavior (i.e., save for isolated values of 
x) of a general (non- specified) function. On the basis of the elements gathered in the first 
two parts of this chapter, we will sketch a systematic comparison grid.

In the third part, we will concentrate on the end of the nineteenth century so as to 
show how some mathematicians used the sophisticated point- set theoretic tools provided 
for by the advocates of rigor to show that, in some way, Lagrange and Cauchy had been 
right all along: counter- revolution, as we all know, is a synthesis of pre- revolutionary and 
revolutionary elements. On the basis of the mathematical material covered in this third 
part, we will put forward a new concept, that of embedded generality. Though we came 
across it in the context of analysis, it is by no means specific to that context. We will argue 
that it captures an approach to generality issues that is specific to mathematics and whose 
mathematical treatment is a striking feature of twentieth- century mathematics.

Before we start, here are a few remarks on the nature of this chapter. To someone who 
usually works as a historian of mathematics, it may appear somewhat quick- paced: the var-
ious contexts are barely sketched; the collection of quotations displays a kind of imaginary 
dialogue between mathematicians, regardless of actual historical connections. However, it 
must be acknowledged that the main goal of this chapter is of an epistemological nature.4 
We aim at documenting ways of expressing generality and epistemic configurations in which 
generality issues became linked with other topics, be they epistemological topics such as 
rigor or mathematical topics such as point- set theory. In this regard, we present and try to 
characterize three very specific configurations: the first evolving from Abel to Weierstrass, 
the second in Lagrange’s treatises on analytic functions,5 and the third in Borel.

14.1  Generality, rigor, and arbitrariness

14.1.1  Abel’s letter to Hansteen

We can start by reading an excerpt from one of Abel’s letters to his master Hansteen, 
written in 1826:

I shall devote all my strengths to shedding some light on the immense obscurity which, at 
present, reigns over analysis. It is so devoid of plan and system that one is astonished by the 

4 Here we use the adjective “epistemological” with the meaning it has in the French tradition, denoting what 
pertains to the theory of science and not what pertains to the theory of knowledge in general.

5 Lagrange (1797).
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fact that so many people indulge in it— and, what is even worse, it lacks rigor, absolutely 
so. In higher Analysis very few propositions are proved with conclusive rigor. Everywhere, 
we come across the sorry habit of concluding from the special to the general and, what 
is amazing is that, after such a procedure, one rarely finds what is called a paradox. The 
reason for that is indeed very interesting to think over. The reason, to my mind, lies in 
the fact that most of the functions dealt with by Analysis up to now can be expressed by 
powers. When other ones mingle with them, which, admittedly, seldom occurs, we don’t 
do so well; were one to draw false conclusions, from them would spring an infinity of 
tainted propositions, all standing together.6

This quotation nicely parallels that of Poincaré which we gave in the introduction: Poincaré 
looked backward on a century- long process which Abel, among others, had kicked off. 
In Abel’s letter, the themes of rigor and generality are beautifully intertwined, in a way 
which, to a large extent, will prove stable throughout the nineteenth century. We need to 
distinguish between two levels, the epistemic level and the object- level. On the epistemic 
level, this quotation is famous for its ideal image of mathematics (or its image of ideal 
mathematics) as a set of interrelated theorems: if one false assertion is mistakenly taken 
to be true, then the whole network is tainted. As a consequence, the current lack of rigor 
in “higher Analysis”— that is infinitesimal and integral calculus— is an outrage. But the 
situation described by Abel is a paradoxical one. One the one hand, logic tells us that 
there might be false assertions in analysis, since the usual mode of reasoning is in itself 
faulty: “concluding from the special to the general;” mathematical truth cannot rely on 
induction. On the other hand, it appears that there are not so many false assertions or pairs 
of contradictory assertions as one could expect. The reason for this is sought for on the 
object- level: the objects mathematicians usually consider— Abel writes— are functions of a 
special kind, namely functions which can be expressed as power series (with positive and 
negative integer powers and, on occasion, fractional powers as well). On this basis, two 
different lines of research can emerge, both of which require specific proof- methods. One 
can either stick to the study of this special class of functions, or try to understand how 
more general functions behave. To study the links between generality and rigor we need 
to take a closer look at the second line of research, in which, as we shall see, generality in 
the object- domain is expressed thanks to a notion of arbitrariness.

14.1.2  Investigating the generality of a 
theorem: Dirichlet (1829)

New developments in the history of rigor in function theory can be found in Dirichlet’s 
1829 article Sur la convergence des séries trigonométriques qui servent à représenter une fonction 
arbitraire entre des limites données. In the final paragraphs of this 15- page article, the flag 
of rigor is first waved, and then the main result summarized:

The former considerations prove in a rigorous way that, if the function ϕ(x), all val-
ues of which are assumed to be finished and determined, shows but a finite number of 

6 Abel (1992: 263). Trans. RC.
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discontinuities between the limits −π and π, and, moreover, has but a definite number 
of maxima and minima between these limits; series (7),7 the coefficients of which are 
definite integrals depending on function ϕ(x), is convergent and takes on a value whose 
general8 expression is

½ ,[ ( ) ( )] ϕ ε ϕ εx x+ + −

where ε stands for an infinitely small number.9

This is what students still learn today as “Dirichlet’s theorem”: a 2π- periodic function 
which is piecewise continuous and piecewise monotonous has a converging Fourier ser-
ies (series (7) in the quotation), whose limit is ϕ(x) if ϕ is continuous at x, and, more 
generally, the mean value of ϕ(x- ) and ϕ(x+). Clearly, the theorem says nothing about the 
“arbitrary function,” quite the contrary: the hypotheses under which the conclusion has 
been proved to hold are painstakingly spelled out, which is exactly what being rigorous 
means. This theorem took ten pages to prove, and each of the hypotheses played a part 
in at least one step of the proof. Carefully wording restrictions on the domain of objects 
about which the conclusion was proved to hold does not mean that more general cases 
should not to be considered, as the end of Dirichlet’s paper shows:

We still have to investigate the cases in which what we have assumed as to the number of 
discontinuities and that of maxima and minima ceases to be the case.10

Dirichlet managed to prove the conclusion under some hypotheses which emerged in the 
proof, but acknowledged the fact that this conclusion may hold under weaker hypotheses. 
Another way of saying this (but we should notice that Dirichlet never spoke of function 
classes or function sets) is: this theorem asserts that a given property is valid for some 
object- domain, but it is likely that this object- domain can be extended; it is likely— or at 
least worth investigating— that the conclusion is still valid for more general functions. The 
end of Dirichlet’s paper pointed to two ways of exploring the generality of the conclusion, 
that is, the extent of the domain of objects for which it holds. Dirichlet first wrote that 
the proof could be amended for functions with an infinite number of discontinuities as 
long as the set of points of discontinuities is nowhere dense (in modern parlance).11 The 
latter restriction came from the fact that the coefficients of the Fourier series are integrals 
involving a function ϕ, and that the very notion of an integral may become meaningless 
if restrictions are not put on the set of points of discontinuity.12 We can see that, in order 
to assess the generality of a conclusion which he had established under what he felt to be 

7 The Fourier series.
8 In this context, “general” means for every value of x.
9 Dirichlet (1829: 168). Trans. RC.
10 Dirichlet (1829: 168). Trans. RC.
11 We need not discuss here the relevance of this integrability condition.
12 For instance, Cauchy had proved the convergence of the rectangle- method sums for the case of functions 

with a finite set of discontinuities.
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too strong hypotheses, Dirichlet first resorted to proof analysis,13 but this proof analysis 
led him to the analysis of a mathematical concept, that of integrable function. In this 1829 
paper, he merely pointed to this concept analysis as a research program: “But, doing 
things with as much clearness as one can wish for demands that one go into some details 
as to the fundamental principles of infinitesimal analysis; these details will be expounded 
in a further note …”14 A few lines above, Dirichlet used a different strategy to explore the 
generality of the property. Instead of pointing to the general concept of the integral and 
a possible weakening of the hypotheses under which integrability can be ascertained, he 
gave an example of a function that is too arbitrary to belong to the maximal object- domain 
for which the conclusion holds, more precisely, too arbitrary to be integrable:

One would get an example of the function which doesn’t fulfill this requirement if one 
assumed that ϕ(x) equaled some determined constant c when variable x takes on a rational 
value, and equaled some other constant d when the variable is irrational.15

This strange function had not until then been considered in mathematical Analysis; it 
had not turned up so far, whether in pure mathematics or in mathematical physics. This 
display of a specific function is an element of a new mathematical configuration in function 
theory, a configuration which encompasses epistemic values, such as “rigor,” epistemic 
practices,16 such as proof- analysis, and also strictly mathematical elements such as the 
exploration of the various properties of point- sets on the real straight line. The “Dirichlet 
moment” in the theory of Fourier series is perfectly characterized by Riemann in his 1854 
dissertation on the same topic:

The works on this question which we have so far mentioned endeavored to establish the 
Fourier series for those functions which are encountered in mathematical physics; thus, 
one could start the proof for completely arbitrary functions then, later, submit the course 
of the function to arbitrary restrictions for the purpose of the proof, so long as these 
restrictions don’t go against the purpose.17

We need not remind the reader that Riemann was Dirichlet’s student and that the goal of 
this 1854 dissertation was to fulfill the research program which Dirichlet had sketched 
at the end of his 1829 paper.

14.1.3  Expressing generality through arbitrariness

Before studying further the specific links between generality, rigor, and arbitrariness in this 
new mathematical practice, we need to pay more attention to the way general/ arbitrary 

13 Our analysis of Dirichlet’s move is, of course, very close to that of Lakatos (1976: 148– 9).
14 Dirichlet (1829: 169). Trans. RC.
15 On aurait un exemple d’une fonction qui ne remplit pas cette condition, si l’on supposait ϕ(x) égale à 

une constante déterminée c lorsque la variable x obtient une valeur rationnelle, et égale à une autre constante 
d, lorsque cette variable est irrationnelle (Dirichlet, 1829: 169).

16 We will use “practice” instead of “configuration” when we assume a more agent- based approach.
17 Riemann (1892: 244). Trans. RC.
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functional objects were referred to by mathematicians. We shall distinguish between three 
modes of expression.

14.1.3.1  Referring to

From its emergence as an autonomous mathematical concept in the eighteenth century, an 
element of arbitrariness had always been part of the function concept, however quickly the 
concept may have been sketched. As for functions which turned up in purely mathematical 
contexts, they could be either formed by the free juxtaposition of symbols (a freedom 
subject to syntactic constraints, however) or given (in the case of continuous functions) 
by a freely drawn plane curve. For instances, both ideas can be found in various parts 
of Euler’s work (Youschkevitch, 1976: 68– 9). Questions of generality and arbitrariness 
were not central in purely mathematical contexts. In mathematical physics however, the 
theory of vibrating strings and the subsequent development of Fourier theory placed the 
question of the mathematical description of the “arbitrary function” (fonction arbitraire)— 
describing a physical phenomenon— on the center stage.

In terms of vocabulary, throughout the nineteenth century, “arbitrary function” 
remained very much in use: in Fourier’s 1822 Théorie analytique de la chaleur, in Dirichlet’s 
1829 paper. In his 1837 paper, Dirichlet used the German translation “willkürlich” (arbi-
trary) and, as if “arbitrary” would not convey the idea with sufficient strength, sometimes 
used “ganz willkürlich” (completely arbitrary); he also wrote “ganz gesetzlos” (completely 
lawless). The same words were to be found in Riemann’s 1854 paper: “willkürlich,” “ganz 
willkürlich,” sometimes “ohne besondere Voraussetzungen über die Natur der Function”18 
(without any specific hypothesis as to the nature of the function). In his 1875 paper on the 
classification of functions, Paul du Bois- Reymond turned it into an adjective: “die voraus-
setzungslose Function” (the hypotheses- free function). The very same year, in France, 
“arbitraires” was replaced by “les plus générales” (most general) in Darboux’s Mémoire 
sur les fonctions discontinues. The opening paragraph reads:

At the risk of being too long, I was set on being rigorous, perhaps without full success. 
Many points which would justly be considered obvious or would be granted in the applica-
tions of science to usual functions [fonctions usuelles], have to undergo rigorous criticism 
when it comes to expounding the propositions pertaining to the most general functions.19

14.1.3.2  Describing

The easiest way to describe a general/ arbitrary function is to negate a property which you 
feel to be specific. For instance, in his 1837 paper, Dirichlet shortly explained what his 
“gesetzlos” meant: “it is by no means necessary to think that the dependence [between 
the function and the variable] is expressible by means of mathematical operations;”20 
here, Dirichlet negated one of the two standard descriptions of what a function is. In 

18 The twentieth- century German spelling would be “Funktion.”
19 Darboux (1875: 58). Trans. RC.
20 Dirichlet (1889: 135). Trans. RC.
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the same paper, Dirichlet pointed to arbitrariness by negating another property which is 
usually (more or less implicitly) assumed: usual functions (in modern parlance: analytic 
functions) are completely determined by their behavior in any interval belonging to their 
domain of analyticity (uniqueness of analytic continuation); thus for an arbitrary function, 
“so long as one has determined the function for only a part of the interval, its continuation 
for the rest of the interval remains completely arbitrary.”21

Alongside the negation of a property encountered in usual functions (using Darboux’s 
terminology), more positive descriptions can be found. Here, a generic mode of descrip-
tion was used. The standard one, at least for continuous function, remained that of the 
arbitrarily drawn curve: in spite of the radical change in epistemic configurations, the 
description remained stable from Euler to Dirichlet and Riemann (e.g., “the arbitrary 
(graphically given) functions”22 in Riemann). A significant change occurred in 1875 in 
du Bois- Reymond’s paper on the classification of arbitrary functions; to introduce the 
most general function concept, that of the function “on which no hypotheses are made,” 
he discarded the classical “arbitrary curve” image (suited for continuous functions only):

I. The hypotheses- free function.
In the case where no specific determination presents itself, the mathematical function is 
a table— similar to an ideal logarithmic table, thanks to which to any specified numerical 
value of the independent variable, one or several functional values— or one indeterminate 
but between limits given in the table— is associated. No horizontal row of the table has 
any influence on any other, that is, each and every value in the column which displays 
the values of the function stands by itself and may be altered; such an alteration would 
not prevent the column from representing a mathematical function. The mathematical 
concept of functions holds nothing more (nothing less either); it is thus fully exhausted.23

By a strange turn of events, one of the standard modes of description for the most 
classical and specific functions— one which pre- dates by centuries the emergence of the 
function concept— is used to express how a general function can be given: when dealing 
with usual functions such as logarithms or sines, tables of values are commonly used; a 
general function can be given by a similar table, but an “ideal table,” in which every value is 
completely independent from the others (which is, of course, reminiscent of the negation 
of the uniqueness of continuation). With this generic description, du Bois- Reymond was 
close the twentieth- century concept of a map between sets, though he didn’t require that 
two sets be declared beforehand.

14.1.3.3  Exemplifying

Exemplifying the general; the endeavor sounds paradoxical. Following Nelson Goodman, 
we shall say that to be displayed as a sample, an “object” has to both possess and denote 

21 „so lange man über eine Function nur für einen Theil des Intervalls bestimmt hat, bleibt die Art ihrer 
Fortsetzung für das übrige Intervall ganz der Willkür überlassen“ (Dirichlet, 1889: 136).

22 „die willkürlichen (graphisch gegebenen) Functionen“ (Riemann, 1892: 227).
23 Du Bois- Reymond (1875: 21). Trans. RC.
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(or refer to) a property.24 Thus, a sample of generality is a contradiction in terms, since no 
individual object— be it of a usual or of an extraordinary kind— can possess the property of 
being general. However, in the epistemic configuration which links generality, rigor, and 
arbitrariness in nineteenth- century function theory, mathematicians pointed to generality 
by displaying examples; we saw one of the first instances in Dirichlet’s 1829 paper, with 
the example of (to rephrase) the indicatrix of the set of rational numbers within the set of 
real numbers. The exemplification tactics differed in a striking way from the two we have 
described so far. When it came to referring to or describing what a function of the most 
general type could be, mathematicians strove for the least specific (whether by negating 
common but specific properties or by describing generic templates to be filled arbitrarily). 
When examples are to be displayed in order to point to the general, the more specific the 
example, the more successful the denotation. We need not go into the details of the history 
of “pathological,” “bizarre” (Borel), “amusing” (“drôlatiques” in Darboux25) functions; 
let us just mention Riemann’s example of a (Riemann- )integrable function whose set of 
discontinuities is dense (1854), Weierstrass’ continuous but nowhere differentiable func-
tion (1872), and Hankel’s monster- function producing process (based on his “principle 
of condensation of singularities”).26

14.1.4  Arbitrary functions: what for?

Examples of functions with extraordinary properties are sometimes used as counter- 
examples, but their display can fulfill other purposes. The mere displaying of the “mon-
ster” may reveal a new and unexpected feature of the world of functions. Geometric 
intuition is the first victim of this display:

Indeed, the existence of the derivative in a continuous function f(x) is reflected geometri-
cally by the existence of a tangent line at any point of the continuous curve which is the 
geometric image of this function; and, though it is possible for us to conceive that at some 
singular points, even very close one to the other, the direction of the tangent line be parallel 
to the x- axis or to the y- axis, or even completely indeterminate, we cannot conceive that 
it be so in every arc of the curve, however small it may be taken. Hence the tendency to 
consider it unnecessary to prove the existence of the derivative in a continuous function.27

This quotation, by Belgian mathematician Gilbert (in 1873), is also here for the sake of 
irony: Gilbert is (somewhat) famous for his attempt to prove that a continuous function is 
piecewise differentiable, the very same year Weierstrass displayed (in the Berlin Academy 
of Science) his nowhere differentiable continuous function! In this passage, his goal was 
to remind the reader that intuition is no adequate ground for mathematical knowledge 
and that, consequently, this differentiability property called for a proof in spite of its 

24 Goodman (1976: 53).
25 Quoted in Gispert (1983: 83).
26 For an analysis of nineteenth- century teratology (i.e., science of monsters) in function theory, see for 

instance Volkert (1987).
27 Quoted in Volkert (1988: 201). Trans. RC.
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intuitive nature; he certainly didn’t mean to underline the deceiving nature of geometric 
intuition when general (continuous) functions were being considered. It has to be noted 
that, contrary to the first examples such as the indicatrix of Q, Weierstrass’ function takes 
a lot of mathematical machinery to describe; once the formula is written down it still takes 
skillful mathematical work to establish the nowhere differentiability. The know- how in the 
monster- making business is definitely a part of the mathematical practice which we’re 
endeavoring to delineate.

More generally, the display of specific functions with unusual properties is a tool for 
the assessment of the generality of a given statement. For instance, the example of the 
indicatrix of Q showed that the Fourier- series development process is not universally 
valid: the theorem proved by Dirichlet in 1829 established its validity for a given (pre-
sumably not maximal) class of functions, and the example showed that the maximal 
class couldn’t be all- encompassing. The display of the monster helped point to the task 
of identifying the exact contours of the right function- class. On a more general level, we 
endorse Klaus Volkert’s interpretation of the monster- displaying business:28 pathological 
functions served as milestones for the extensional exploring of the function- world. We 
can read an explicit description of this way of charting the world of functions in du 
Bois- Reymond’s paper:

First come a number of conditions satisfied by a function over a whole interval— however 
small; each of the conditions in the list restricts the function ever more, so that every former 
function class encompasses all the following ones— assuming all functions are finite.29

Fifty years after Abel’s lament about the complete lack of “plan” and “system” in math-
ematical Analysis, a form of systematicity had emerged: functions are grouped in classes, 
function classes are characterized by explicit (set- theoretic) properties; logical implica-
tions between properties (on the intentional level) are reflected on the extensional level by 
inclusion relations between function classes. This systematic way of charting the world 
of functions is typical of du Bois- Reymond’s work (arbitrary functions ⊃ integrable 
functions ⊃ continuous functions ⊃ differentiable functions) or of Camille Jordan’s Traité 
d’Analyse,30 whose second edition is a landmark in the history of “rigorous” analysis.

This interpretation also helps us understand the role of the “arbitrary function.” As du 
Bois- Reymond strikingly put it, the “most general” function, the “arbitrary function,” the 
“function on which no hypotheses are made” is something about which nothing can be 
said.31 It is by no means an object to be studied, it is but an (intentionally) empty place in 
the whole epistemic configuration: not something to investigate, but a kind of background 
against which ever more specific function classes can be delineated; meaningless (on the 
intentional level) because all- encompassing (on the extensional level; see Fig. 14.1). This 

28 Volkert (1987).
29 Du Bois- Reymond (1875: 21).
30 Jordan (1893).
31 As mentioned earlier, du Bois- Reymond’s general function concept is close to the abstract map concept 

but differs slightly. Things can be studied in an abstract map: is it one– one, is it onto, etc.? Du Bois- Reymond 
fails to see these questions since the sets between which the map works are still implicit in his approach to the 
general function concept.



394 Questions of generality as probes into nineteenth-century mathematical analysis

394

interpretation also helps us clarify the relationship between the general/ arbitrary func-
tion and the pathological examples. Both are necessary elements of the same epistemic 
configuration, which doesn’t mean that pathological functions serve as samples for the 
class of arbitrary functions— a part which, as noted earlier, no example can play.

A few years later, a similar way of charting of the function- world was used by Hilbert 
in his famous 1900 Paris address. Before expounding the last series of problems (pb. 
19– 23), a series devoted to problems in mathematical analysis, he discussed the relevance 
of various function classes; let us just read the first few lines, a wonderful sample of this 
fine tuning of the relevant classes within the new “system” of functions:

If we look over the development of the theory of functions in the last century, we notice 
above all the fundamental importance of that class of functions which we now designate 
as analytic functions— a class of functions which will probably stand permanently in the 
center of mathematical interest.

There are many different standpoints from which we might choose, out of the totality of 
all conceivable functions, extensive classes worthy of a particularly thorough investigation. 
Consider, for example, the class of functions characterized by ordinary or partial algebraic 
differential equations. It should be observed that this class does not contain the functions 
that arise in number theory and whose investigation is of the highest importance. …

If, on the other hand, we are led by arithmetical or geometrical reasons to consider 
the class of all those functions which are continuous and indefinitely differentiable, we 
should be obliged in its investigation to dispense with that pliant instrument, the power 
series, and with the circumstance that the function is fully determined by the assignment 
of values in any region, however small. While, therefore, the former limitation of the field 
of functions was too narrow, the latter seems to me too wide.32

14.2  General theory as a theory of the general 
behavior of a function: Lagrange and Cauchy

Going backward in time and focusing on texts which do not belong to the epistemic 
configuration that we studied earlier, we come across another lead: other links between 

Class of (arbitrary) functions

Figure 14.1 Extensional functional world.

32 Hilbert (1902: 467).
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questions of generality and the historical development of mathematical Analysis in the 
nineteenth century appear. We will thus follow two leads at a time: on the one hand, 
we will try to characterize the various ways in which Lagrange’s grasp of the world of 
functions differs from the one we described in the former paragraph, thus delineating 
two mathematical configurations; on the other hand, we will come across a new conceptual 
intersection between questions of generality and the theory of functions: once a function 
is given, one can try to distinguish between a general behavior (to be studied in a uniform 
way) and points where the behavior is singular (to be investigated later, with specific tools). 
We will see that this idea of general behavior of a function is common to both Lagrange 
and Cauchy, but treated in very different ways by these mathematicians: we think this 
point of comparison is quite illuminating and helps understand some of the peculiarities 
of Cauchy’s concept of continuity.

14.2.1  Scenes from Lagrange’s Théorie des fonctions 
analytiques33

The introduction to Lagrange’s treatise is entitled “des fonctions en général” (on functions 
in general):

One calls function of one or several quantities any calculating expression in which these 
quantities appear in any way, along with other quantities which are considered to have 
given fixed values, in contrast to the quantities in the function which may take on any 
possible values…. The word function was used by the first analysts to denote generally the 
powers of a given quantity. Since then, the meaning has been extended to any quantity 
formed in any way from another quantity.34

As mentioned earlier, an element of arbitrariness is present in Lagrange’s function con-
cept, but as a part of a very different configuration. However anachronistic, we feel the 
distinction between axiomatic and genetic definitions can help us to contrast Lagrange 
against, say, du Bois- Reymond. Du Bois- Reymond needed a definition (or, at least, a 
template) for the most general/ arbitrary function; this concept had maximal extension 
and minimal intention, but was necessary for the definition of more interesting function 
classes in terms of characteristic properties: the most general function— this nondescript 
element of the class of all functions— was the starting point for the systematic exposition 
of mathematical Analysis. The notion of function in Lagrange is a genetic one: the basic, 
simple elements are known (letters standing for variable quantities) and they are to be 
combined at will to form any function you like; of course, the free combination of symbols 
has to remain within certain syntactic bounds, but for those as well only the most simple 
ones are known (namely, the general rules of algebra and maybe the symbols for the 
derivative, the partial derivative, and the integral): just as new functions can be formed, 

33 As the title of this paragraph indicates, we certainly do not mean to give an overview of Lagrange’s work 
and its relationship to questions of generality in mathematics or mathematical physics. For a detailed study 
of the conceptual architecture of Lagrange’s Théorie des fonctions analytiques, see Ferraro and Panza (2012).

34 Lagrange (1797: 1). Trans. RC.
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it is quite possible to add new syntactic structures. There is no need in Lagrange for a 
definite criterion enabling us to distinguish between functions and non- functions, no need 
to precisely delineate the outer rim of the function world. Quite the contrary, the function 
world is an open- field; generality, a mere horizon. The challenge is to find a systematic 
way to study these functional objects, of which the basic elements (in generic terms) but 
not the basic properties (in axiomatic terms) are known.

Lagrange met this challenge by resorting to a general mode of description, a general 
“form”:

Let us consider therefore a function f(x) of any variable x. If x is replaced by x + i, i being 
any indeterminate quantity, the function becomes f(x + i ) and, thanks to the theory of 
series, it will be possible to develop it into a series of the following type

f x pi qi ri( ) + + + +2 3
,

in which quantities p, q, r …, the coefficients of the powers of i, are new functions of x, 
derived from the primitive function of x and independent of indeterminate i.35

Whatever the form of f(x), seen as a formula in which x appears, it can be written in the 
universal form of a power series (with positive integer powers). The generality strategy is 
clear, but the claim remained to be ascertained:

But to avoid advancing anything gratuitously, we shall examine the very form of the series 
which is to represent the development of any function f(x) when x + i is substituted for x 
and in which we have assumed only positive, whole powers of x appear. This requirement 
is indeed met by the development of the various known functions; but no one, to my 
knowledge, has ever tried to establish it a priori, what seems all the more necessary since 
there are particular cases in which it might fail to be met.36

As we shall see, Lagrange would attempt to provide such an a priori proof. It seems that, 
according to Lagrange, a proof for the generality of the property is all the more needed 
since counter- examples were known … it could be the oddest justification for the need of 
a general proof ever given! This quotation reveals a feature of the epistemic configuration 
to which Lagrange belongs, a feature that we haven’t encountered so far:

I will first prove that, in the series which results from the development of function f(x + i), 
no fractional power of i can appear, unless x takes on some particular values…. This proof 
is general and rigorous as long as x and i remain indeterminate; it would cease to be so if 
x took on determinate values …. We will later (n°34) deal with these particular cases and 
their consequences.37

35 Lagrange (1797: 2). Trans. RC.
36 Lagrange (1797: 7). Trans. RC.
37 Lagrange (1797: 8). Trans. RC.
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The relevant distinction is that between “indeterminate” and “determinate” values: a 
function, or, more generally, a variable quantity, is an object of complex nature. A variable 
quantity, denoted by a letter, stands for any possible particular value (potential level), and 
may be given any values (actual level). But, for Lagrange, the use of letters is not a mere 
shorthand, a way to denote any particular number; there is an autonomous level on which 
indeterminate quantities are to be dealt with, a level whose autonomy is often referred to by 
bringing up the “generality of algebra” (la généralité de l’algèbre). The theorem establishing 
the generality of the power- series form belongs to this theoretical level, regardless of the 
actualization (or specialization) of the variable quantity as a number. Yet, this autonomous 
level is by no means an independent level; properties proved at the “generality of algebra” 
level (let’s call it level A) have an implicit counterpart on the “determinate value” level 

(level B), as we shall see more clearly by reading paragraphs 34– 6, in which Lagrange 

deals with his “particular cases.” Reading the first few lines is enough: commenting on 

the “forme”  f x if x
i

f x( ) ( ) ( )+ + +′ ′′
2

2


It is thus necessary, before we proceed further, to examine when and how this form could 
fail to hold.

We showed earlier (n°2) that it may only be the case when x is given a determinate 
value which causes some radical to vanish in function f(x) and in all its derivatives. Now, 
there are only two ways for a radical to vanish, either because the quantity by which the 
radical is multiplied vanishes, or because the radical itself vanishes.38

To explain what he meant, Lagrange used the example of function f(x) =  x a x b−( ) − .   
If we draw the curve for a = 2 and b = 1 (which Lagrange didn’t do), we get Fig. 14.2.

One has to remember that for Lagrange, the square root function is two- valued; for 
instance, 4 has two square roots, 2 and – 2, which explains the symmetry of the curve. 
The function has two singular values, value x = 2 for which “the quantity by which the 
radical is multiplied vanishes” and value x = 1 for which “the radical itself vanishes.” 
In this paragraph, Lagrange showed the reader how the development of f(x + i) can be 
found if x = 1 or 2, with power series featuring negative and fractional powers of I, and 
not only positive integer powers. Here, a more general form (meaning: the usual form is 
a particular case) is needed to deal with singular values, that is to reach universality on 
the B- level (the extended form is valid for any values of x); the “general rule” was general 
because it “lived” on the A epistemic level, and,39 because it was generally valid on the 
B- level, that is for all but singular (i.e., isolated on the straight line and singular for the 
specific function under study) values of x.

It is also worth commenting upon the generation and use of examples in Lagrange’s 
treatise. Function f(x) =  x a x b−( ) −  is clearly the simplest case showing both types 

38 Lagrange (1797: 32). Trans. RC.
39 Behind this “and” lies the whole dialectic between the two levels. We can but touch here on this 

fascinating topic.
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of singular behaviors: Lagrange didn’t set out to chart a closed functional world using 
point- set properties, but formally generated functions from the simplest elements. In the 
“rigorous” configuration that we studied in the first part of this chapter, simplicity was 
not a central part of the picture (though not necessarily ill- considered); here, it is of the 
essence. The use of examples also differs. The case of f(x) =  x a x b−( ) −  doesn’t sup-
port any general statement, its role is pedagogical: it helps the reader spot the potentially 
singularity- bearing forms, and teaches her how to deal with them. Its simplicity makes 
it both a paradigm (to be used as a model) and a generic example:  in a generically- 
structured open function- world, dealing with the simplest of all singular cases is the most 
obvious (if not the only possible) general move; anything that can be said about one of 
the basic building- blocks is of general interest.

14.2.2  Two mathematical configurations

Let us use a table to summarize some of the elements of comparison that we have come 
across so far, and add a few others as well. For the right column, I chose Camille Jordan as a 
representative for the “rigorous” configuration in its mature form: his 1890s Cours d’Analyse 
is a standard landmark, in which the works of Dirichlet, Riemann, Weierstrass, Heine, du 
Bois- Reymond, and Dini are reflected. Needless to say this table is just a rough sketch.

Lagrange Jordan

1 Genetic description, bottom- up journey   
across an open function- world

Axiomatic definition, top- down journey 
in a closed function- world

2 Elementary functions as starting point General/ hypotheses- free functions as 
starting point

3 Classification of formulae/ functions according 
to form, differential diagnosis helping you   
make out the variety of function types

Classification of maps/ functions accord-
ing to (point- set) properties, delineation 
of function classes

Figure 14.2 Larange’s f x x a x b( ) .= −( ) −

(continued)
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Lagrange Jordan

4 Generality derives from simplicity (proper 
identification of the most simple and elemen-
tary forms)

Generality derives from rigor (careful 
wording of hypotheses, counter- 
example- proof statements, detailed 
proofs)

5 Examples are simple cases which show how to 
deal with whatever you may come across out 
there

Examples are mainly counter- examples, 
they both illustrate and motivate the 
lengthy hypotheses and mind- boggling 
conceptual distinctions

6 In terms of genre, the book is both a treatise and 
a textbook.

In terms of genre, the book is first and 
foremost a treatise.40

7 Concept image (for the function concept) Concept definition

8 Convince oneself, convince a friend Convince an opponent

The first five points summarize things said earlier.
In points 7 and 8 we borrow concepts from the didactics of mathematics, since we 

feel they bring out contrasts between the two configurations quite nicely. The distinction 
between concept image and concept definition comes from the work of M. Tall and 
S. Vinner on the psychology of mathematical learning:

We shall use the term concept image to describe the total cognitive structure that is associ-
ated with the concept, which includes all the mental pictures and associated properties 
and processes. It is built up over the years through experiences of all kinds, changing as 
the individual meets new stimuli and matures.41

The concept image is a much larger and piecemeal cognitive structure than the concept 
definition (that is, the formal definition, if there is one). To succeed in mathematics, at 
least in higher education, a student has to display some degree of cognitive flexibility, 
enabling her to switch from concept image to concept definition in some cases (say, to 
write down a proof) or the other way round in other cases (say, to devise an easy counter- 
example to a false statement); in the worst cases, the concept definition is not included 

40 The question of genres, their historical evolution and epistemological implication, is in itself well- worthy 
of study; we are not going into that here. We are simply referring to a growing tension between “mathemat-
ics for professional mathematicians” and mathematics for non- mathematicians (engineers, physicists, maths- 
teachers, or undergraduate students) through the nineteenth century. In his 1893 series of talks on the occasion 
of the Chicago World’s fair, Klein stressed this problem: “Now, just here a practical difficulty presents itself 
in the teaching of mathematics, let us say of the elements of differential and integral calculus. The teacher is 
confronted with the problem of harmonizing two opposite and almost contradictory requirements. On the one 
hand, he has to consider the limited and as yet undeveloped intellectual grasp of his students and the fact that 
most of them study mathematics mainly with a view to practical applications; on the other, his conscientious-
ness as a teacher and man of science would seem to compel him to detract in nowise from perfect mathemati-
cal rigour and therefore to introduce from the beginning all the refinements and niceties of modern abstract 
mathematics…. The second edition of the Cours d’analyse of Camille Jordan may be regarded as an example of 
this extreme refinement in laying the foundations of infinitesimal calculus” (Klein, 1894: 49).

41 Tall and Vinner (1981: 152).
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in the concept image: the definition may be learnt by rote, still it means nothing to the 
student. As for the function concept, we saw that hard and fast definitions were rarely 
found until the second half of the nineteenth century. The few lines of explanation which 
can be read in the first paragraphs of Euler, Lagrange, or Lacroix’s treatises are not meant 
as definitions on which proofs can be based, they are description of what can be called 
functional dependence, a description that has to be vague enough so as to be fitted out 
to anything that might come up in mathematics and mathematical physics. Lacroix put 
it bluntly: after his short explanation of the word “function,” he added: “the use of this 
word will throw light on its meaning”42 … pure concept image.

Point 8 comes from Mason, Burton, and Stacey’s Thinking mathematically,43 when 
reflecting on the function of proof. You can try to write down a proof in order (1) to con-
vince yourself of some mathematical fact; (2) to convince a friend or a student, someone of 
good will but in need of some kind of explanation; (3) to convince someone who assumes 
a systematically skeptical posture, someone who will look for flaws in every step of your 
reasoning. The proofs in Lacroix and Lagrange are, to some extent, of the first and second 
kinds. In the 1890s, Jordan’s treatise presents a coherent system of subtle definitions and 
detailed proofs; those proofs and definitions are the result of 70 years of co- evolution of 
proofs and concepts in mathematical Analysis, an evolution triggered by fierce proof- 
analysis and counter- example devising.44 This know- how in proof- design accumulated 
as a result of the assumption of the “opponent” role by prominent mathematicians, as is 
exemplified in this passage from one of Abel’s letters to his friend Holmboe (in 1826):

I doubt you will be able to put forward more than a small number of theorems dealing 
with infinite series, to the proof of which I can’t object with good grounds. Do that, and 
I shall answer you.45

The friendly tone of this letter shows very clearly that this epistemic posture has nothing 
to do with personal enmity or scientific controversy.

14.2.3  Cauchy’s concept of continuity as the answer to   
a generality challenge

From a historical point of view, the lectures which Cauchy46 gave at the Ecole Polytechnique 
in the early 1820s should provide a missing link between the two configurations. On the 
one hand, they can be analyzed as a globally anti- Lagrangian move, and had a profound 
influence on the pioneers of the new epistemic style, Abel and Dirichlet. On the other 
hand, Cauchy shared with Lagrange some basic views as to what functions were, as to the 
role of singular points etc. which paint a picture of the function world in sharp contrast 

42 L’usage de ce mot en éclairera la signification (Lacroix, 1802: 3).
43 Mason et al. (1982).
44 See Volkert (1987) or the appendices in Lakatos (1976).
45 Abel (1992: 257). Trans. RC.
46 On Cauchy’s analysis, classical references are Dugac (2003) and Grabiner (2005). For recent develop-

ments, see Sørensen (2005).
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with what we described in the first part of this chapter. We think the depiction of Cauchy 
as an in- between figure— in between two coherent epistemic configurations— helps makes 
sense of his somewhat puzzling concept of continuity.

We need not expatiate on the first point (the “down with Lagrange” part); quoting the 
famous introduction to l’Analyse algébrique (1821) will suffice:

As to the methods, I strove to give them the very rigor that is demanded in Geometry, so 
as to never resort to arguments based on the generality of Algebra. It seems to me that 
this kind of argument, though quite commonly acknowledged, most of all when passing 
from finite to infinite series, and from real to imaginary expressions, can be considered 
but mere induction; this kind of induction can help sense some truth but is not in keeping 
with the praised rigor of the mathematical science. It has to be noted that they led us to 
ascribe an indefinite scope to algebraic formulae whereas, in reality, most of these formulae 
only hold under certain conditions and for certain values of the quantities which appear.47

The arguments based of the “generality of Algebra” are deemed incompatible with math-
ematical rigor. Cauchy rejected the (implicit) dialectic between levels A and B: level A has 
at best a heuristic value (at best: it proves deceiving, more often than not), level B is the 
only firm ground on which to base mathematical statements; it has become “reality.”

The discarding of level A created a new generality challenge for Cauchy. The didactic 
genre of the traité d’analyse called for a general treatment of all functional situations and 
for the laying out of a systematic exposition. Lagrange had met these requirements by 
resorting to a universal (enough) form for functions, the power series; obviously, this is not 
an option for level- A- skeptic Cauchy. We think that two concepts played, for Cauchy, this 
central role that the power- series form had played for Lagrange: the concept of limit and 
the concept of continuity. Both strictly operate on the B level, they refer to the numerical 
behavior of variable quantities. Limiting processes allowed Cauchy to tackle problems 
of existence for functions: the exponential function, the primitive and the derivative of a 
continuous function, and the solution of an ordinary differential equation (when regular 
initial conditions are given) are functions whose existence is proved by a limiting process. 
In the case of primitives, a short comparison with Lacroix’s Traité élémentaire de calcul 
differential et de calcul integral48 will help illustrate this point. After presenting formal 

rules for differentiating functions, Lacroix wrote that finding the primitive (or indefinite 

integral) f x dx( )∫  of a function f(x) is the reverse problem to that of finding the derivative; 

he then presented various methods to (formally) solve this problem; the definite integral 

f x dx
a

b
( )∫  was then introduced, and various numerical methods were presented to help 

find an approximate value for this definite integral, in case no primitive could be formally 
obtained. Cauchy proceeded exactly the other way round: he used the approximation 

methods to prove that the symbol f x dx
a

b
( )∫  stood for a well- defined number, provided 

47 Cauchy (1989: ij). Trans. RC.
48 Lacroix (1802).
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f is continuous between a and b; then allowed quantity b to vary, thus defining a new 
numerical function which was proved to have f(x) as its derivative.

Cauchy also had to distinguish between regular values and singular values. Lagrange 
had done it by analyzing the syntactic expression of a function; this, again, is not an option 
for Cauchy. This is where, in our view, the concept of continuity comes into play. To the 
modern reader, Cauchy’s continuity concept is a cause for puzzlement. One the one hand, 
his definition looks like our numerical, point- set theoretic definition. On the other hand, 
Cauchy used this definition in ways which the modern reader finds either inconclusive (for 
lack of distinction between continuity and uniform continuity, for instance) or altogether 
misleading; for instance, Cauchy “established” that the limit of a sequence of continuous 
functions is a continuous function … a fact to which counter- examples were known by 
the time of Cauchy!49 Another puzzling feature is that for Cauchy, continuity was always 
assumed to hold in an interval (of non- null length) and discontinuity assumed to occur at 
isolated points, in spite of the fact that the Cauchy definition seemed to allow for functions 
with dense discontinuity loci (as in Dirichlet) and functions which were continuous at 
isolated points only (though those didn’t come up until much later).

I think questions of generality help understand Cauchy’s baffling “continuity” con-
cept, in a twofold way. First, Cauchy’s use of his continuity concept is understandable 
when one refers to its epistemic role instead of focusing on the numerical definition. 
Cauchy’s continuity hypotheses serve him right as hypotheses of general/ regular behav-
ior: to some extent, what matters is not what Cauchy means when he writes “continuous,” 
but what he means to do. The second element is not specific to Cauchy but plays a part 
in Cauchy’s choice of the continuity concept as generality- bearing concept. It can also 
be found, for instance, in Ampère’s famous proof of the “fact” that continuous func-
tions admit a derivative. A close look at the proof shows that what Ampère meant is 
that continuous functions have a derivative, save for isolated points. In every step of the 
proof, Ampère acknowledged the fact that for specific values of the variable, the general 
behavior that is aimed for may not hold … yet he didn’t mention it when stating the 
final theorem. I believe this unwritten rule that “when dealing with functions, all that is 
stated and proved is so, save for, maybe, isolated values of the variable” is an implicit but 
essential part of a mathematical configuration which is common to Lagrange, Ampère, 
and Cauchy. Singular points may drop out of sight, and are implicitly assumed to appear 
only as isolated points. Formally universal statements are to be read modulo this proviso; 
this is the price to pay for a general statement, that is, one that deals with all functions, 
whatever they may be.50

To sum up, in spite of radically opposing views as to the legitimacy of the A level, it 
seems to us that Lagrange and Cauchy had at least this in common: they studied the 
general behavior (that is, except for isolated values of the variable) of what would later 
be termed “usual functions.” The numerical setting chosen by Cauchy paved the way 
for the monster- making business, but it is not a business in which Cauchy engaged, 
or even a business which he considered; the functions which Cauchy studied were the 

49 This is discussed in Sørensen (2005).
50 See  chapter 4 in Chorlay (2007).
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same analytic functions which Lagrange studied and the very same properties were to 
be attained, though in a completely different way. A systematic comparison between 
Lagrange and Cauchy helps identify similar generality demands, and stresses the functional 
equivalence between the form of the power series (in Lagrange) and the general property 
of continuity (in Cauchy). Both mathematicians faced two generality demands: one that 
pertained to the genre “general treatise” and called for the identification of a unifying 
element (be it form or property); one that was more content- specific and derives from 
the fact that functions operate (partially or exclusively) on the B- level, which called for a 
distinction between intervals of regular behavior (where general proven statements hold) 
and isolated irregular points.

14.3  Logical generality vs. embedded 
generality: Cauchy vindicated

We would eventually like to point to a third interaction between questions of generality 
and the development of function theory in the nineteenth century. On this occasion, we 
shall introduce the concept of embedded generality, in order to document both the reflexive 
character of mathematics and a specific form of general statement. As for the term “logical 
generality,” against which I shall contrast “embedded generality,” it is taken from Poincaré 
(see Section 14.3.1): it simply denotes the standard idea that a case is more general than 
another one if the first one extensionally encompasses the second one.

14.3.1  A “small corner” for “proper” functions?

In a 1904 paper on definitions in mathematics, Poincaré took a backward look at the 
development of rigor in mathematical Analysis over the nineteenth century; the mood 
was significantly different from that of the quotation which we gave in the introduction 
to this paper:

Logic sometimes begets monsters. In the last half- century, we saw the emergence of a 
bunch of bizarre functions, the purpose of which seems to be to differ as much as pos-
sible from these straightforward functions [honnêtes fonctions] that prove useful. No more 
continuity, or continuity without derivability, etc. What’s more, from the logical point of 
view, these weird functions [fonctions étranges] are the most general; those that we came 
across without looking for them now appear to be but a particular case. They are left 
with but a small corner. In the old days, when a new function was invented, it was for a 
practical purpose; nowadays, they are invented for the very purpose of finding fault in 
our fathers’ reasoning, and nothing more will come out of it.51

Rigor developed, Poincaré lamented, at the cost of fruitfulness; in his view, the 
“straightforward functions” should have remained the main topic of study, and younger 

51 Poincaré (1904: 263). Trans. RC.
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mathematicians spent too much time reveling in the minutiae of the general theory of 
functions. Yet he could but acknowledge the fact that general functions are more general 
from a logical viewpoint:  they form the all- encompassing class and many subclasses, 
sub- subclasses, sub- sub- subclasses … can be made out before that of analytic functions, 
a situation for which Poincaré used the metaphor of the “small corner” (petit coin) of the 
function world.

14.3.2  The return of Cauchy

At the very same time however, some mathematicians started using the sophisticated tools 
of general function theory, and the point- set theory it gave rise to, in order to vindicate 
the classical (“old days,” to quote Poincaré) point of view. They would use generality 
arguments to show that the “small corner” is actually large enough. Emile Borel’s work is 
a good example and I will focus on this case. His overall view is put in the clearest of ways 
in his 1912 analysis of his mathematical work; the following quotation is pretty lengthy, 
but we feel its skillful weaving of the various threads that we have been following makes 
it well worth reading:

There were, there still are, mathematicians who choose to ignore what they deem to be 
refined subtleties with no practical use; this attitude is indeed legitimate since it leads 
to results but it seemed to me that I could not stick with it, for several reasons: one 
the one hand, until now, no one could draw a clear line between straightforward and 
bizarre functions; when studying the first, you can never be certain you will not come 
across the others; thus they need to be known, if only to be able to rule them out. On 
the other hand, one cannot decide, from the outset, to ignore the wealth of works by 
outstanding geometers; these works have to be studied before they can be criticized…. 
To my knowledge, Cauchy never explicitly explained what he meant by “function;” a 
reading of his work seems to me to reveal evidence that, for him, the question didn’t 
arise; “function” was but the general term used to denote any of the particular functions 
which the analysts study, each of these particular functions had its own definition based 
on elementary functions (by means of series, integrals, differential equations etc.); it 
was assumed that any argument pertaining to the general “function” would apply to all 
particular functions which would later be discovered, provided they meet the conditions 
appearing in the propositions (most of the time, these conditions are continuity for the 
function and its derivative).

In the very same way, a biologist would refer to “living beings” or a chemist to “simple 
elements” without having had to delineate an a priori concept of the living being per se, 
or the simple element per se; they simply have in mind the living beings that they know 
or could know of.

This Cauchy viewpoint was contrasted with the seemingly more general method in 
which one starts with a function given a priori as a correspondence which can be devised 
regardless of explicit formulation; … here is no place to discuss whether what cannot be 
formulated can or cannot be an object for science; two remarks will suffice; on the one 
hand, this more general conception of functions led to the devising and studying of new 
functions, which would otherwise not have been thought of; thus it proved useful; but, 
on the other hand, the actual display of analytical expressions representing the newly 
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devised functions made the a priori conception useless; after a detour, one comes in fact 
back to Cauchy’s viewpoint.

… My work on divergent series as well as those on monogenous functions can be 
traced directly to Cauchy’s ideas; in these works just as well, I used the improvements to 
the rigor of analysis worked out by Cauchy’s successors, while breaking free from the too 
narrow conceptions which they introduced along with that very rigor.52

Two significant examples will help understand Borel’s subtle stand. To understand the 
first example, one must recall that in Lagrange, Lacroix, or Cauchy, singular points were 
always assumed to be isolated (on the straight line); in higher dimensions, the locus of 
singular points was always assumed to be of lower dimension than relevant the parameter 
space, which is why statements such as “a real- valued square matrix is, generally speaking, 
invertible” or “three points in a plane aren’t usually collinear” could be given precise math-
ematical meaning (which made them not only meaningful but also true!). In the next phase, 
the displaying of functions whose locus of singular points was not made of isolated points 
was one of the most active industries in the monster- making business, and Weierstrass’ 
everywhere singular continuous function was the monster par excellence. Borel went one 
step further, so as to ascertain the generality of the most straightforward of all functions, 
namely polynomial functions: y being a bounded function, defined over the 0– 1 interval,

Given two positive and arbitrarily small numbers ε and ε′, one can determine a polynomial 
P(x) such that the points at which y − P(x) is, in absolute value, greater than ε make up a 
set of measure less than ε′…. One can also say that, by letting ε and ε′ tend to zero, there is 
a sequence of polynomials that tend toward y, except at the points of a set of null measure.

This result is essential for the theory of functions of one real variable, since it shows 
that the singularities of such a function fill very little room; it is thus possible, in many 
circumstances, to proceed as if they didn’t exist. The in depth study of the notion of a 
set of null measure thereby leads to a middle stand between these geometers who are 
inclined to consider only “good” functions and those who could be led to think that 
“good” functions are but an extremely particular case. We know, in a precise way, that 
neither party has it completely wrong.53

From a logical point of view, the concept of continuous function is much more general 
than that of a polynomial function; but the refined tools of point- set theory help us go 
beyond this simple fact, they help us assess just how much more general they are. And 
it turns out that, in some way, polynomial functions are general enough. This kind of 
generality is context- dependent, in two ways. It depends on the mathematical tool with 
which one assesses generality (here, the measure of a set of points on the straight line); 
in this case the polynomial case proves general enough to found the integration theory 
of continuous functions (goal- dependence):

The integral of y may be defined as the limit of the integrals of polynomials P(x)…. 
This example shows how the notion of measure allows us to rid the theory of real 

52 Borel (1972: 120). Trans. RC.
53 Borel (1972: 122). Trans. RC.
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functions of much of the complication which had emerged in the logical development 
of analysis.54

The other example comes from Borel’s work on power series in one complex variable. 
In a 1896 note to the Comptes Rendus de l’Académie des Sciences de Paris, Borel had given 
a mere heuristic argument to support the claim that a function defined by a power series 
cannot generally be analytically extended beyond this convergence disc. By 1912, he had 
devised a more rigorous and much more sophisticated argument, by applying the notion 
of set of zero- measure in a function set. Rephrasing in terms of probability, he summarized:

I proved that for such a series, picked at random (words whose meaning I made precise), 
its convergence circle is generally a cut, which means that the cases in which analytic 
continuation is possible are to be deemed exceptional.55

In this example, the logical viewpoint says nothing more than: not all power series can be 
analytically extended; the class of analytic functions whose maximal domain of analytic-
ity is the unit disc is strictly included in the class of analytic functions whose maximal 
domain of analyticity contains the unit disc … Borel goes beyond this rather trivial state-
ment (which could easily be proved by displaying just one “bizarre” power- series) and 
endeavors to assess how much more general the second class is. It turns out that, if the 
mathematical tool used to compare degrees of generality is a measure- theoretic tool of a 
function- space, the smaller of the two classes is so bulky that its complement has measure 
zero. Borel concluded:

It is thus illusory to consider Taylor series a priori, regardless of its origin, this abstract 
study can only lead to negative answers.56

14.3.3  Embedded generality

In the first part of this chapter, we showed how the search for a more rigorous and 
systematic function theory— one that could encompass the difficult case of functions 
studied with Fourier series— resulted in significant changes in the function concept and 
in the adoption of new systematic ways of charting the function world. Essential features 
of this new configuration are those which Poincaré or Borel call “logical”: the use of an 
abstract definition of a function, the delineation of function classes (or function sets) by 
abstract characteristic properties, and milestone standard examples. In this viewpoint, if 
a function class C1 is strictly included in function class C2 (extensional side of the logical 
viewpoint), then C2 is more general than C1 … and that’s about it.

Yet, as we saw with Borel’s example, this extensional viewpoint can serve as step-
ping stone for a new kind of investigation: C2 may be logically more general than C1, 

54 Borel (1972: 123). Trans. RC.
55 Borel (1972: 123). Trans. RC.
56 Borel (1972: 124). Trans. RC.
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but how much so ? Can’t C1 be general enough for some purpose ? Is C1 so special that 
it can, in some circumstances, be neglected altogether ? Those questions are by no 
means specific to function sets or function theory; any set of objects, any parameter 
space for some mathematical situation can be investigated in this way. The tools with 
which the degree (or relative degree) of generality is assessed is a mathematical tool, 
though, in most cases, not a number (as the word “degree” might suggest). To com-
pare in terms of “size” two sets, one being part of the other, a wealth of methods is 
available to the twentieth- century mathematician. Dimensional arguments had been 
in use since classical mathematics: a doubly- infinite set is significantly larger than a 
simply- infinite one, though the fact that the smaller one may disconnect the larger 
one may give it a global topological importance that its “size,” alone, doesn’t account 
for; in this respect, it is safer to neglect a subset of singular cases whose dimension 
is at least two degrees lower than that of the space of all cases. With the advent of 
point- set theory in the last years of the nineteenth century, a great variety of new 
tools were made available.

Let us give but a few simple and context- free examples. Consider the set C1 of positive 
rational numbers less than 1 and the set C2 of positive real numbers less than one. One of 
the mathematical tools that can be used is that of density: C1 is dense in C2, which, loosely 
speaking, means that there are elements of C1 “everywhere” in C2. In some cases, it makes 
C1 general enough; for instance, to check that two real- valued continuous functions f and 
g are equal on C2, it suffices to check that they are equal on C1. Another mathematical 
tool is measure theory. Let us say that the measure of an interval which is a part of C2 is 
its length, and that the probability of a denumerable infinity of pairwise disjoint intervals 
is the sum of their probabilities/ lengths. In this context, if C1 has measure 0, then it seems 
to be completely negligible compared to C2; in particular, if a number is chosen at random 
in C2, the probability that a C1 number be chosen is 0. As Borel remarked, these features 
are relevant in integration theory.

We wish to coin the term “embedded generality” for this kind of generality assessment 
which relies of the description of a mathematical structure (whether of set, ordered 
set, measured space, topological space, manifold, etc.) on a set of objects or parameter 
space for mathematical situations. For instance, the search for the right structure in the 
case of the qualitative theory of dynamical systems is beautifully illustrated in Tatiana 
Roque’s chapter in this volume (see Chapter 10). One of the striking features of embed-
ded generality is its twofold context- dependence: dependence on the purpose and on the 
measuring- tool. In our simple example, C1 can turn out to be either general enough or 
completely negligible. This concept testifies to the reflexive nature of mathematics, its 
ability to turn apparently (and formerly) meta- level questions about mathematics (such 
as: the comparison between two theories, the degree of generality of a class of objects/ 
statements, the choice of the class of objects which are really worth investigating) into 
mathematical questions, by designing the proper mathematical tools (e.g., group relations 
to study the relationships between various geometrical theories, assessment of embedded 
generality).

We came across this concept of embedded generality in our discussion of the interac-
tions between questions of generality and the development of function theory in the 
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nineteenth century, but we do not mean to say it emerged in this context. For instance, 
Anne Robadey’s chapter (Chapter 6)57 documents Poincaré’s devising of probability- 
theoretic arguments in celestial mechanics; her historically detailed and epistemologically 
informed narrative shows how Poincaré managed to turn a loosely formulated corollary to 
a false theorem into a full- fledged rigorous theorem about the general behavior of orbits, 
by describing the parameter space of orbits with tools he imported from the theory of 
continuous probability. He thus kicked off the theory of dynamical systems, a theory in 
which several types of embedded generality arguments are of the essence: Tatiana Roque’s 
chapter on genericity (Chapter 10) documents at least two generation of such arguments 
since World War II. Other examples could be found in Poincaré’s work, for instance in 
his work on the so- called “Fuchsian” functions (1881– 5). Presenting the mathematical 
details would take us far beyond the scope of this chapter, it suffices to know that this 
example documents the passage from dimensional arguments to topological arguments: to 
show that two parameter spaces could be identified, Poincaré had to show that they not 
only were of the same dimension, but also topologically equivalent (homeomorphic). 
The proof- method he devised on this occasion, the “method of continuity” (méthode de 
continuité in French, Kontinuitätsbeweis in German), would stir admiration (and disbelief) 
until the 1920s.58

14.4  Conclusion

This chapter emerged from an exploration of the use of the word “general” in a well- 
known corpus, namely, that on the foundation of function theory in the nineteenth 
century. In keeping with the spirit of this handbook, we endeavored to make sense of the 
wealth and diversity of occurrences by focusing on topics such as the use of examples, 
exceptions, and singular cases; by focusing, also, on ways of expressing and assessing 
generality. These guiding threads led us to identify three distinct configurations which 
we strove to characterize. As descriptive terms, we used both epistemic configuration and 
mathematical practice: the first referred to closed— at least coherent— epistemic structures, 
with their own rules for action; the second referred to the way mathematicians actually 
engaged with mathematics in the context of these epistemic configurations, in accordance 
with or, at times, in spite of the rules.

These three configurations are by no means independent, quite the contrary; we 
clearly opted for a kind of dialectical narrative, in which the third phase was explicitly 
described— sometimes by mathematicians themselves, such as Borel— as a synthesis 
of the former two. In a sense, this dialectic movement relies not so much on three 
concepts of generality but more on a feature that is specific to the objects under 
study: mathematical functions. Indeed, a function is a two- faced entity: it can either be 
considered as an individuum— when a formula is written down, or when the function 

57 See also Robadey (2006).
58 See, for instance,  chapter 5 in Chorlay (2007).
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is proved to be an element of a given class of functions— or as a dynamic plurality— as 
a correspondence between numerical values; in the latter viewpoint, the behavior of 
a given function can, in turn, be considered general for some numerical values of 
the variable and singular for some other values. This Russian doll structure accounts 
for much of the complexity of the story we tried to tell. On the basis of our analysis 
of the third phase— in which tools from point- set theory first designed to describe 
the singular sets of values of an arbitrary function started to be used to distinguish 
among functions in function sets— we eventually endeavored to define the concept of 
embedded generality, which we think is specific to the mathematical sciences but not 
to mathematical Analysis.
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Universality versus generality:  
an interpretation of the dispute 
over tangents between Descartes 
and Fermat

EVELYNE BARBIN

15.1  Introduction

During the 1630s, geometers introduced several methods of discovery for solving 
problems about curves, such as the method of tangents or the method of indivisibles 
for finding quadratures. These methods of discovery aim to alleviate what, in the eyes of 
the seventeenth- century geometer, is a major shortcoming of the proofs of the Ancients 
about curves, namely that they do not permit one to know how the statements of 
the propositions were obtained. While the Greek geometers demonstrate propositions 
about curves by contradiction, the methods of discovery must determine quadratures 
or tangents in a direct fashion. These methods therefore appear undistorted and are 
considered as processes of discovery. But they pose a question of legitimacy, which we 
summarize as follows: May a result obtained by a method of discovery be considered 
proven? Must one then prove it in the manner of the Ancients? This question is inescap-
able because the methods of discovery pass through new considerations, in particular 
the infinite and movement.1 The diversity of responses given by geometers to this ques-
tion reveals an important historic shift in the meaning granted to mathematical proof.2

The “dispute over tangents” between Descartes and Fermat, which began in 1638, 
should be recast in context if we wish to understand it, not as a dispute between two men, 

1 Barbin (2006).
2 Barbin (1992: 29– 49).
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but as a controversy between two mathematicians.3 Now it is in terms of claiming univer-
sality and generality that the two geometers present and defend their respective methods 
of discovery. Prior to the title “Discourse on the method of rightly guiding reason, and 
seeking truth in the sciences,” Descartes had thought of calling his work “The design 
of a universal science that could elevate our nature to its highest degree of perfection,” 
the three essays bound to “render proof for the proposed universal science.”4 From the 
time of his letter of January 1638, Descartes uses the term “universal rule” to distinguish 
his method from that of Fermat, while Fermat speaks of his “faultless general rule” or 
“singular and general rule” in his tracts. We will examine the methods of discovery of 
tangents of Descartes and Fermat, but also the discourse of the geometers at the time of 
the dispute, in order to seek that which identifies, according to them, the universality and 
generality of a method, and therefore that which distinguishes them.

15.2  Descartes’ method of tangents: an application 
of a universal method

In 1637, Descartes presented an essay following the method of Discourse on the method, 
titled Geometry. The purpose was not to write of the “elements of geometry,” but to 
present a method of constructing “all the problems of geometry.”5 This method is sum-
marized in several lines at the beginning of book I of the essay:

Thus wishing to resolve any problem, one must first consider it as already done, and give 
names to all the lines that appear necessary for its construction, just as much to those that 
are unknown as to the others. Then without considering any difference between known 
and unknown lines, one must traverse the difficulty, according to the order that shows 
most naturally in which manner the lines depend upon each other, until one has found 
a means of expressing a same quantity in two manners, which is called an equation. 6

The method thus consists of five stages. First, one must suppose the problem solved, that 
is, proceed by analysis, then give names to all known and unknown lines and designate 

3 Baillet relates this dispute, which Fermat called “his little war versus M. Descartes” and Descartes “his lit-
tle mathematical suit versus M. de Fermat” (Baillet, 1992: 486– 93). We find traces of this dispute in comments 
of historians. For instance, Boyer wrote:  “In criticising Fermat’s method of tangents, Descartes attempted 
to correct the method by interpreting it in terms of equal roots and coincident points, a procedure which 
was practically equivalent to defining the tangent as the limit of a secant” (Boyer, 1959: 167). While Kline 
wrote: “Though Fermat’s method was general, Descartes thought his own method was better; he criticized 
Fermat’s, which admittedly was not clear as presented then, and tried to interpret it in terms of his own ideas” 
(Kline, 1972: 345– 6). But Whiteside did not mention the dispute: he interpreted the methods of Descartes and 
Fermat in modern terms of limits and pointed “slight differences of treatment required in the two approaches” 
(Whiteside, 1960– 2: 179– 387).

4 Letter to Mersenne of March 1636 (Descartes, 1897, vol. I: 339).
5 Descartes (1987: 333).
6 “Ainsi voulant résoudre quelque problème, on doit d’abord le considérer comme déjà fait, et donner des 

noms à toutes les lignes, qui semblent nécessaires pour le construire, aussi bien à celles qui sont inconnues 
qu’aux autres. Puis sans considérer aucune différence entre ces lignes connues et inconnues, on doit parcourir 
la difficulté, selon l’ordre qui montre le plus naturellement de tous en quelle sorte elles dépendent mutuellement 
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them by letters. After this one should interpret the problem with the aid of equations, 
leading to one or more equations, and finally resolve these. This method appears to be 
universal, in the sense that it enables resolution of all the problems of geometry.

However, putting this to work for problems about curves requires delimitation of a 
field of application. At the beginning of book II on “the nature of curved lines,” Descartes 
names as geometric the curved lines to which his method applies, namely those to which 
one can associate an algebraic equation:

I could give here several other means of drawing and conceiving of curved lines, which 
would compound more and more by degree to infinity. But to understand together all 
those which occur in nature, and to distinguish them by their order into certain types, 
I know nothing better than to say that all the points of these that one can call Geometric, 
that is, that fall under precise and exact measurement, necessarily have some corre-
spondence to all the points on a straight line, which can be expressed by some equation, 
altogether by a single one.7

He does not consider that there is therefore a restriction. On the contrary, he believes he 
is enlarging the universe of curves of the Ancients, which corresponds to the classification 
of geometric problems into plane, solid, and linear, according to whether their solution 
required straight lines and circles, conics, or other lines.

The question therefore is less about a restriction than a notional incorporation, that 
is, the necessity of exhibiting a notion of curve for which the method is universal. It is 
rightly to this universal meaning that Descartes aspires when he writes that the knowledge 
of their equations allows one to find all the properties of curves : “in order to find all the 
properties of curved lines, it suffices to know the relationship that all their points have to 
those of straight lines, and the manner of drawing other lines that cut them at right angles 
in all their points.”8

The method of finding normals, that is, perpendiculars to tangents, is presented in book 
II of The Geometry, by applying the method of book I. One must suppose the problem 
solved and give names to the lines, known and unknown. Given C a point of a curve, 
AG a straight line to which the points of the curve are related, and CP the normal to the 
curve (Fig. 15.1). One sets

MA , CM , PC , and PA ,= = = =y x s v

where s and v are thus the unknowns that must be determined.

les unes des autres, jusqu’à ce qu’on ait trouvé moyen d’exprimer une même quantité en deux façons ce qui 
se nomme une équation” (Descartes, 1987: 335). Original translations of Descartes’ texts by David Pengelley.

7 “Je pourrais mettre ici plusieurs autres moyens pour tracer et concevoir des lignes courbes, qui seraient 
de plus en plus composées par degré à l’infini. Mais pour comprendre ensemble toutes celles qui sont en la 
nature, et les distinguer par ordre en certains genres, je ne sache rien de meilleur que de dire que tous les points 
de celles qu’on peut nommer Géométriques, c’est- à- dire qui tombent sous quelque mesure précise et exacte, 
ont nécessairement quelque rapport à tous les points d’une ligne droite, qui peut être exprimé par quelque 
équation en tous par une même” (Descartes, 1987: 351).

8 Descartes (1987: 369).
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Next one must translate the problem. For this, Descartes writes

s x v vy y2 2 2 22– ,= + +

which is the equation of a circle with center P and radius CP, and supposes, as given the 
equation of the curve,

x ry
r
q

y2 2= − .

This leads to the equation that must be satisfied by the ordinate of a point lying simul-
taneously on the circle and on the curve, by using the second equation to eliminate x 
from the first equation:

y
r
q

y ry vy v s2 2 2 22 0− + − + − = .

This last equation must have a single solution because the circle must be tangent to the 
curve (Fig. 15.2). Descartes therefore identifies the last equation with the equation:

y ey e2 22 0– .+ =

He then obtains the solution

v y
r
q

y r= − +
1
2

.

Applying the method thus demands not only a notional incorporation, but also a proced-
ural incorporation, namely an algebraic identification. This allows algebraic translation of 

C

M P GA

Figure 15.1 Circle tangent to a curve in Descartes’ method.
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the assumption that the curve and the circle meet in one point. From these two incorpora-
tions, Descartes concludes that the method applies to all geometric curves: “I see nothing 
preventing one from extending this problem in the same manner to all curved lines, which 
fall under some Geometric calculation … It is always easy to find [normals]: although 
often one needs some adroitness to render it brief and simple.”9

15.3  Fermat’s method of tangents: an extension of a 
general method

The method of tangents of Fermat is presented in a tract titled Method of seeking the 
maximum and minimum, where the geometer enunciates a rule for finding a maximum 
or minimum:

Let a be any unknown under consideration…. One expresses the maxima or minima 
quantity in terms of a, using terms which may be of arbitrary degrees. One then substitutes 
a + e for the primitive unknown a, and expresses next the maxima or minima quantity in 
terms where a and e appear to arbitrary degrees. One adequates, to speak like Diophantus, 
the two expressions for the maxima or minima quantity, and subtracts the terms common 
to both sides…. One divides all the terms by e, or by a power of e of higher degree, in 
such a way that e disappears completely in at least one of the terms of one member of 
the equation. One then suppresses all the terms where e or one of its powers still appears, 
and one equates the rest.10

E

C

A Q P M G

Figure 15.2 Circle tangent to a curve in Descartes’ method.

9 “Je ne vois rien qui empêche qu’on étende ce problème en même façon à toutes les lignes courbes, qui 
tombent sous quelque calcul Géométrique … Il est toujours aisé de les trouver [les normales]: bien que sou-
vent on ait besoin d’un peu d’adresse, pour les rendre courtes et simples” (Descartes, 1987: 377– 8).

10 “Soit a une inconnue quelconque de la question …. On exprimera la quantité maxima ou minima en a, au 
moyen de termes qui pourront être de degrés quelconques. On substituera ensuite a + e à l’inconnue primitive 
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Fermat takes the example of cutting a segment AC by a point E in such a way that the 
product of the segments AE × EC is maxima. One takes

AC AE   and   AE EC= =b a a a, .  = × −b 2

Then one replaces a by a + e in the latter expression:

ba a be ae e– – – ;2 22+

one “adequates” to the preceding expression:

ba a ba a be ae e– ~ – – – ;2 2 22+

by suppressing the common terms and dividing all the terms by e:

b a e~ ;2 +

by suppressing e, one in conclusion obtains the solution: b = 2a.
Fermat explains in the memoir how “we bring back to the preceding method the 

construction of tangents at given points on arbitrary curves.” He takes first the example 
of “the construction” of the tangent BE at a point B of a parabola with axis CE and 
vertex D (Fig. 15.3).

One considers an arbitrary point O on this tangent, so one has:

CD
DI

>
BC
OI

.
2

2

One supposes CD = d given, CE = a, and CI = e:

d
d e

a
a e ae−

>
+ −

2

2 2 2
,

or further:

da de dae da a e2 2 2 22+ >– – .

a, et on exprimera ainsi la quantité maxima ou minima en termes où entreront a et e à des degrés quelconques. 
On adégalera, pour parler comme Diophante, les deux expressions de la quantité maxima ou minima, et on 
retranchera les termes communs de part et d’autre. […] On divisera tous les termes par e, ou par une puissance 
de e d’un degré plus élevé, de façon que dans l’un au moins des termes de l’un quelconque des membres e dis-
paraisse entièrement. On supprimera ensuite tous les termes où entrera encore e ou l’une de ses puissances et 
l’on égalera les autres” (Fermat, 1891, vol. III: 121). Original translations of Fermat’s texts by David Pengelley.
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Following the method of maxima and minima, one “adequates” the two expressions:

da de dae da a e2 2 2 22+ – ~ – ;

by simplifying and dividing by e:

de a da+ 2 2~ ;

by suppressing e, one obtains the solution: a2 = 2da.
Fermat insists on the generality of the method of maximum and minimum, it is general 

in the sense that it extends without prescribed condition to all types of problems. He 
writes: “this method never deludes us, and can be extended to a number of very beautiful 
questions; thanks to it, we have found the centers of gravity of shapes bounded by straight 
and curved lines, as well as those of solids and numerous other things that we will be able to 
treat elsewhere, if we have the time.”12 In subsequent tracts, he shows the generality of the 
method by extending it to new problems. He writes in a later tract that “the rule is general 
and faultless”: “I could add a number of other examples, as many of the first as of the 
second case of my method, but those here suffice, and prove sufficiently that it is general 
and never at fault. I do not add the demonstration of the rule, nor the numerous other 

C I D E

N

O
B

Figure 15.3 Tangent to a parabola with Fermat’s method.11

12 “Cette méthode ne trompe jamais, et peut s’étendre à nombre de questions très belles ; grâce à elle, nous 
avons trouvé les centres de gravité de figures terminées par des lignes droites et courbes, aussi bien que ceux 
de solides et nombre d’autres choses dont nous pourrons traiter ailleurs, si nous en avons le loisir” (Fermat, 
1891, vol. III: 123).

11 Fermat (1891, vol. III: 122).
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applications that can confirm its great worth, such as centers of gravity and asymptotes.”13 
In another tract, he again describes the generality of his rule: “it will apply, with a most 
superior ease and elegance, to the seeking of tangents, centers of gravity, asymptotes, and 
other similar questions. It is thus with the same confidence as of old, that I affirm still today 
that the search for maximum and minimum returns to this unique and general rule, whose 
happy success will always be legitimate and not due to chance, as some have thought. If 
there remains anyone who considers this method as due to a lucky chance, he may well try 
to encounter an equal.”14 Fermat here makes reference to Descartes’ criticisms.

15.4  Descartes’ critiques of January 1638: the problem 
of foundation

In a letter to Mersenne of January 1638, Descartes shows that the method of tangents of 
Fermat, applied to the ellipse and the hyperbola, leads to false conclusions. He arrives at 
this conclusion by taking literally the assertion that the search for tangents is a problem 
of maximum and minimum, and by keeping the relation that characterizes a point of a 
parabola for a point of the ellipse or of the hyperbola.15 In this way, Descartes wants to put 
forward two large objections to Fermat’s rule. The first is factual: the rule is invalid since 
when applied to the ellipse and the hyperbola one obtains erroneous results. The second 
is constitutive: it does not have the virtues of a method of construction because it is not 
a priori, it does not depend on a general conception of curves and it does not arise from 
a universal method of solution. Descartes expresses himself by exhibiting the algebraic 
foundation of his method, which assures its universality. He uses the French word fonde-
ment (we translate it by “foundation”). He compares the two methods in these terms.

First, his own (that is to say, that which he desired to find) is such that, without skill and 
by chance, one can easily fall into the path that one must take to encounter it, which is 
nothing other than a false position, founded on the method of demonstration that reduces 
to the impossible, and which is the least estimable and the least ingenious of all those 
that one uses in Mathematics. Mine, rather, is drawn from a knowledge of the nature of 
Equations, which has to my knowledge never been sufficiently explained elsewhere than in 
the third book of my Geometry. So that it could not be invented by someone who will have 
ignored the foundations of Algebra; and it follows the most noble means of demonstration 

13 “Je pourrais ajouter nombre d’autres exemples, tant du premier que du second cas de ma méthode, mais 
ceux- ci suffisent, et prouvent assez qu’elle est générale et ne tombe jamais en défaut. Je n’ajoute pas la démon-
stration de la règle, ni les nombreuses autres applications qui pourraient en confirmer la haute valeur, comme 
centres de gravité et des asymptotes” (Fermat, 1891: 130).

14 “Elle s’appliquera, avec une aisance et une élégance bien supérieure, à la recherche des tangentes, des 
centres de gravité, des asymptotes et d’autres questions pareilles. C’est donc avec la même confiance que jadis, 
que j’affirme toujours aujourd’hui que la recherche du maximum est du minimum se ramène à cette règle 
unique et générale, dont l’heureux succès sera toujours légitime et non pas dû au hasard, comme certains l’ont 
pensé. S’il reste encore quelqu’un qui considère cette méthode comme due à un heureux hasard, il peut bien 
essayer d’en rencontrer un pareil” (Fermat, 1891: 135).

15 Descartes (1897, vol. I: 481– 93).
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possible, namely that which one calls a priori. Then beyond this, his claimed rule is not 
universal as he makes it seem, and it cannot reach to any questions that are a little difficult, 
but only to the very easy ones.16

Indeed, Fermat does not claim that his method should be universal, but that it should 
be general, that is to say, that it should be able to reach to numerous problems, with a 
field of extent that is not closed but open. Whereas Descartes lays claim to a universality, 
because he has furnished a foundation of his method, namely the knowledge of algebraic 
equations, at the same time he has enclosed the field of application of his method. In 
his critique, Descartes exhorts Fermat to provide a foundation to his method, when the 
latter is content with a character of generality. For Fermat, defending the character of 
generality of his method consists in finding new applications, always enlarging the field 
of possibilities. Quite the contrary, for Descartes, defending the universal character of his 
method consists in producing the algebraic foundation that specifies its field of applica-
tion, its universe of validity.

This is manifest in the letter from Descartes to Mersenne of August 1638. Mersenne 
has announced that Roberval, who had taken the side of Fermat in the dispute, did not 
know how to find the tangent to the cycloid. Descartes explains to Mersenne that he 
cannot apply his method of tangents to this curve, because it is not geometric: “one 
must also notice that the curves described by wheels are entirely mechanical lines, and 
are amongst those that I have rejected in my Geometry; this is why it is no surprise that 
their tangents cannot be found at all by the rules that I have introduced for them.”17 
He finds these tangents nonetheless by “a very short and very simple demonstration” 
adapted to the generation of the cycloid. Then he continues the letter by solving the 
problem of the jasmine flower, which he had posed and which Roberval did not know 
how to solve either. Descartes systematically applies the method of book I of The 
Geometry.

The problem is to find a point F of the jasmine flower with axis AK such that the 
tangent at F is parallel to AK (Fig. 15.4). One must suppose the problem solved and give 
names to all the lines, known and unknown:

AG  GF    and   2AH  AE= = = =x y n v, , .

16 “Premièrement, la sienne (c’est- à- dire celle qu’il a eu envie de trouver) est telle que, sans industrie et 
par hasard, on peut aisément tomber dans le chemin qu’il faut tenir pour la rencontrer, lequel n’est autre 
chose qu’une fausse position, fondée sur la façon de démontrer qui réduit à l’impossible, et qui est la moins 
estimée et la moins ingénieuse de toutes celles dont on se sert en Mathématique. Au lieu que la mienne est 
tirée d’une connaissance de la nature des Equations, qui n’a jamais été que je sache, assez expliquée ailleurs 
que dans le troisième livre de ma Géométrie. De sorte qu’elle ne saurait être inventée par une personne qui 
aurait ignoré le fonds de l’Algèbre; et elle suit la plus noble façon de démontrer qui puisse être, savoir celle 
qu’on nomme a priori. Puis outre cela, sa règle prétendue n’est pas universelle comme il lui semble, et elle ne 
se peut étendre à aucune des questions qui sont un peu difficiles, mais seulement aux plus aisées” (Descartes, 
1897, vol. I: 490).

17 “Il faut aussi remarquer que les courbes décrites par des roulettes sont des lignes entièrement mécan-
iques, et du nombre de celles que j’ai rejetées de ma Géométrie ; c’est pourquoi ce n’est pas merveille que leurs 
tangentes ne se trouvent point par les règles que j’y ai mises” (Descartes, 1897, vol. II: 313).



422 Universality versus generality

422    423

In order to translate the problem, one much writes the equation of the curve:

x y xyn3 3+ = ,

and that EF is parallel to AK:

x v y– .=

Substituting x –  v for y results in:

2 3 33 2 2 3 2x vx v x v nx nvx– – – .+ =

Finally, this equation is identified with

( ) ( )x ex e x f2 22 2 2 0– – ,+ =

which permits determination of the unknown v.
We see well here how the application of the geometric method of book I to problems 

of tangents to curves is fully subject to a notional incorporation, namely that the curves 
must be associated to algebraic equations, and subordinate to a procedural incorporation, 
namely the algebraic identification that translates the property of tangency. It is interesting 
to remark that it is on the occasion of objections to the method of Fermat that Descartes 
brings forward the question of the foundation of his method. We can summarize the 
universal character of the geometric method in its application to the method of tangents 
with the following diagram (Fig. 15.5):
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Figure 15.4 Tangent to a jasmine flower with Descartes’ method.18

18 Descartes (1897, vol. II: 313).
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15.5  The problem of the specificity of the curve 
in April 1638

We have said that Descartes claimed that the method of Fermat was erroneous, when he 
applied it to the ellipse and to the hyperbola while keeping the relation that characterizes 
a point of a parabola. We shall see that this critique will compel Fermat to state more 
precisely the manner in which a curve is specified in the search for its tangents. On the 
one hand, the method of Descartes relies explicitly on the equation of the curve. Indeed, 
book II of The Geometry opens upon the equational nature of geometric curves and the 
method of tangents specifies fully the place of this equation in the line of argument. On 
the other hand, the method of Fermat does not bring forward the relation that character-
izes the parabola, even if it uses it. It draws support from an inequality that becomes an 
“adequality” from which the rule of the maximum and minimum is practiced.

Roberval, who takes the side of Fermat in the letter “Roberval versus Descartes” of 
April 1638, reproaches his adversary for not knowing that a method applied to a curve 
must take into account what he calls “the specific property” of the curve. But he seems 
to recognize that Fermat has not sufficiently singled out this property. He writes:

To conclude a specific property of any subject whatever, one must, in the propositions 
of which the arguments are composed, employ at least one other specific property of the 
same subject, that is to say, that is drawn from its own nature, and that it [the property] 
fits only with it [the subject] … and M. de Fermat has not ignored this, since in his tract 
he has nothing not conforming to this, and he employs in his reasoning specific properties 
of his subject, which are adroitly mixed with generic and universal properties, serving to 
conclude the other specific properties that he needs.19

Notional

incorporation

Procedural

Algebraic
curve

Cartesian
method

Algebraic
identification

incorporation

Algebraic foundation

Application

Figure 15.5 Descartes’ universal algebraic method.

19 “Pour conclure une propriété spécifique de quelque sujet que ce soit, il faut dans les propositions, 
desquelles les arguments sont composés, employer au moins une autre propriété spécifique du même sujet, 
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This reply shows how the production of methods of construction is constitutive of a 
“construction of the curve,”20 that is to say, of a consideration of curves in general and 
of a specification of each curve in particular, since the methods of construction must be 
applicable to “all curves.” In particular, in his method for finding the tangents of curved 
lines, Roberval considers that curves are described by motions and he determines the 
motions engendering a curve with the aid of a specific property.”

In a letter to Mersenne of April 1638, Desargues explains how he proceeds in a 
universal manner with conics: “according to my universal manner of proceeding.” He 
is sensitive to the Cartesian argument, since he has solved the problem of tangents on 
various conics in a unified manner. So, he declares “M. Descartes is right and Mr. Fermat 
is not wrong.” He writes:

Via my whimsical contemplations of the cone encountered by various planes in all man-
ners, and of the lines and figures generated by this encounter, I have found by a single 
and common enunciation, construction and preparation, or to say better with a single 
and common discourse and with the same words, one declares a means of constructing, 
or properly, one declares the means of making a construction [of another order]…. And 
one sees a similar simultaneous generation of all their tangents.21

Fermat arrives at the question of the “specific property” of a curve in a treatise titled On 
the same method, entirely devoted to the “theory of tangents.” He responds to Descartes’ 
first objection by insisting in each instance on the specific property of the curve for 
which one seeks the tangents: “the curved lines for which we seek the tangents have their 
specific properties, expressible either solely by straight lines, or additionally by curves as 
complicated as one wishes with lines or other curves.”22 This means that the method is 
not limited to geometric curves in the sense of Descartes. Fermat adds: “we have already 
satisfied the first case by our rule, which, too concise, could have appeared difficult, but 
has however been recognized as legitimate.”23 He considers therefore that he has emerged 
the victor of the « dispute » with Descartes. In what follows, he constructs the tangents 
to non- geometric curves, in the sense of Descartes, showing thus the superiority of his 
method. Indeed, he determines the tangent to the cissoid, the conchoid of Nicomedes, 

c’est- à- dire qu’elle soit tirée de sa nature propre, et qu’elle ne convienne qu’à lui … et laquelle M. de Fermat 
n’a pas ignorée, puisque dans son traité il n’y a rien qui ne lui soit conforme, et qu’il emploie dans son 
raisonnement des propriétés spécifiques de son sujet, lesquelles étant dextrement mêlées avec des proprié-
tés génériques et universelles, servent pour conclure les autres propriétés spécifiques desquelles il a besoin” 
(Descartes, 1897, vol. II: 111).

20 Barbin (2006).
21 “Par mes contemplations capricieuses du cône rencontré par divers plans en toutes façons, et des lignes et 

des figures qui s’engendrent en cette rencontre, j’ai trouvé que par une seule et même énonciation, construc-
tion et préparation ou pour dire mieux par un seul et même discours et sous de mêmes paroles, on déclare un 
moyen de construire ou bien on déclare les moyens de faire une construction [d’un autre ordre]…. Et l’on voit 
une pareille génération à même temps de toutes leurs touchantes” (Fermat, 1891, vol. IV: 44).

22 “Les lignes courbes dont nous cherchons les tangentes ont leurs propriétés spécifiques exprimables, soit 
par des lignes droites seulement, soit encore par des courbes compliquées comme on voudra avec des droites 
ou d’autres courbes” (Fermat,1891, vol. III: 140– 41).

23 “Nous avons déjà satisfait au premier cas par notre règle, qui, trop concise, a pu paraître difficile, mais 
cependant a été reconnue légitime” (Fermat, 1891, vol. III: 141).
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the cycloid, and the quadratrix of Dinostratus. When he attacks the cycloid, he remarks 
that “for the second case, which M. Descartes judged difficult, for whom nothing is, one 
satisfies it with a very elegant and rather subtle method.”24

15.6  Fermat’s method of tangents: from generality 
to universality

In the tract On the same method, Fermat modifies the method of tangents in making explicit 
the role of adequality and in responding thus to Descartes’ second objection.

We consider in fact in the plane of an arbitrary curve two lines of given position, of which 
one can call one the diameter, the other the ordinate. We suppose the tangent already 
found at a given point on the curve, and we consider by adequality the specific property 
of the curve, not only on the curve itself, but on the tangent to be found. Upon eliminat-
ing, according to our theory of maxima and minima, the terms required to be, we arrive 
at an equality that determines the meeting point of the tangent with the diameter, and 
consequently the tangent itself.25

Although Fermat does not do it, let us examine what becomes of the search for the tangent 
to the parabola according to this explanation. Firstly, one takes an arbitrary point O on 
the tangent BE and one considers by adequality the specific property of the parabola, for 
the point B on the curve but also for the point O on the tangent (Fig. 15.6):

CD
DI

BC
OI

2

2≈ .

If one supposes given CD = d, CE = a, and CI = e, one obtains:

d
d

a
a ee ae− −

~ ,
2

2 2 2+

or further:

da de dae da a e2 2 2 22+ – ~ – .

24 “Pour le second cas, que jugeait difficile M. Descartes, à qui rien ne l’est, on y satisfait par une méthode 
très élégante et assez subtile” (Fermat, 1891, vol. III: 143).

25 “Nous considérons en fait dans le plan d’une courbe quelconque deux droites données de position, dont 
on peut appeler l’une diamètre, l’autre ordonnée. Nous supposons la tangente déjà trouvée en un point donné 
sur la courbe, et nous considérons par adégalité la propriété spécifique de la courbe, non plus sur la courbe 
même, mais sur la tangente à trouver. En éliminant selon notre théorie des maxima et minima, les termes qui 
doivent l’être, nous arrivons à une égalité qui détermine le point de rencontre de la tangente avec le diamètre, 
par la suite la tangente elle- même” (Fermat, 1891, vol. III: 141).
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27 “On peut de même ramener en général toute recherche de maximum ou de minimum à la construction 
géométrique d’une tangente ; mais cela ne diminue en rien l’importance de la méthode générale, puisque la 
construction des tangentes en dépend, aussi bien que la détermination des maxima et des minima” (Fermat, 
189,1 vol. III: 140).

Secondly, one follows the rule of the maximum and minimum. Simplifying and dividing 
by e, one obtains:

de a da+ 2 2~ .

Then suppressing e: a2 = 2da.
Thus Fermat delimits well the part in common to a solution of a problem of the 

maximum and the minimum and of a problem of tangents, namely adequality. In seek-
ing the tangent, one considers a point of the tangent that is almost a point of the curve. 
Therefore, one may almost write the specific property of the curve at this point. Bringing 
forth the specific property of the curve has thus permitted the specification of both that 
which allows the use of adequality and that which limits its use. The method of tangents 
applies to curves for which a specific property can be given.

We have said that Descartes, in his letter of 1638, takes literally the assertion of Fermat 
that the search for tangents should be a problem of maximum and minimum. In effect, 
this poses the question of the tie between the two problems. Fermat busied himself with 
this in an Appendix to the method of the maximum and minimum, where he returns to his 
method. He shows there how a problem of the maximum and the minimum can be solved 
by means of the construction of a tangent. He writes then: “one can likewise in general 
bring every search for the maximum or minimum back to the geometric construction of 
a tangent; but this does not diminish at all the importance of the general method, because 
the construction of tangents depends on it, as well as the determination of maxima and 
minima.”27 But, it is only when he specifies the role of adequality in the search for the 
tangent that he also specifies more generally to which problems this adequality applies.

B

C

N

I

O

D E

Figure 15.6 Tangent to a parabola with Fermat’s method.26

26 Fermat (1891, vol. III: 140).

 



 15.7 The two methods of Fermat according to Descartes 427

   427

Indeed, Fermat writes at the beginning of his tract On the same method that “the theory 
of tangents is a consequence of the method, published long ago for the construction of the 
maximum and the minimum, which allows the very easy solution of all questions of limits, 
and particularly those famous problems for which the limit conditions were shown to be 
difficult by Pappus.”28 He specifies thus the field of applicability of adequality, namely the 
problems having limit conditions. The method of tangents is no longer an extension of a 
general method, namely the method of the maximum and minimum, but an application 
of a universal method for which the foundation is adequality.

Fermat responds to the question of foundation by passage from the conception of an 
always extensible general method (Fig. 15.7) to the conception of a universal method, use 
of which is limited to curves having a specific property and to limit problems. The passage 
to the universal method requires a notional incorporation and a procedural incorporation 
(Fig. 15.8), which indicate how adequality is applied to problems of tangents. We have 
therefore a diagram similar to that of the Cartesian method.

15.7  The two methods of Fermat 
according to Descartes

Descartes wrote in his letter of January, 1638, without further commentary, that “if one 
changes several words of the rule which he [Fermat] proposes, for finding maximum and 
minimum, one can render it true and good enough.”29 He returns to this affirmation in 
a letter to Hardy, who had taken his side at the time of the dispute: “but for that which 
I have set, since my early writing, that one could render it good by correcting it, and that 
I always maintained the same thing, I am sure that you will not be sorry that I tell you 
here of the foundation, as well as I am persuaded that these gentlemen, who prize it so 

Method of
maximum

& minimum

Problem
of tangents

Extension

Figure 15.7 From method to problem of tangents.

28 “La théorie des tangentes est une suite de la méthode, dès longtemps publiée pour l’invention du maxi-
mum et du minimum, qui permet de résoudre très aisément toutes les questions de limitation, et notamment 
ces fameux problèmes dont les conditions limites sont indiquées comme difficiles par Pappus” (Fermat, 1891, 
vol. III: 140).

29 “Si on change quelques mots de la règle qu’il [Fermat] propose, pour trouver maxima et minima, on la 
peut rendre vraie et est assez bonne” (Descartes, 1897, vol. I: 489).
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much, do not understand it, perhaps not even he who himself is its author.”30 Descartes 
thus intends to give a foundation for Fermat’s rule.

For that, Descartes considers a point E of the diameter of a curve, from which one 
draws a secant to it that cuts the curve in B and D (Fig. 15.9) and he sets

BC  AC  EC  and CF= = = =b c a e, , .

The triangles EBC and EDF are similar, thus:

CE
BC

=
EF
DF

,

from which

DF =
+ba be
a

.

Descartes assumes that the curve is a cubic parabola. Upon writing the relation that 
connects the ordinates BC and DF to segments of the diameter, one has

AC
FA

=
BC
DF

3

3 .

30 “Mais pour ce que j’ai mis, dès mon premier écrit, qu’on la pouvait rendre bonne en la corrigeant, et que 
j’ai toujours soutenu la même chose, je m’assure que vous ne serez pas marri que je vous en dise ici le fonde-
ment, aussi bien je me persuade que ces Messieurs qui l’estiment tant, ne l’entendent pas, ni peut être même 
celui qui en est l’auteur” (Descartes, 1897, vol. II: 170).

Notional

incorporation

Procedural

Specific property
of the curve

Method of
limit-conditions

Procedure of
tangents

incorporation

Foundation : adequality

Application

Figure 15.8 Fermat’s universal method.
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This yields

cb eb
cb a b ca e b ace cb e

a
3 3

3 3 3 2 3 2 3 3

3

3 3+ = + + +
.

He explains that on multiplying the middles and the extremes of this proportion, simplify-
ing by b3, multiplying by a3, and simplifying he obtains:

a e ca e cae ce3 2 2 33 3= + +  .

Then, he divides by e:

a ca cae ce3 2 23 3= + + .

This equation has two unknowns a and e, but these are related by another equation 
bringing in the relation g upon h of BC to DF:

ha ga ge= + .

When substituting, with the help of this latter equation, a or e in the preceding, one obtains 
an equation with a single unknown.

Descartes notes that, up to now, the calculations have followed “the ordinary path of 
analysis.” He remarks then, that to apply all this to the construction of the tangent, “one 
need only consider that, when EB is the tangent, the line DF is none other than one with 
BC, and nevertheless that it must be sought by the same calculation that I have just made.” 

C

B

D

FAE

Figure 15.9 Tangent to a parabola by Descartes in the letter to Hardy.31

31 Descartes (1897, vol. II: 171).
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Consequently, h = g and “one has merely a = a + e, that is to say e equals nothing.”32 
Therefore to find a, it suffices to substitute 0 for e. This is “the elision of homogeneous 
things,” which allows one to conclude that a ca3 23= , or a = 3c. Descartes finishes the 
letter by writing: “There thus is the foundation of the rule, in which there are virtually 
two equations, although one only needs to make express mention of one, because the 
other serves solely to wipe out the homogeneous things.”33

This manner of “making good” Fermat’s rule resembles the solution that Descartes will give 
for the problem of the jasmine flower in his letter to Mersenne of August 1638. It reconciles the 
Cartesian method with Fermat’s explication of adequality in his tract On the same method. In 
the letter to Mersenne of August 1638, Descartes judges this explication as follows: “I do not 
pause at all here to say that the new expedient that he has found was very easy to encounter 
and that he could have deduced it from my Geometry, where I make use of a similar manner 
for avoiding the difficulty that renders his first rule useless in this example.”34 He thinks that 
the method of tangents of Fermat in the first tract is very different of the method of On the 
same method. He reproaches Fermat for wanting to persuade the opposite:

Furthermore, I  am extremely surprised at that which he wishes to try in order to 
convince that the fashion in which he finds this tangent is the same that he proposed 
at the beginning, and that he furnishes as proof of this that he makes use of the same 
diagram for it, as if he had to deal with people who did not know merely to read; because 
one needs only to read the one and the other writing, to understand that they are very 
different.35

It is true that the title of Fermat’s tract is On the same method, and that the diagram and the 
calculations are almost identical. But it is true, that from the point of view of foundation, 
they are different, thus very different to the eyes of Descartes.

15.8  Conclusion: universality versus generality

Descartes’ and Fermat’s methods of constructing tangents can be compared in different 
ways.36 It is from the point of view of the expectations of the method that we oppose 
them here. The method of Descartes aims at a universality, and that of Fermat to a 
generality. The distinction is particularly obvious with Fermat’s passage from a general 
method to a universal method. In the setting of the methods that interest us here, two 

32 “On a seulement a = a + e, c’est- à- dire e égal à rien” (Descartes, 1897, vol. II: 172).
33 “Voilà donc le fondement de la règle, en laquelle il y a virtuellement deux équations, bien qu’il ne 

soit besoin d’y faire mention expresse que d’une, car l’autre sert seulement à faire effacer ces homogènes” 
(Descartes, 1897, vol. II: 173).

34 Descartes (1897, vol. II: 322).
35 “Au reste, je m’étonne extrêmement de ce qu’il veut tacher de persuader que la façon dont il trouve cette 

tangente est la même qu’il avait proposée au commencement, et qu’il apporte pour preuve de cela qu’il s’y 
sert de la même figure, comme s’il avait affaire à des personnes qui ne sachent pas seulement lire ; car il n’est 
besoin que de lire l’un et l’autre écrit, pour connaître qu’ils sont très différents” (Descartes, 1897, vol. II: 323).

36 Brunschvicg (1981: 177– 82).
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features distinguish universality from generality. The first trait is the domain of validity of 
the method. The universal method applies under restrictive conditions while the general 
method does not involve a priori restriction. The second trait is the type of validation of 
the method. The universal method is justified by a foundation while the general method 
is justified by its efficacy.

From this latter point of view, “the kinds of discourse”37 of the two geometers are 
different and correspond to the expectations of the methods. Descartes writes a work of 
distinctive character, addressing himself largely to contemporaries and to descendants 
who will be able to exercise themselves to invent methodically, according to the last words 
of his work, whereas Fermat writes tracts of provisional character, always hoping for new 
extensions of the method. Each tract ends with a new promise. Here, for example, are 
the last phrases of On the same method: “But as a crowning achievement, one can further 
find the asymptotes of a given curve, a research that leads to remarkable properties for 
unlimited curves. We will one day be able to display and demonstrate these at great 
length.”38 The tracts are addressed to other geometers, who will know how to judge the 
value of the challenge, but who will not necessarily know how the method can take it up.

The opposition that we set up between universality and generality can serve to analyze 
other methods, in particular the methods of construction of the seventeenth century. For 
instance, the method of tangents of Roberval is displayed as a universal method with 
a foundation, a principle of construction and a condition of application. On the other 
hand, the New method of Leibniz displayed in 1684 presents itself as a general method, 
and the following tracts will not cease displaying extensions of this method. The passage 
from the general open method to the universal method occurs at the moment of closure 
that the latter imposes. This moment can be that at which a concept (conceptio) of curve 
is laid down, that contains and that confines a delimited universe of curves.39
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Algebraic generality versus 
arithmetic generality in the 1874 
controversy between C. Jordan  
and L. Kronecker

FRÉDÉRIC BRECHENMACHER1

16.1  Introduction2

Throughout 1874, Camille Jordan and Leopold Kronecker quarreled over two theorems, 
namely Jordan’s canonical form and Karl Weierstrass’ elementary divisors. Although these 
theorems would later be considered equivalent from the perspective of modern matrix 
theory, not only had they been stated independently between 1868 and 1870, but they 
had also been devised within the distinct frameworks of separate two theories. Only later 
would some connections come to light. This context explains why the 1874 controversy 
developed over the issue of which of the two approaches was the most fundamental.3 
This controversy would eventually turn into an opposition over the algebraic or arithmetic 
nature of the “theory of forms.” As we shall see in this chapter, this opposition sheds light 
on two conflicting perspectives on “generality.”

1 This work was supported by the French National Research Agency (CaaFÉ, “ANR- 10- JCJC 0101”).
2 The author is grateful to R. Chorlay and K. Chemla for their helpful advice and comments.
3 Jordan stated a result for linear substitutions (i.e., linear applications operating on finite fields in observer’s 

terms), whereas Weierstrass stated a theorem in the framework of the theory of bilinear and quadratic forms. 
Kronecker reworked Weierstrass’ theorem, introducing in it what are today known as invariant factors. See 
Appendix 1 for more details about the mathematics involved in the two theorems.

From the standpoint of linear algebra, the main notions we will consider in this paper, that is, substitutions, 
bilinear forms, and quadratic forms can all be represented by matrices. However depending on the mathemati-
cal object to which the matrix is attached, the related classes of equivalences differ (linear substitutions are 
represented by classes of similar matrices while bilinear forms are related to classes of equivalent matrices and 
quadratic forms to classes of congruent matrices). Connections between these notions were one of the issues 
at stake in the 1874 controversy. At the time, quadratic forms were already considered as particular bilinear 
forms with symmetric coefficients. However, connections between bilinear forms and linear groups were more 
problematic even though both theories used the characteristic equations of the linear systems involved.
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The 1874 debate was based on what a “truly general” approach to the theory of forms 
should be, and thus related to disciplinary ideals. Consequently, on a broader scale, this 
episode raises the issue of the mathematical disciplines that developed in the nineteenth 
century. In a series of essays devoted to the history of matrices, Thomas Hawkins laid 
special emphasis on the “generality” of Weierstrass’ theorem, which he presents as a 
“keystone” in the history of algebra. The main reason for this, Hawkins argues, is that 
“Weierstrass demonstrated more than theorems. He also demonstrated the possibility and 
desirability of a more rigorous approach to algebraic analysis that did not rest content 
with the prevailing tendency to reason vaguely in terms of the ‘general case’.” According 
to Hawkins, the elementary divisors theorem thus served as a paradigm of generality 
with the consequence that “he [Weierstrass], more than anyone, was responsible for the 
emergence of the theory of matrices as a coherent, substantial branch of twentieth- century 
mathematics.”4

In this chapter, we shall take the opportunity of the controversial 1874 debate to 
observe the various forms and meanings taken by “generality” when it is attached to an 
organization of knowledge of the type that was used before the emergence of object- 
oriented disciplines. Our aim is not to give a definition of algebraic generality, nor of 
arithmetic generality, but to pay attention to the ways in which the various actors used 
these categories. Methodologically speaking, we shall examine the two protagonists’ 
perspectives on generality without considering issues like the origins of abstract notions, 
theories, ways of reasoning and, more generally, of structures. In this respect, our approach 
differs from that of most of the historians who have studied the history of linear algebra. 
A retrospective disciplinary identity has indeed often served as a lens for looking into 
the past and for selecting the texts and authors to take into consideration. The prevailing 
disciplinary identity has thereby given a structure to its own history while other identities 
that did not fit with this retrospective glance have remained out of sight. The question 
especially arises with respect to the identities and meanings taken by algebraic procedures 
developed within various fields— such as mechanics, arithmetic, or geometry— and which 
circulated from one context to another before being considered as methods within unified 
algebraic theories— in our case, the post- 1930s theory of matrices.

As a matter of fact, during the nineteenth century, algebraic procedures such as the 
manipulation of the “forms” of linear systems considered in this paper were not usually 
identified as methods or notions within a theoretical framework. Nevertheless they did 
not only exist as technical tools. As will be seen by looking through the prism of the 1874 
controversy, procedures such as those of Jordan’s canonical reduction and Kronecker’s 
invariant computations embodied a number of conflicting epistemic values related to 
generality, such as “simplicity” and “abstraction” vs “effectivity” and “homogeneity” vs 
“formalism” and “genericity.” We shall therefore refer to these procedures as “practices” 

4 Hawkins (1977: 119).
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not only to highlight that they were not only technical tools but to emphasize the fact that 
their individual natures must be considered as a problem.5

One of the aims of this paper is to investigate how the “generality” of such practices 
reflected both the individual and the cultural aspects. While the 1874 controversy was 
triggered by the opposition between two individual practices, it also involved two per-
spectives on generality carried by a specific mathematical culture. This culture had been 
shaped through both a long- term shared history of investigations on a special equation, 
the secular equation, and two diverging lines of developments on forms of treatments of 
general equations.

16.2  A “general” theory object of controversy

The controversy started in the winter of 1873– 4 when two papers were read to the 
Academies of Science in Paris and Berlin.6 The quarrel was originally caused by Jordan’s 
ambition to reorganize the theory of bilinear forms through what he designated the 
“simple” notion of “canonical form.” Jordan’s December 1873 paper was actually the 
first contribution to the theory of bilinear forms to be published outside Berlin. One of 
the issues at stake was therefore the organization of a theory which used to be a local field 
of research limited to a few mathematicians based in Berlin.

In the 1870s, many new applications heralded the major role the theory of bilinear 
forms would play in the following decades. This theory also gave a new “homogeneity” 
and “generality” to the treatment to the numerous problems raised in the context 
of the various theories developed throughout the nineteenth century.7 In the quota-
tion below, Jordan alludes to geometry, with Augustin Louis Cauchy’s results on the 
principal axis of conics and quadrics (first question), to the arithmetic of quadratic 
forms in relation especially to the works of Carl Gauss and Charles Hermite (second 
question), as well as to analytical mechanics and the solution given by Lagrange to 
PY″ + QY = 0 systems of linear differential equations with constant coefficients 
(third question):

It is known that there are an infinite number of ways to reduce any bilinear polynomial,

P A x y n n= = … = …Σ αβ α β α β( ),, , , , , , ,1 2 1 2

5 On the methodological issues raised by questions of identities in the history of mathematics, see Sinaceur 
(1991: 16) and Goldstein (1995: 21).

6 For a complete study of the 1874 controversy, see Brechenmacher (2007a).
7 In modern parlance, bilinear forms for a long time played a role similar to the one matrices would play in 

twentieth- century linear algebra. After the 1870s, the theory of bilinear forms would play a key role on a global 
level thanks to its numerous applications in geometry (Klein, 1868), the theory of quadratic forms (Kronecker, 
1874; Darboux, 1874), and various problems related to systems of differential equations (Jordan, 1871– 2), 
such as Fuchs equations (Hamburger, 1873; Jordan, 1874)  or Pfaff ’s problem (Frobenius and Darboux, 
1875– 80). See Hawkins (1977) and Brechenmacher (2006a).
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to the canonical form x1y1+ … + xmym … using linear transformations applied to the two 
sets of variables x1, …, xn, y1, …, yn…. Among the various questions of this kind that can 
be raised, we consider the following:

1. Reducing a bilinear polynomial P to a simple canonical form using orthogonal substitutions 
applied, some on the x1, …, xn, and others on the y1, …, yn.

2. Reducing P to a simple canonical form using linear substitutions operating simultaneously 
on the x’s and on the y’s.

3. Reducing two polynomials P and Q simultaneously to a canonical form using any linear 
substitutions applied on each of the two sets of variables separately.8

As we shall see in greater detail later, the fact that Weierstrass and Jordan both claimed to 
have given general solutions to problems tackled in the past brought to light the connection 
between Jordan’s two theorems.9 In order to investigate the issues of generality raised by 
the ensuing controversy, it will prove useful to change the scale for both the contexts and 
for the time periods.10

Let first consider the local context in which the theory of bilinear forms developed 
in Berlin in the late 1860s. In 1866, two papers published by Elwin Christoffel and by 
Kronecker lay the foundations of a theory on the characterization of bilinear forms— given 
two forms P A x y= Σ αβ α β and P x y′ = ΣΒαβ α β , find the necessary and sufficient conditions 
under which P can be transformed into P ′ by using linear substitution. The main method 
was to look for invariants computed from coefficient forms which would be unaltered 
by linear transformation. The “general” resolution to the problem of the simultaneous 
transformation of two forms P and Q would shortly become the main issue of the theory 
(i.e., the third problem in the list established by Jordan in the above quotation).

This problem challenged the “generality” of traditional polynomial methods. Pairs of 
forms (P, Q) can indeed be investigated by using a polynomial of forms P + sQ, whose 
determinant P sQ+  is therefore a numerical polynomial in s. This determinant is invariant 
up to the linear transformation of the forms: all equivalent pairs of form (P, Q) have the 
same determinant P sQ+ . The equation P sQ+ = 0, that is, what is known today as the 
characteristic equation, thus plays a key role in the theory of forms. Yet, a pair of forms is 
characterized exactly by its characteristic equation only if this equation has no multiple 
roots. In 1874, the whole theory of bilinear forms, that is, both its internal content and 

8 Jordan (1873: 1487, translation F.B.). “On sait qu’il existe une infinité de manières de ramener un pol-
ynôme bilinéaire P A x y n n= = =Σ αβ α β α β( ), , , , , , ,1 2 1 2   à la forme canonique x1y1 + … + xmym … par 
des transformations linéaires opérées sur les deux systèmes de variables x1, …, xn, y1, …, yn …. Parmi les 
diverses questions de ce genre que l’on peut se proposer, nous considérons les suivantes : 1. Ramener un 
polynôme bilinéaire P à une forme canonique simple par des substitutions orthogonales opérées les unes sur 
x1, …, xn, les autres sur y1, …, yn; 2. Ramener P à une forme canonique simple par des substitutions linéaires 
quelconques, mais opérées simultanément sur les x et les y ; 3. Ramener simultanément à une forme canonique 
deux polynômes P et Q par des substitutions linéaires quelconques, opérées isolément sur chacune des deux 
séries de variables.”

9 For a comment from the standpoint of modern linear algebra, see Appendix 1.
10 See Revel (1996).
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its usefulness in applications, revolved around the polynomial invariants Weierstrass had 
introduced in 1868 to characterize the equivalence between forms when multiple roots 
occurred. On the one hand, this characterization was considered to be general because it 
worked whatever the multiplicity of the roots. On the other hand, this solution resorted 
to a specific method that called on the comparison of the algebraic factorization of the 
equation P sQ+ = 0 and the decomposition of the determinant P sQ+  in sequences of 
minors.11 In a sense, Weierstrass’ elementary divisors gave the theory both its generality 
and its specificity.

Jordan thus struck at the core of the theory when, in 1873, he proposed reorganizing 
the whole theory of bilinear forms by using a method of canonical reduction which, he 
claimed, was “more general” than Weierstrass’ invariant computation. Moreover, Jordan 
argued that “the problem of the simultaneous reduction of two functions P and Q is identi-
cal to the problem of the reduction of a linear substitution to its canonical form,” and to 
the theorem he had stated in his 1870 Traité des substitutions et des équations algébriques:12

… the third [problem has already been dealt with] by M. Weierstrass; but the solutions 
given by the eminent Berlin geometers are incomplete, in so far as they left out some 
exceptional cases which are nevertheless not without interest. Their analysis is moreover 
quite difficult to follow— especially that of Mr Weierstrass. On the contrary, the new 
methods that we propose are extremely simple and hold no exceptions… The simultane-
ous reduction of two functions P and Q is a problem identical to the reduction of a linear 
substitution to its canonical form.13

In a paper he submitted to the Academy of Berlin in January 1874, Kronecker rejected 
the whole theoretical organization Jordan had put to the fore. Recalling that as early as 
1868 Weierstrass and he had organized the theory solely around the characterization 
of pairs of forms, he questioned the relevance of Jordan’s distinction of three canonical 
reduction problems:

In Mr Jordan’s memoir …, the solution to the first problem is not truly new, the solution 
to the second problem is false, and that of the third one is not sufficiently well established. 
We should add that actually the third problem includes the two others as particular cases, 
and that its complete solution stems from Mr Weierstrass’ work of 1868, and can also be 
derived from my additional contribution to this work. Unless I am mistaken, there are 
serious grounds to question M. Jordan’s priority in the invention of his results, should 
they even be correct …14

11 Weierstrass’ solution was actually limited to the non- singular case when |P + sQ| did not vanish identi-
cally, another paper published by Kronecker in 1868 was devoted to the singular case P sQ    + = 0.

12 Jordan (1870).
13 Jordan (1873: 1491, translation F.B.) “… le troisième [problème a déjà été traité] par M. Weierstrass ; 

mais les solutions données par les éminents géomètres de Berlin sont incomplètes, en ce qu’ils ont laissé de 
côté certains cas exceptionnels qui, pourtant, ne manquent pas d’intérêt. Leur analyse est en outre assez dif-
ficile à suivre, surtout celle de M. Weierstrass. Les méthodes nouvelles que nous proposons sont, au contraire, 
extrêmement simples et ne comportent aucune exception… La réduction simultanée de deux fonctions P et Q 
est un problème identique à celui de la réduction d’une substitution linéaire à sa forme canonique.”

14 Kronecker (1874b:  417, translation F.B.) “Dans le Mémoire de M.  Jordan…, la solution du premier 
problème n’est pas véritablement nouvelle ; la solution du deuxième est manquée, et celle du troisième n’est 
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During the winter, Kronecker developed his views on the organization of the theory 
of bilinear forms in monthly papers sent to the Academy of Berlin. Meanwhile, he and 
Jordan engaged in private correspondence with the aim of settling the dispute over priority 
caused by the connections which had been suggested between the canonical form and 
the elementary divisors theorems.15

Although it would lead Jordan to recognize the partial anteriority of Kronecker and 
Weierstrass for some of his results, as well as to grasp some of the tacit knowledge specific 
to the Berliners,16 the correspondence failed to allow them to reach agreement on the 
mathematics. Kronecker failed to bring Jordan round to his own ideas on the structure of 
the theory of bilinear forms and Jordan did not succeed in convincing Kronecker of his 
“natural right” to claim the genuine originality of the distinction he had made between 
three types of canonical forms related to what he designated “groups of substitutions.” 
This distinction, Jordan added, “has more brought to light than disparaged Weierstrass’ 
result in highlighting the resolution it implicitly gave to a fundamental problem in linear 
substitutions theory which, to my opinion, is a much more fertile theory than the algebraic 
theory of forms of the second order.”17

In the spring, the controversy would go public again, and it would reach its climax 
with the publications of a series of notes and papers in the journals of the Academies of 
Paris and Berlin as well as in the Journal de Mathématiques Pures et Appliquées. The quarrel 
over priority would then turn into an opposition over two theories (group theory vs the 
theory of forms) and two disciplines (Algebra vs Arithmetic) as well as over two practices 
(canonical reduction vs invariant computation) relating to conflicting philosophies of 
generality.

16.3  Weierstrass’ theorem as marking a rupture  
in the history of general/ generic reasoning

Kronecker associated Weierstrass’ theorem with an ideal of generality. Kronecker’s criti-
cisms of the “formal” nature he imputed to Jordan’s canonical reduction carried with 

pas suffisamment établie. Ajoutons qu’en réalité ce troisième problème embrasse les deux autres comme cas 
particuliers, et que sa solution complète résulte du travail de M. Weierstrass de 1868 et se déduit aussi de mes 
additions à ce travail. Il y a donc, si je ne me trompe, de sérieux motifs pour contester à M. Jordan l’invention 
première de ses résultats, en tant qu’ils sont corrects… .”

15 Jordan’s correspondence is in the archives of the École Polytechnique. The part related to the correspond-
ence has been edited in Brechenmacher (2006a).

16 Until Jordan received some detailed explanations from Kronecker, he had some difficulties in under-
standing the properties of determinants Weierstrass and Kronecker had implicitly used for computing invari-
ants. Moreover, before the correspondence, Jordan did not understand how some papers published during the 
1860s were connected with one another and with the emerging theory of bilinear forms. For instance, when 
he published his first note in December 1873, Jordan was unaware of the two papers in which Christoffel and 
Kronecker works had founded in 1866 the theory of bilinear forms (Christoffel, 1866; Kronecker, 1866). 
Moreover, he did not realize the relation between Kronecker’s 1868 memoir on “quadratic forms” and 
Weierstrass’ 1868 paper despite the fact that these two papers had been conceived as the “two parts” of a same 
development and had thus been published one after the other in Crelle’s Journal. See Brechenmacher (2012).

17 Jordan to Kronecker, January 1874, translation F.B.
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it the historical perspective that the generality of Weierstrass’ theorem was (seen as) a 
turning point in the history of Algebra.

Taking as a starting point the “mistake” of using an algebraic expression that may 
vanish as a denominator, he had picked out in Jordan’s December paper, Kronecker 
developed his views along the lines of an opposition between the “uniform” and the 
“formal” and the “general” and the “homogeneous.”18 He was especially critical of the 
uniform formal expressions which lose their meaning in some singular cases:

We are indeed used to discovering essentially new difficulties— especially in algebraic 
questions— as soon as we free ourselves from the restriction of such cases one is accus-
tomed to term general. As soon as one forces one’s way through the surface of this so called 
generality— which excludes any particularity- , one penetrates the true generality— which 
encompasses all singularities- , only then, in general, does one find the real difficulties of 
the study, but at the same time one finds the wealth of new viewpoints and phenomena 
which lie in its depths.19

As shall be seen in greater detail when we return to Kronecker’s arithmetical agenda, 
he had a complex attitude toward Weierstrass’ approach. On the one hand, Kronecker 
completely transformed the content of the elementary divisors theorem. But, on the 
other hand, he constantly presented Weierstrass’ original statement as the model of “true 
generality.” According to Kronecker, the elementary divisors theorem contrasted with 
the “inadequate results” of the “so called general” methods that had been developed 
sporadically “for over a century” in the particular (symmetric) case of pairs of quadratic 
forms. Kronecker indeed blamed these methods for the little attention that had been given 
to the difficulties that might be caused by singularities such as multiple roots (or equal 
factors) occurring in the polynomial determinant S P sQ= + .

Kronecker was implicitly referring here to the long tradition of what in the nineteenth 
century was usually referred to as the “equation to the secular inequalities in planetary 
theory”— the secular equation for short— because of its association with the problem of 
the stability of the solar system. As will be described in greater detail later, this equation 
was at the core of a specific algebraic culture that played a key role in the nineteenth 
century. In short, and in observer’s terms, the secular equation corresponds to the char-
acteristic equation of a pair of quadratic forms, that is, to the special case in which the 
forms P and Q are symmetric.

Kronecker’s allusion to the “well- known problem” of the consideration of pairs of 
quadratic forms, “which has been dealt with so often (although sporadically) over the 

18 Jordan promptly corrected this mistake which was of no consequence for the organization of his theory; 
see Brechenmacher (2006a: 689).

19 Kronecker (1874a: 405, translation F.B.). “Denn man ist es gewohnt –  zumal in algebraischen Fragen –  
wesentlich neue Schwierigkeiten anzutreffen, wenne man sich von der Beschränkung auf diejenigen Fälle 
losmachen will, welche man als die allgemeinen zu bezeichnen pflegt. Sobald man von der Oberfläche der 
sogenannten, jede Besonderheit ausschliessenden Allgemeinheit in das Innere der wahren Allgemeinheit ein-
dringt, welche alle Singularitäten mit umfasst, findet man in der Regel erst die eigentlichen Schwierigkeiten 
der Untersuchung, zugleich aber auch die Fülle neuer Gesichtspunkte und Erscheinungen, welche sie in ihren 
Tiefen enthält.”
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last century,” was a typical way of referring to a specific and widely- read group of texts 
by authors such as Joseph- Louis Lagrange, Pierre- Simon Laplace, Augustin Cauchy, 
and Carl Gustav Jacobi. Although these authors dealt with a variety of problems, from 
mechanics to number theory, they all used symmetric systems of linear equations. The 
secular equation played a key role for solving such systems: their “general” solutions 
were indeed expressed by the quotient of two polynomial expressions involving factors 
of the secular equation. As Kronecker highlighted, assigning specific values to the sym-

bols involved in such general algebraic expressions raised difficulties as it may lead to 
0
0

 

expressions in the case of multiple roots.20 He therefore criticized these works from the 
past for their false “generality,” that is, for their focus on the generic case in which S = 0 
had no multiple root.

On the contrary, Kronecker argued, when Weierstrass had dealt with such issues for the 
first time in 1858, he had developed a “truly general” approach in shifting the focus from 
the nature of the roots to the decomposition of the determinant P sQ+  into sequences 
of sub- determinants. In Kronecker’s opinion, the approach Weierstrass had developed 
in 1858 for the particular (quadratic) case of the secular equation heralded the complete 
generality of the 1868 theorem on bilinear forms:

This holds in the few algebraic questions which have been tackled completely and 
in the smallest detail, such as the theory of networks of quadratic forms whose main 
features have been developed above. As long as one did not dare to dispense with 
the hypothesis that the determinant has only distinct factors, one could only reach 
inadequate results in the well- known problem of the simultaneous transformation of 
two quadratic forms— a problem which has been dealt with so often (although only 
sporadically) over the last century— ; under this hypothesis, the true viewpoints on the 
investigation remained completely unacknowledged. Weierstrass’ 1858 work dropped 
this hypothesis; and resulted in a higher insight and to a complete treatment of the case 
when only simple elementary divisors occur. But the general introduction of the notion 
of elementary divisors— of which only the first step was taken— occurred for the first 
time in Weierstrass’ 1868 work, and it shed new light on the theory of networks for the 
case of an arbitrary, yet non- vanishing, determinant. As I dropped this last restriction, 
and from this notion of elementary divisors, developed the more general notion of 
elementary networks, a brighter light was shed on the richness of the newly revealed 
algebraic picture, and at the same time by this complete treatment of the subject, the 

20 These algebraic formulas were rational expressions with the determinant S in their numerator and its 
principal minors in their denominator. As a multiple root of S may be a common root between S and its 

minors, it may then lead potentially to 
0
0

 expressions. In 1858, Weierstrass carefully investigated how the poly-

nomial factorization of the equation S = 0 paralleled the decomposition of the sub- determinants extracted 

from P sQ+ . He discovered that 
0
0

 expressions actually never occurred in the symmetric case of the equation 

to the secular inequalities. The generalization of this approach from pairs of quadratic forms to pairs of bilin-
ear forms led to the statement of the elementary divisors theorem in 1868. See Brechenmacher (2007b) for 
more details.



 16.3 Weierstrass’ theorem as marking a rupture in the history of general/generic reasoning  441

   441

most valuable insights were reached on the theory of the higher invariants, as conceived 
in their true generality.21

Combining mathematical and historical arguments, Kronecker was the first to emphasize 
a history of what Thomas Hawkins would, in the 1970s, refer to as “generic reasoning” in 
algebra. For Hawkins, such a form of reasoning had played a key role since the develop-
ment of symbolical algebra in Viète’s works in the sixteenth century:

The generality of the method of analysis had been viewed as its great virtue since its 
inception. Thus Viète stressed that the new method of analysis “does not employ its logic 
on numbers— which was the tediousness of the ancient analysts— but uses its logic through 
a logistic which in a new way has to do with species.” … Analysis became a method for 
reasoning with, manipulating, expressions involving symbols with “general” values and a 
tendency developed to think almost exclusively in terms of the “general” case with little, 
if any, attention given to potential difficulties or inaccuracies that might be caused by 
assigning certain specific values to the symbols. Such reasoning with “general” expressions 
I shall refer to for the sake of brevity as generic reasoning. 22

The lines of developments Hawkins discussed however were more restricted than 
the entire domain of algebra. They actually coincided with the long history Kronecker 
had alluded to in 1874. For both Kronecker and Hawkins, the tension between the gen-
eric and the general was instrumental to the selection of a genealogy starting with the 
mechanical investigations by Lagrange and Laplace in the eighteenth century, involving 
Cauchy’s 1829 memoir on the classification of conics and quadrics,23 and ending with 
Weierstrass’  theorem. It was by appealing to the turning- point Kronecker associated 
with Weierstrass’ theorem that Hawkins argued that, although “historians writing on this 
subject have tended to emphasize the role [of] Arthur Cayley,” who had developed a 

21 Kronecker (1874a: 405, translation F.B.). “Diess bewährt sich durchweg in den wenigen algebraischen 
Fragen, welche bis in alle ihre Einzelheiten vollständig durchgeführt sind, namentlich aber in der Theorie der 
Schaaren von quadratischen Formen, die oben in ihren Hauptzügen entwickelt worden ist. Denn so lange man 
es nicht wagte, die Voraussetzung fallen zu lassen, dass die Determinante nur ungleiche Factoren enthalten, 
gelangte man bei jener bekannten Frage der gleichzeitigen Transformation von zwei quadratischen Formen, 
welche seit einem Jahrhundert so vielfach, wenn auch meist blos gelegentlich, behandelt worden ist, nur zu 
höchst dürftigen Resultaten, und die wahren Gesichtspunkte der Untersuchung blieben gänzlich unerkannt. 
Mit dem Aufgeben jener Voraussetzung führte die Weierstrass’sche Arbeit vom Jahre 1858 schon zu einer 
höheren Einsicht und namentlich zu einer vollständigen Erledigung des Falles, in welchem nur einfache 
Elementartheiler vorhanden sind. Aber die allgemeine Einführung dieses Begriffes der Elementartheiler, zu 
welcher dort nur ein vorläufiger Schritt gethan war, erfolgte erst in der Weierstrass’schen Abhandlung vom 
Jahre 1868, und es kam damit ganz neues Licht in die Theorie der Schaaren für den Fall beliebiger, doch 
von Null verschiedener Determinanten. Als ich darauf auch diese letzte Beschränkung abstreifte und aus 
jenem Begriffe der Elementartheiler den allgemeineren der elementaren Schaaren entwickelte, verbreitete sich 
die vollste Klarheit über die Fülle der neu auftretenden algebraischen Gebilde, und bei dieser vollständigen 
Behandlung des Gegenstandes wurden zugleich die wertvollsten Einblicke in die Theorie der höheren, in ihrer 
wahren Allgemeinheit aufzufassenden Invarianten gewonnen.”

22 Hawkins (1977: 122).
23 From the viewpoint of modern algebra, Cauchy’s 1829 memoir provided the first “general” proof that the 

eigenvalues of a symmetric matrix are real and that the corresponding quadratic form can be transformed into 
a sum of square terms (i.e., diagonalized) by means of an orthogonal transformation.
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symbolical theory of matrices in 1858,24 “there is much more to the theory of matrices— 
and to its history— than the formal aspect, i.e. the symbolical algebra of matrices. There 
is also a content … the concept of an eigenvalue, the classification of matrices into types 
(symmetric, orthogonal, Hermitian, unitary, etc.), the theorems on the nature of the 
eigenvalues of the various types and, above all, those on the canonical (or normal) forms 
for matrices.”25

Moreover, the long term development of the theory of matrices was characterized as 
a progressive increase of the standards of rigor which eventually resulted in the rejection 
of the legitimacy of generic reasoning. As Hawkins highlighted:26

… neither of them [Lagrange and Laplace] had pursued the study of the solutions of 
systems of linear differential equations with sufficient care to justify their claim [that the 
characteristic roots λ must be real]. They had no difficulty treating such a system when 
the characteristic roots are distinct, but their analysis of the case of multiple roots was 
inadequate. Given the generic tendency of their analytical methods, it is noteworthy that 
they considered the case at all…. Weierstrass’ recognition of the questionable nature of 
their claims formed the starting point of the investigations that culminated in his theory 
of elementary divisors.27

In a word, to both Kronecker and Hawkins, Weierstrass’ theorem marked a turning 
point in the history of algebra. It presented a rigorous development in stark contrast to 
the generic nature of reasoning in the past. It also resulted in a homogeneous solution as 
opposed to the specific arguments which had been developed to deal with the singular 
cases which restricted the range of validity of general algebraic expressions. For instance, 
in a paper he devoted to theta functions in 1866, Kronecker himself was still looking upon 
the occurrence of multiple roots as a “singular” case in which the “general” algebraic 
approach failed and for which it was customary to use arguments specific to the context of 
theta functions. Arguments of the like usually were employed when (falsely) claiming that 
no multiple roots could occur in the context under consideration and that the algebraic 
expressions involved were therefore probably fully general. Later on, Kronecker would 
nevertheless recognize that his reasoning was circular because he had used the result he 
was actually aiming to prove.

In demonstrating the possibility of developing a genuinely general and homogeneous 
approach to the classification of pairs of quadratic and bilinear forms, the invariants intro-
duced by Weierstrass thus provoked a change of approach in Kronecker’s mathematical 
work. This fact calls for a reconsideration of some classic categories in the historiography 
of mathematics. Epistemic values such as “rigor” or “generality” have indeed often played 
the role of structuring categories in the historiography of mathematical theories and 

24 Compare with the formal nature Kronecker attributed to Jordan’s canonical form. We return to this issue 
in Section 16.5. On the various lines of developments in the history of matrices, see Hawkins (1977) and 
Brechenmacher (2010).

25 Hawkins (1977: 1).
26 See also R. Chorlay’s chapter (Chapter 14) in this volume for issues about generality, genericity, arbitrari-

ness, and rigor in the history of mathematical analysis in the nineteenth century.
27 Hawkins (1977: 122– 4).
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disciplines. As has already been alluded to, the tension between generic and general 
reasoning was instrumental to the role Hawkins attributed to Weierstrass, whose work 
marked a major step in the history of the theory of matrices and, more generally, in the 
history of algebra:

I would suggest that, insofar as anyone deserves the title of founder of the theory of 
matrices, it is Weierstrass…. His theory of elementary divisors provided a theoretical core, 
a substantial foundation, upon which to build. His work demonstrated the possibility 
of dealing by the methods of analysis with the non- generic case, thereby opening up a 
whole new world to mathematical investigation, a world that his colleagues and students 
proceeded to explore…. One motivational force common to the entire century was a 
concern for a more rigorous level of reasoning in mathematics…. A concern for higher 
standards of reasoning was a driving force behind Weierstrass’ work and also behind that 
of Cauchy and Dirichlet which preceded it and behind that of Kronecker and Frobenius 
which succeeded it…. The rise of the theory of matrices was directly related to the fall of 
the generic approach to algebraic analysis. A concern for rigor did not mark the end of 
the creative development of the theory but its beginning.28

It was, however, in the very special context of this controversy that Kronecker came to 
highlight the generic nature of most of the algebraic reasoning of the past century.29 The 
question therefore arises as to the potentially different views that were being held by other 
actors, such as Jordan. By investigating how the latter came to develop some connections 
between his research on substitution groups and the theory of forms, we shall bring to light 
his quite different view on the issue of generality. This will therefore lead us to develop an 
approach complementary to that of the work of Thomas Hawkins on the generic nature 
of algebraic reasoning from the eighteenth to the nineteenth century.

16.4  An algebraic practice and some mechanical 
interpretations dating back to the time 
of Lagrange

Jordan’s intervention in the theory of bilinear forms in 1873 was the consequence of a 
note the astronomer Antoine Yvon- Villarceau had submitted three years earlier to the 
geometers at the Academy of Paris. The latter had pointed out a mistake in a classic 
method dating back to Lagrange, which used to be considered as emblematic of the 
general mathematical treatment of numerous mechanical problems.

More precisely, Yvon- Villarceau questioned the method “for integrating the equations 
of a rotating solid body under the action of gravity” which had been “introduced by the 
illustrious author of the Mécanique analytique for the special case of the small oscillations of 

28 Hawkins (1977: 157– 9).
29 On the construction of history by mathematical texts, see Cifoletti (1995), Goldstein (1995), Dhombres 

(1998), and Brechenmacher (2006b).
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a loaded string whose equilibrium is slightly disturbed while one of its ends remains in pos-
ition.” In 1766 Lagrange devised a “general method” for the “general case” involving an 
arbitrary (finite) number of masses— as opposed to the particular case of a string loaded 
with two or three masses that had already been tackled by Jean d’Alembert. Generality here 
meant considering a system of n linear differential equations with constant coefficients.

Villarceau illustrated Lagrange’s method in the case of a system of two differential 
equations as follows (with xi functions of t and ai constant coefficients):30

d x
dt

a x a x
2

1
1 1 2 2= + ,

d x
dt

a x a x
2

2
2 1 1 2= + .

The key point was to associate to the linear system its secular equation, here an 
equation of the second degree which has, in “general” (in the generic sense), two roots 
s and s′. The initial system can then be “reduced” to the two following independent 
equations:31

d y
dt

sy
2

1
1 0+ = ,

d y
dt

s y
2

2
2 0+ ′ = .

The initial problem can thus be solved by considering each of the above equations 
separately. The solutions x1 and x2 are given by linear combinations of expressions such 
as y st1 = +sin( )ε  and y s t2 = ′ + ′sin( )ε . In the “general” case Lagrange had considered, 
that is, for the case of a system of n equations with no symmetric property, a necessary 
condition for reducing the system to n independent equations was that the associated 
characteristic equation of the nth degree had n single roots.

As alluded to before, Villarceau’s 1870 note had the precise aim of criticizing a mech-
anical interpretation dating back to Lagrange for legitimating the algebraic resolution 
of the systems of differential linear equations. The presupposed mechanical stability 
(the oscillation had to remain small) had indeed usually been considered as having the 
consequence that only single roots could occur. Multiple roots were assumed to cause 

30 Note that in Villarceau’s system, the pair (a2, a1) of coefficients in the second row is the mirror image of 
the coefficients (a1, a2) in the first row. In Brechenmacher (2007b), we have shown that the symmetry property 
of mechanical systems originated in the specific practice Lagrange had devised in 1766 for the problems of 
small oscillations.

31 Yvon- Villarceau (1870: 763, translation F.B.).
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unbounded oscillations as the “time t would get out of the sine” and solutions would take 
the form y t st= +sin( )ε . But, Villarceau argued,32

I claim that this condition is not necessary for the oscillations to remain small…. Here is 
a very simple case where equal roots occur in the characteristic equation: a homogeneous 
solid revolving body oscillating around a point of its axis. It is plain to see, without resorting 
to any computation, that the smallness of the oscillations is ascertained, provided that the 
initial oscillatory movement is small enough, and that, at the origin of the movement, the 
solid’s center of gravity is below its center of suspension and not too far from the vertical 
axis passing through this point.33

In 1870, Yvon- Villarceau therefore pointed to some serious “deficiencies” in the “gen-
eral” resolution of problems of small oscillations as in 1874 Kronecker would similarly 
criticize the “so called generality” of algebraic expressions. The astronomer nevertheless 
did not aim to criticize a type of generic reasoning. His purpose was to question a practice 
which consisted in combining a mechanical interpretation with the algebraic nature of 
the roots of a specific equation.

Although Villarceau’s intervention stemmed from mechanical concerns such as the 
application of Lagrange’s method to long- term perturbations of the parameters determin-
ing the planetary orbits, it eventually brought a theoretical question to the attention of the 
Academy’s geometers. Because the occurrence of multiple roots was no contradiction to 
mechanical stability, and hence to the possibility of “reducing” a system of n equations 
to n independent single equations, a question arose concerning the characterization of 
systems which could be reduced to separate equations.

This question prompted the publication by Jordan of two notes in 1871 and 1872. In 
1871 Jordan applied the canonical form he had introduced in 1870 for linear substitu-
tions to the reduction of a “general” system of differential equations with constant 
coefficients:

dx
dt

a x a xn n
1

11 1 1= + + ,

dx
dt

a x a xn n
2

21 1 2= + + ,

 ⋅

32 From the standpoint of modern algebra, the stability of a system depends upon whether its matrix is 
diagonalizable or not. The non- equality of the system’s eigenvalues is a sufficient but not necessary condition. 
The mechanical systems studied by Lagrange are diagonalizable because they are symmetric.

33 Yvon- Villarceau (1870: 763). “Je dis qu’il n’est pas nécessaire que cette condition soit remplie, pour que 
les petites oscillations se maintiennent…. Voici un cas très simple, auquel correspondent des racines égales de 
l’équation caractéristique : c’est celui d’un corps solide, homogène et de révolution, oscillant autour d’un point 
pris sur son axe de figure. Chacun comprendra, sans recourir au calcul, que la petitesse des oscillations est 
assurée dans ce cas, si le centre de gravité est, à l’origine du mouvement, au- dessous du centre de suspension, 
à une petite distance de la verticale passant par ce point, et si le mouvement oscillatoire initial est suffisamment 
faible.”
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dx

dt
a x a xn

n nn n= + ⋅ ⋅ ⋅ +1 1 .

He therefore gave a “form” to which such a system could be reduced, whatever the 
multiplicity of the roots. When only single roots occur, this form is identical to that given 
by Lagrange. But if a multiple root s occurs, the reduction of the system may involve the 
following kinds of expressions:

dy
dt

sy1
1= ,

dz
dt

sz y1
1 1= + ,

du
dt

su z1
1 1= + ,

…

Such a reduced form can then be integrated directly. It yields solutions of the form 
y e tst

1 = ψ( ), where ψ( )t  is a polynomial.34

In proving that the multiplicity of In 1872, Jordan devoted an additional paper to 
address the questions raised by Villarceau more specifically. Here, he proved that lin-
ear systems stemming from mechanical concerns can always be reduced to n separate 

equations 
dy

dt
syi

i=  because of their symmetric nature. In doing so, Jordan inscribed the 

initial mechanical question into the “more general” framework of the theory of quadratic 
forms. Indeed, the coefficients of a symmetrical system define a quadratic form Q and 
the reduction of the system to its canonical form consists in considering simultaneously 
the forms Q and the form identity I, that is, the polynomial form Q + sI.35

roots was of no relevance to the subject of mechanical stability, Jordan reached the same 
conclusion that Weierstrass had already given in 1858 (symmetric case) and in 1868.36 
It was thus thanks to a hundred- year old mechanical problem that a first connection 
between Jordan’s and Weierstrass’ theorems came to light. This connection was pointed 

34 Moreover, Jordan gave a characterization of the systems that can be reduced to a diagonal form by the 
necessary and sufficient condition that each root of the characteristic polynomial of multiplicity had to be a 
root of order μ − 1 of each of the minor of the determinant leading to the characteristic polynomial. From 
the standpoint of Weierstrass’ 1868 theorem, Jordan’s condition is tantamount to stating that all elementary 
divisors are linear.

35 Jordan (1872).
36 Although Weierstrass had already stated such a condition for the symmetric case in 1858, in 1875 he 

devoted a communication at the Berlin academy to the general result stated by Jordan in 1872. He applied his 
theorem about elementary divisors and made no reference to Jordan.
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out in 1873 by Meyer Hamburger who called Jordan’s attention to the Weierstrass’ work 
on bilinear forms.37 In 1873 Jordan showed that Weierstrass’ “transformation of forms” 
could be seen as the “composition of linear substitutions” and eventually proved that 
his canonical reduction could be used to derive Weierstrass’ theorem, and as a result 
prompting the ensuing controversy with Kronecker.

The 1874 controversy can therefore be considered from the perspective of the 
opposition between two different outcomes arising from a shared history. Jordan’s and 
Weierstrass’ theorems shed new light on the past as they made the results of authors such 
as Lagrange and Cauchy appear incomplete because they were limited to the special case 
in which only single roots occurred.

For the purpose of a deeper understanding of the role played by this shared history 
in the quarrel, bibliographic research has been carried out, starting with the authors and 
texts Jordan and Kronecker referred to and by systematically working out the succession 
of the references that appeared. This methodology produced a network of texts covering 
the period 1766– 1874.38 A simplified representation of this collection of texts is shown 
in Fig. 16.1. The main nodes in the entanglement of bibliographic references point to 
the mechanical work of Lagrange as well as to Cauchy’s analytical geometry. However, 
our network can neither be identified with a theory nor to a discipline. What then gives 
coherence to this collection of texts?

One of the main shared characteristics in this network of texts is the role of point of 
origin systematically attributed to Lagrange’s solution for mechanical problems of “small 
oscillations.” As has been already mentioned in relation to Villarceau’s 1870 note, this 
reference pointed especially to the association Lagrange had developed in 1766 between 
the stability of a mechanical system and the algebraic nature of the roots of the associated 
algebraic equation: the roots had to be “real, unequal, and negative” for the oscillations 
to remain small. A few years later, Lagrange transferred his approach to the study of the 
small oscillations of planets, called “secular inequalities.” The nature of the roots of the 
equation that gave the solution thus concerned the crucial issue of the stability of the solar 
system. For this reason, this equation was by then usually called the “equation to the secular 
inequalities in planetary theory,” that is, the secular equation. Yet, the validity of Lagrange’s 
criterion of stability had remained unquestioned until Weierstrass, and later Jordan, proved 
in 1858 and 1872, respectively, that the multiplicity of the roots had nothing to do with 
the stability of the system. Even though the network of texts stemmed from a specific 
problem, this problem was considered to have been solved by Lagrange until this reso-
lution was questioned by Weierstrass and Jordan. This collection of texts cannot therefore 
be considered to be sharing the common goal of finding a solution to a given problem.39

37 Hamburger (1873).
38 On the use of networks of texts for investigating collective organizations of knowledge, see Goldstein 

(1999), Goldstein and Schappacher (2007), and Brechenmacher (2006a, 2007a, 2007b).
39 From the viewpoint of 1930s modern algebra, the different problems appearing in the discussion would 

be considered as depending on the theory of matrices and consisting in the reduction of a pair (A,B) of matri-
ces in (D,I), where A is symmetric, B is definite symmetric, D is diagonal, and I the identity matrix. For more 
details, see Gantmacher (1959: 311).
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When, in the 1770s, Lagrange’s method had been applied to the planetary orbits,40 
the algebraic nature of the roots of the associated equation was linked to the issue of 
the stability of the solar system. In 1787 Laplace41 attempted to give a general proof of 
the stability of the solar system and highlighted that the nature of being real of the roots 
occurring in Lagrange’s approach was related to the property of symmetry of the coef-
ficients of the system. After this episode, it was the special nature of the secular equation 
which would give the network its coherence. Amongst the many authors whose interest 
in celestial mechanics went no further than the identification of this equation, we may cite 
Cauchy’s 1829 “Sur l’équation à l’aide de laquelle on détermine les inégalités séculaires des 
planètes,” James Joseph Sylvester’s 1851 “On the equation to the secular inequalities in 
the planetary theory,” or Hermite’s 1857 “Mémoire sur l’équation à l’aide de laquelle, etc.”42

During the first half of the nineteenth century, the expression ‘‘secular equation’’ came 
to be progressively employed to identify a specific algebraic culture, shared on a European 
level and based on the practice developed by Lagrange for solving problems of small 
oscillations.43 This practice used a polynomial procedure which offered a base supporting 

Figure 16.1 The network of the equations to the secular inequalities on planetary theory.

40 Lagrange (1781: 125).
41 Laplace (1787). See also Laplace (1799).
42 See Cauchy (1829), Sylvester (1851), and Hermite (1857).
43 See Brechenmacher (2007b) and Brechenmacher (2014).
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analogies through which meanings were extended from one domain to another.44 It was, 
for instance, thanks to the secular equation that in 1829 Cauchy developed a formal 
analogy between various problems such as mechanical oscillations, the rotation of a solid 
body and the classification of conics and quadrics.45 Even though the practice attached 
to the secular equation was never explicitly identified as having a method per se, it was 
both developed and spread through the network using various methods belonging to 
different theoretical frameworks. It especially played a key role in several developments 
in algebra and number theory.46

Although related to a special equation, the practice of the secular equation had nev-
ertheless progressively become detached from it and eventually gave rise to a shared 
algebraic culture. Reflecting on the connections between the theories required by the 
secular equation was especially popular for the emerging communities of teachers of 
mathematics which revolved around journals such as the Nouvelles annales de mathéma-
tiques or the Cambridge Mathematical Journal in the 1840s– 1850s. This shared algebraic 
culture nevertheless remained limited to a periodical form until monographs and text-
books were devoted to the theory of bilinear forms in the 1880s. Until the development 
of theoretical frameworks such as those Jordan and Kronecker were quarrelling about in 
1874, it was therefore above all a historical identity that characterized the algebraic nature 
of the practice of the secular equation. It was by referring systematically to a corpus of 
earlier texts in periodical publications that authors pointed to its specific nature.

As we shall see in greater detail in the next paragraph, in the absence of any mono-
graph or theoretical synthesis, referring to the secular equation discussion was a mode 
of legitimating some “extensions to the general” by relying on analogies carried out 
using a common polynomial procedure. It is therefore meaningful to look more closely 
at how such a way of referring to a shared algebraic culture which had at its core 
an issue of generality would later on be torn apart by two disciplines: algebra and 
arithmetic.

16.5  On generality and the algebraic status  
of a polynomial practice

From the earliest texts in our corpus to its two final contributions from Weierstrass and 
Jordan, all the authors were driven by a quest for generality.

44 Supporting analogies through common operatory procedures was a common way to legitimate exten-
sions of meanings in the nineteenth century. See Durand- Richard (1996, 2008).

45 See Cauchy (1829: 173). From the viewpoint of modern algebra, Cauchy was interested in the trans-
formation of a quadratic form in three variables into a sum of squares. This problem also arose in the math-
ematical analysis of the rotational motion of a rigid body as studied by Lagrange in the eighteenth century. 
For a description of Cauchy’s work on the problem of the rotation of a solid body in connection to Lagrange’s 
analytic reformulation of the solution given by Euler, see Hawkins (1975: 18).

46 Such as the algebraic proof Sylvester and Hermite gave to Sturm’s theorem, and which questioned the 
relationships between the functions of analysis, the equations of algebra and the quadratic forms of number 
theory. See Sinaceur (1991).
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It was already with the aim of generalizing d’Alembert’s investigations into the question 
of the vibrating string loaded with three masses to the “oscillations of an unspecified 
system of bodies” that Lagrange had been working in 1766 on the polynomial procedure 
at the origin of the discussion. Because of the generality he attributed to his description 
of a motion that Daniel Bernoulli had regarded as too irregular to be treated by analytic 
methods,47 Lagrange would promote the problem of small oscillations among the first 
examples of applications he gave of the “general principles” in his Mécanique analytique.48

Generality was then the main issue driving the development of a discussion on the 
qualitative nature of characteristic roots. It nevertheless took on changing meanings 
between 1766 and 1874. To Lagrange’s mind, the fact that his method would fail if 
multiple roots should occur did not restrict its generality. The method brought into play 
implicit mechanical representations. It was because the oscillations of one vibrating string 
loaded with n masses could be represented mechanically as a combination of independent 
oscillations of n strings loaded with a single mass, that linear differential systems were 
thought to be representable as combinations of independent equations. In Lagrange’s 
method, algebraic roots could not be dissociated from their mechanical representations 
as periods of oscillations and the occurrence of multiple roots was therefore (wrongly) 
believed to be contradictory to the existence of n independent oscillations.

The issue of Lagrange’s stability criteria— the roots had to be real and distinct because 
the oscillations had to remain bounded— changed when the method was generalized to 
the secular inequalities in planetary theory. The stability of the solar system could not 
be taken for granted and Lagrange therefore pointed out that “it would be difficult, 
perhaps impossible, to determine the roots of the equation in general” as it would mean 
demonstrating the real nature and non- equality of the roots of a very general nth degree 
polynomial while these roots cannot be expressed by radicals in general as soon as n is 
greater than five.49 Lagrange worked out an effective computation for a system of four 
planets. He determined that the roots of the associated fourth degree secular equation 
are real, negative and distinct. Lagrange thus came to the conclusion that:

One may wonder whether, by changing the values [of the masses of the planets], equal 
or imaginary roots may occur. For removing all doubt, it would be necessary to prove, 
in general, that the roots of the equation are always real and distinct, whatever the values 
of the masses. This is easy when the mutual action of only two planets is considered 
simultaneously, since the equation is only of the second degree, but this equation becomes 
more and more complicated and higher [in degree] as the number of planets increases.50

Laplace was not content with this numerical computation and his aim of devising a “fully 
general” demonstration that would not depend upon the approximate values assigned 
to the masses of the planets brought him to engage in the discussion about the secular 
equation.

47 Truesdell (1960: 156).
48 Lagrange (1788).
49 Lagrange (1766: 538).
50 Lagrange (1784: 316), translation T. Hawkins.
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As has already been pointed out, Cauchy’s 1829 intervention was motivated by his 
ambition to generalize a method he had devised for two or three variables in a geo-
metric framework to n variables. The polynomial practice peculiar to the systems of n 
equations related to the secular equation was then translated in terms of determinants.51 
This general perspective raised new issues as some algebraic expressions involved in 

Cauchy’s method may, in the case of multiple roots, take a 0
0

 value. The occurrence of 

multiple roots appeared as a singular case limiting the range of validity of an algebraic 

expression. It thus seemed necessary to introduce some particular methods for this sin-
gular case. Following d’Alembert and Lagrange, Cauchy initially moved outside algebra 
by appealing to the specific argument that consisted in making the roots unequal by 
the use of infinitesimal quantities. But Cauchy was not happy with this situation. He 
criticized polynomial methods for being overburdened with singular cases. With the aim 
of developing a fully homogeneous resolution, he then turned to the calculus of residues 
and to complex analysis.52

The change of perspective on generality induced by this ideal of homogeneity encour-
aged further developments involving Jacobi, Sylvester, Hermite, Borchardt, and eventually 
Weierstrass.53 In 1858, Weierstrass gave a general, homogeneous, and algebraic solution 
to the problem in arguing that:

However, it does not appear that special attention has been given to the strange circum-
stances that arise when the roots of the equations f(s) = 0 are not all different from each 
other; and the difficulties which they present then— of which I was made aware by a 
question to be discussed more fully later— do not seem to have been properly cleared up. 
At first, I also believed that this would not be possible without extensive discussion in view 
of the large number of different cases that can occur. It seemed all the more desirable to 
me to show that the solution to the problem given by the above- named mathematicians 
could be modified in such a way that it does not at all matter whether some of the quantities 
s1, s2, …, sn are equal…. After Lagrange had given the form of the integrals, and shown 

how their arbitrary constants are determined by the initial values of x1, x
dx
dt1

1, , etc., he 

introduced among the conditions that must hold— so that x1, 
dx
dt

1  always remain infinitely 

small if they initially were— , the one (among the conditions) saying that the characteristic 

equation must not have multiple roots, otherwise, inside the integral, there would appear 
a component that could become arbitrarily large over time. The same claim happens to 
be repeated by Laplace, when he dealt with the secular variations of the planets in the 

51 Hawkins (1977: 125).
52 Since its origin in 1826, the calculus of residues had been introduced by Cauchy as a way to deal with 

problems caused by multiple roots in generic algebraic expressions. See Dahan Dalmedico (1992: 197) and 
Brechenmacher (2007b).

53 See Hawkins (1977: 128– 33) for descriptions of the work by Jacobi, Borchardt, and Dirichlet. Sylvester’s 
work of 1850– 2 would lead him to introduce the notions of “matrix” and “minors,” which would be invested by 
Hermite in an arithmetical framework (quadratic forms, decomposition in four squares). See Brechenmacher 
(2006a).
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Mécanique céleste; and, as far as I know, this statement has been repeated again by all the 
other authors treating this subject, if they ever mentioned the case of equal roots (which, 
for instance, Poisson does not). But this is not justified […] and the [same condition] can 
hold without all the roots of the equation f(s) = 0 being different from one another, if only 
the function Ψ remains negative and if its determinant does not vanish; since, in fact, one 
has repeatedly dealt with particular cases of the above equations (in which this condition 
is not satisfied), but without having found any components of the sort described above.54

We have seen that some ambitions of generality had been strongly linked to the develop-
ment of the network of the secular equation since its origin. But we have seen also that 
these ambitions of generality originally related to the algebraic identity of a practice 
attached to a special equation. We should bear in mind that Algebra was not considered at 
the time to be an autonomous research discipline. It was actually because it was considered 
as algebraic that the practice attached to the secular equation was not formalized further 
than something that could be done with a special equation. The same kind of attitude 
can be illustrated with other special types of equations such as the binomial equation, the 
modular equation, etc.55 It was precisely because of this non- formal algebraic identity that 
the practice attached to the secular equation circulated between theories and supported 
analogies and “generalizations.”56

After the 1830s, this equation appeared as an archetype of algebraic generality. Cauchy 
referred to it to contrast to the homogenous methods of complex analysis with the generic-
ity of algebra. This algebraic generality especially appealed to authors such as Jacobi and 
Sylvester. When Sylvester tried to state a purely algebraic proof of Sturm’s theorem, he 
had indeed started by investigating the secular equation.57 In this context, the algebraic 

54 Weierstrass (1858: 234, 243– 4), translation F.B. “Dagegen scheint es nicht, als ob den eigentümlichen 
Umständen, die eintreten, wenn die Wurzeln der Gleichung f(s) = 0 nicht alle von einander verschieden sind, 
besondere Beachtung geschenkt, und die Schwierigkeit, die sich alsdann darbieten, und auf die ich bei einer 
nachher näher zu besprechenden Frage aufmerksam geworden bin, schon gehörig aufgeklärt sein. Auch 
glaubte ich anfangs, es würde dies bei der großen Zahl verschiedener Fälle, die vorkommen können, nicht 
ohne weitläufige Erörterungen möglich sein. Umso erwünschter war es mir, zu finden, dass sich die von 
den genannten Mathematikern gegebene Lösung der Aufgabe in einer Weise modifizieren lässt, bei der ein 
ganz gleichgültig ist, ob unter den Größen s1, s2, …, sn gleiche vorkommen oder nicht…. Nachdem Lagrange 
die Form der Integral angegeben und gezeigt hat, wie die willkürlichen Constanten derselben durch die 

Anfangswerthe von x1, 
dx
dt

1  u.s.w. bestimmt werden, führt er unter den Bedingungen die erfüllt sein müs-

sen, damit x1, 
dx
dt

1  stets unendlich klein bleiben, wenn sie es ursprünglich sind, auch die an, dass die genannte 

Gleichung keine gleiche Wurzeln haben dürfe, weil sonst in den Integralen Glieder vorkommen würden, die 
mit der Zeit beliebig gross werden könnten. Dieselbe Behauptung findet sich bei Laplace wiederholt, da wo er 
in der Mécanique céleste die Säcular- Störungen der Planeten behandelt, und ebenso, so viel mir bekannt ist, bei 
allen übrigen diesen Gegenstand behandelnden Autoren, wenn sie überhaupt den Fall der gleichen Wurzeln 
erwähnen, was z.B. bei Poisson nicht geschieht. Aber sie ist nicht begründet. … wenn nur die Function Ψ 
stets negativ bleibt, und ihre Determinante nicht Null ist, was stattfinden kann, ohne dass die Wurzeln der 
Gleichung f(s) = 0 alle von einander verschieden sind ; wie man denn auch wirklich besondere Fälle der obige 
Gleichungen, bein denen diese Bedingung nicht erfüllt ist, mehrfach behandelt und doch keine Glieder von 
der angegebene Beschaffenheit gefunden hat.”

55 See Goldstein and Schappacher (2007) and Brechenmacher (2011).
56 For more details on the circulation of algebraic practices, see Brechenmacher (2010).
57 Sinaceur (1991).
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practice attached to the secular equation became more and more connected to the theory 
of quadratic forms as it had stemmed from Gauss’ “higher arithmetic.” More precisely, 
it was discussed in relation to the inertia law of quadratic forms. In the context of his 
works on Sturm’s theorem, Hermite introduced a distinction between the traditional 
“arithmetical theory of forms” and the “algebraic theory of forms” related to the secular 
equation. The first concerns single quadratic forms with integer coefficients. These forms 
are characterized by the sum of squares they can be reduced to (the inertia law). The 
second concerns pairs of quadratic forms with real coefficients whose characterization 
can thus be understood as a generalization of the inertia law.

As a matter of fact, Hermite, and later Weierstrass, had turned Lagrange’s initial treat-
ment into a theorem about “transformations” and “forms.” These two terms had thus been 
given explicit mathematical definitions in the “higher arithmetic” of quadratic forms. In 
contrast, the uses of the term “form” in connection with the secular equation pointed to 
mostly implicit meanings. For Lagrange and Laplace, the existence of “integrable forms” for 
the differential systems of small oscillations was inferred from mechanical interpretations. 
It was therefore not by referring to “transformations” that independent equations were 
associated to the initial linear system but by the computation of the systems’ mechanical 
parameters through the secular equation.58 In Cauchy’s 1829 paper, the “transformations 
of homogeneous functions” were related to geometrical meanings which led to reasoning 
in terms of some procedures of changes of rectangular systems of coordinates.

From the different meanings and representations the term “form” had been given in 
relation to the ambitions of generality of Lagrange, Laplace, and Cauchy, a succession of 
mathematical theories were formulated whose subject was a “fully general” characteriza-
tion of “forms.” Should such an issue belong to arithmetic or algebra? In 1874, Jordan 
and Kronecker were referring to a shared history related to a specific practice they had 
in common. We have seen that this practice consisted in investigating pairs of bilinear or 
quadratic forms (P, Q) by making use of the polynomial decomposition of S P sQ= + . 
As we shall see in the following section, some disciplinary ideals on algebra and arithmetic 
nevertheless induced conflicting perspectives on the generality in the theory of “forms.”

16.6  Arithmetic generality vs algebraic generality

In 1874, Kronecker contrasted the true generality of the arithmetical nature of the theory 
of forms with the formal nature he attributed to Jordan’s algebraic group theoretical 
approach. We have to bear in mind that Jordan had designated as canonical forms three 
different algebraic expressions in the context of the operations of three kinds of groups 
of substitutions. For this reason, Kronecker accused him of using a notion without any 

58 Even though it might seem natural nowadays to wonder about these matrices which, because of their mul-
tiple eigenvalues, might not be transformed into some diagonal forms, this question was actually irrelevant to 
the ways the terms “forms” and “transformations” were being considered at the times of Lagrange or Cauchy. 
On the “mathematical interpretation of the essential mechanical concepts” in Lagrange’s analytical mechanic, 
see Panza (1992: 205).
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“general relevance” or “objective content.” According to Kronecker, Jordan had mixed 
up the “formal aspects” of certain “means of action” (canonical forms) with the “true 
subject of investigation” and its “content,” that is, the characterization of equivalence 
classes of bilinear forms.

Although Kronecker used “normal forms” similar to Jordan’s canonical form; in his 
opinion, using such algebraic expressions was legitimate provided that they remained 
bound to their status of “methods.” In Kronecker’s view, methods from algebra had to be 
distinguished from the notions specific to the “other disciplines”— such as arithmetic— it 
was algebra’s duty to serve.59 In his view, the reification of algebraic methods would lead 
to mistaking a mere “formal” development for a “general” and “uniform” presentation. 
Kronecker thus mocked Jordan’s claims for the greater simplicity and generality of his 
canonical reduction as a naïve simplism which contented itself with the illusionary gen-
erality of the uniformity of a formal development.

Should such general expressions be found, their designation as canonical forms would, at 
best, be motivated by their simplicity and generality; but if one does not want to stick to the 
purely formal viewpoint which is often put to the fore in the more recent Algebra— certainly 
not to the greatest advantage of the true knowledge - , one shall not omit to derive the 
justification of the canonical forms put forward from inner reasons. Truly, these so called 
canonical or normal forms are essentially determined only by the orientation of the study, 
but they should not be seen as the aim of the research but only as a means … One should 
not be at all disconcerted if for an exposition both uniform and completely general such 
as is found in the above mentioned work [by Jordan], some new principles turn out to be 
necessary; and on the contrary it would be amazing if in accordance with Jordan’s claims 
(“The new methods we are proposing are, on the contrary, extremely simple …” “A very 
simple discussion shows that one can transform …”), the simplest means were sufficient.60

The purpose of the reorganization Kronecker devised for the theory of bilinear forms 
in 1874 was to give a truly arithmetical foundation to various results that had been 

59 For instance, in order to prove that two non- singular pairs of bilinear forms can be transformed one into 
the other, Weierstrass proved in 1868 that both forms can be linearly transformed into what Kronecker desig-
nated as a “normal form.” His normal forms were similar to Jordan’s canonical form. But Kronecker would not 
state any theorem about such normal forms which were not the purpose of his investigations. On Weierstrass’ 
1868 proof, see Hawkins (1977) and Brechenmacher (2006a).

60 Kronecker (1874a:  405– 8), translation F.B. “Nachträglich, wenn dergleichen allgemeine Ausdrücke 
gefunden sind, dürfte die Bezeichnung derselben als canonische Formen allenfalls durch ihre Allgemeinheit 
und Einfachheit motiviert werden können ; aber wenn man nicht bei den bloss formalen Gesichtspunkten 
stehen bleiben will, welche – gewiss nicht zum Vortheil der wahren Erkenntnis–  in der neueren Algebra viel-
fach in den Vordergrund getreten sind, so darf man nicht unterlassen, die Berechtigung der aufgestellten 
canonischen Formen aus inneren Gründen herzuleiten. In Wahrheit sind überhaupt die so genannten can-
onischen oder Normalformen lediglich durch die Tendenz der Untersuchung bestimmt und daher nur als 
Mittel, nicht aber als Zweck der Forschung anzusehen…. Dass sich aber für eine zugleich einheitliche und 
ganz allgemeine Entwickelung, wie sie in der oben erwähten Arbeit gegeben ist, gewisse neue Principien als 
nöthig erwiesen, kann durchaus nicht befremden, und es wäre im Gegentheil zu verwundern, wenn wirklich 
den Jordan’schen Behauptungen gemäss (“Les méthodes nouvelles que nous proposons sont, au contraire 
extrêmement simples …” “On voit par une discussion très simple, que l’on peut transformer …”) die allere-
infachsten Mittel dazu ausreichen sollten.”
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obtained in the 1860s.61 Kronecker had already implicitly referred to the legacy of the 
works of Gauss and Hermite on the arithmetic of quadratic forms in 1866— as when he 
had preferred to make use of the term “form” to call what others would designate as a 
function (Weierstrass, 1858) or as a “polynomial” (Jordan, 1873). However, in fact, his 
monthly communications to the Academy of Berlin during the winter of 1874 were aimed 
at an explicit generalization of the arithmetic notion of “equivalence classes” from forms 
to networks of forms. “As an application of arithmetic notions to algebra,” two bilinear 
forms or two networks of bilinear forms were designated as “equivalent” and as belonging 
to a same “class” when one could be linearly transformed into another.62

Disciplinary ideals accompanied this arithmetic orientation of the theory. These ideals 
expressed themselves in the criticisms Kronecker made of Jordan’s statement that a suf-
ficient condition for two forms to be equivalent was the identity of their canonical forms. 
According to Kronecker, despite being true, this proposition had to be rejected because 
it did not state any effective procedure for deciding the equivalence. Jordan’s reduction 
indeed relied on an algebraic decomposition of the characteristic determinant for which 
no effective procedure could be given “in general” as soon as the polynomial degree 
exceeds five. It thus had to be distinguished from the “immediate possibility afforded by 
the theoretical criteria of equivalence to set a complete system of invariants” effectively 
computed from the form’s coefficients. Kronecker supported his claims by introducing a 
new system of invariants to replace those introduced by Weierstrass. The elementary divi-
sors indeed appealed to the resolution of general polynomial equations exactly as Jordan’s 
canonical form did. But in 1874, Kronecker assigned the name of “elementary divisors” to 
the new system of invariants he introduced. These new invariants were introduced as the 
result of the arithmetical procedure for computing the greatest common divisors (GCDs) 
of the successive minors extracted from the polynomial determinant |A + sB|.63 Drawing 
on Gauss’ legacy,64 Kronecker then contrasted the effectiveness of such a procedure to 
the formal nature of algebraic formulas such as Jordan’s canonical form:

In the arithmetical theory of forms, one must certainly be satisfied when one is given the 
indication of a procedure for deciding on the question of the equivalence, and the prob-
lem in question is thus also formulated explicitly in this way too (cf. Gauss: Disquitiones 
arithmeticae, Sectio V…). The procedure itself is here also based on the transformation 
to reduced forms: but it must not be forgotten that, in arithmetic theory, these [reduced 
forms] have a completely different meaning from the one they have in Algebra. Indeed, 
given that there, the invariants of the equivalent forms are, by their very nature, only 
number- theoretic functions of the coefficients; it cannot thus be disconcerting that such 

61 According to Kronecker, this arithmetization ambition stemmed from discussions with E. Kummer. On 
Kummer’s ideal numbers, see J. Boniface’s paper in this volume (Chapter 18).

62 Two families of bilinear forms sΦ − Ψ and sΦ′ − Ψ′ are equivalent if one can be transformed into the 

other by (possibly different) non- singular linear transformations of the x and y variables (where Φ= A x xij i j
i j

n

, =
∑

1

   

and Ψ= B x xij i j
i j

n

, =
∑

1

).

63 See Appendix 1 for more details about the invariants Kronecker introduced in 1874.
64 Gauss (1801).
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[invariants] can be directly defined, but not represented explicitly and only as the final 
result of arithmetic operations; for much the same is true with most concepts of arithmetic, 
e.g. already the simplest notion of greatest common divisor.65

The ideal of effectiveness, which the historiography has usually associated with 
Kronecker’s 1882 arithmetic theory of algebraic magnitudes,66 had thus already been 
strongly expressed on the occasion of the 1874 controversy when Kronecker criticized 
“literal expressions” such as Jordan’s canonical forms.

Throughout the 1874 controversy, Jordan retorted to Kronecker’s assaults by claiming 
the greater generality and simplicity of his method. Far from the naïve simplism carica-
tured by Kronecker, Jordan’s ideal of simplicity was linked to a practice of “reduction” 
of “general problems” into chains of sub problems. It supported Jordan’s criticism of 
Kronecker’s characterization of singular pairs of bilinear forms as having failed to find the 
“true reduced forms” which had to be simplest links in the chain of reductions without 
leaving any room for further simplification.67

Jordan’s practice of reduction originated in his research on groups of substitutions in 
the 1860s. His main goal in this research was a general investigation of the special types 
of equations that could be solved by radicals. In order to handle the generality of this 
problem, Jordan developed a “machinery” to reduce the types of groups of substitutions 
attached to the equations, reducing them from the general to the special.68 Among others, 
the linear group— and its properties such as the theorem stating the reduction of linear 
substitutions to their “simplest” or “canonical” forms— , “originated” from the practice 
of reduction Jordan had made use of in his 1860’s investigations.69 Jordan’s canonical 

65 Kronecker (1874c: 383, translation F.B.). “In der arithmetischen Theorie der Formen muss man sich 
freilich mit der Angabe eines Verfahrens zur Entscheidung der Frage der Aequivalenz begnügen und das 
betreffende Problem wird deshalb auch ausdrücklich in dieser Weise formuliert (cf. Gauss: Disquitiones arith-
meticae, Sectio V…) Das Verfahren selbst beruht auch dort auf dem Uebergange zu reducirten Formen: doch 
ist dabei nicht zu übersehen, dass denselben in den arithmetischen Theorien eine ganz andere Bedeutung 
zukommt als in der Algebra. Da nämlich die Invarianten äquivalenter Formen dort ihrer Natur nach nur 
zahlentheoretische Functionen der Coëfficienten sind, so kann es nicht befremden, wenn dieselben zwar dir-
ect definiert aber nicht explicite sondern nur als Endresultate arithmetischer Operationen dargestellt werden 
können ; denn ganz ähnlich verhält es sich mit den meisten arithmetischer Begriffen, z.B. schon mit jenem 
einfachsten Begriffe des grössten gemeinsamen Theilers.”

66 As shall be seen in greater detail later, the arithmetical properties of polynomials played an important 
role in Kronecker’s 1850– 70 work on the solvability of equations. These properties would later be essential 
in Kronecker’s 1882 arithmetic theory of algebraic magnitudes and his concept of a “Rationalsbereich.” This 
theory was indeed based on polynomial forms as an alternative to Dedekind’s fields.

67 Jordan (1874b: 614). See also Jordan (1874a).
68 See Dieudonné (1962) and Brechenmacher (2011). General “solvable groups” were reduced into a 

sequence of particular groups (“transitive,” “primitive,” “linear,” and “symplectic” groups) corresponding to 
the “simplest” links in Jordan’s practice of reduction.

69 In order to characterize which equations are solvable by radicals, Galois had asserted that the degree of 
such equations is of the form pn, p prime, and that the corresponding group G of permutations has to be a solv-
able subgroup of the linear group. In contrast with his predecessors, Jordan made the consideration of general 
n- ary linear substitutions fundamental in his investigations on the determination of all the irreducible equa-
tions of a given degree which were solvable by radicals. It was in this context that Jordan stated his canonical 
form theorem. Moreover, in 1870 this theorem played a key role in Jordan’s method for building up solvable 
groups from their composition series. For a detailed analysis of the role played by canonical forms in Jordan’s 
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forms were therefore part of a broader practice of reduction of general problems to a 
chain of special ones.70 This specific tension between the general and the special can be 
analyzed in the framework of the legacies of both the “generality” of Poinsot’s “theory 
of order”— in the sense of something transcending disciplinary borders— and of Galois’ 
“general” approach to model cases special equations— in the sense of a conceptual 
abstract oriented treatment of equations.71

When Jordan responded to Yvon- Villarceau in 1871, he used his practice of reduction 
for bringing general systems of linear equations down to the sequence of “simplest forms” 
corresponding to the decomposition of the secular equation into its simplest (linear) fac-
tors. Because it required the resolution of a general algebraic equation, Jordan’s canonical 
reduction was nevertheless formal as it did not actually give astronomers any practical 
resolution of the problem.

In the 1870s, it was nevertheless thanks to the practices— such as the canonical 
reduction— he had originally devised for group theory that Jordan succeeded in extend-
ing the range of his investigations to subjects such as differential equations (1871– 8), 
the theory of forms (1872– 5), as well as arithmetic and number theory (1874– 81). 
The application of these techniques was not limited to their technical character and 
Kronecker’s criticisms highlight some of the algebraic ideals— such as simplicity and 
abstraction— attached to them.

16.7  Conclusion

We shall now come to some conclusions that may be drawn from the conflicting perspec-
tives on generality relating to the two practices put forward by Jordan and Kronecker in 
1874. In a nutshell, while Jordan criticized the lack of generality of Kronecker’s invariant 
computations because they did not reduce pairs of forms to their simplest expression, 
Kronecker considered Jordan’s canonical form as a “formal notion” with no “objective 
meaning” which therefore failed to achieve true generality. What made one generality true 
was exactly what made the other generality false.

It was, in the first place, the “general” solution they claimed to have achieved for 
various problems that had been addressed in the past by authors such as Lagrange, 
Laplace, Cauchy, and Hermite that had prompted some connections between Jordan’s 
canonical reduction and Weierstrass’ elementary divisors. The reference to a common 
history therefore played a key role in the controversy. Not only did the secular equation 
play a major role in identifying a specific shared practice that consisted in expressing the 
solutions of linear equations as polynomial factors of their characteristic equation. But 
Kronecker also stressed a history of what T. Hawkins would later refer to as the “generic 

investigations on solvable groups, as well as on the evolution of the role played by linear groups between 1870 
and 1900, see Brechenmacher (2011).

70 Jordan especially used the same practice for the reduction of compound groups to simple groups, that is, 
what is now known as the Jordan– Hölder theorem.

71 Brechenmacher (2011).
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reasoning” in the algebra of the eighteenth and nineteenth centuries when he criticized 
traditional algebraic practices for their tendency to focus on the generic case with little 
attention given to the difficulties that may be caused by assigning specific values to 
algebraic symbols.

Jordan’s canonical forms could nevertheless not be charged with such an indictment of 
“alleged generality.” We have actually seen that both Jordan and Kronecker criticized the 
form of treatment of generality attached to the traditional practice mentioned above. Both 
aimed to ground the “theory of forms” on new forms of generality. The issue of generality 
could thus not be dissociated from that of the organization of knowledge. In contrast to 
a traditional way to legitimate generalizations from one domain of knowledge to another 
by relying on the analogies supported by operative procedures, Jordan and Kronecker 
both aimed to insert what used to be considered as different problems within a single 
“general” problem of “transformations” of pairs of “forms.” But the two mathematicians 
did not only disagree on the nature of this theoretical organization, but also on the types 
of generality and on the treatments of the general they were advocating.

In the algebraic organization Jordan gave to the theory, transformations resulted from 
the action of certain linear groups of substitutions. In order to achieve “general results” 
on forms, underlying substitutions had to be reduced to their “simplest canonical forms” 
depending on the nature of the linear group the substitutions belonged to. For Jordan, 
this procedure of reduction from the general to the special was the very “essence” of his 
“method” and was an important component of the ontological nature he attributed to the 
concept of group as a notion underlying the various branches of the mathematical sci-
ences. The concept of group, in particular, had an intimate relation to the Galois theory of 
algebraic equations, and therefore to the concept of algebraic numbers. In his 1870 Traité 
des substitutions et des équations algébriques, Jordan claimed that his method of reduction 
of groups provided a “higher point of view on the classification and the transformation 
of irrationals.”72 This claim may already have been meant as a challenge to Kronecker 
who had been very much concerned with the concept of irrational numbers since the 
1850s. Yet, Kronecker had developed a specific approach to equations he claimed to be 
faithful to Gauss’ legacy and had little interest for Galois’ conceptual considerations and 
was much more interested in explicit expressions, such as the ones Abel had given to the 
roots of the quintic when proving the impossibility of solving it with radicals.73 It was 
therefore the question of the legitimacy of the general methods and notions for dealing 
with the characterization of the “irrationals” that were defined by special equations which 
was at the core of the dispute between Jordan and Kronecker.

For Kronecker, the algebraic nature of Jordan’s approach prevented it from reaching 
any general theoretical level. As Kronecker insisted, methods from algebra had to be 

72 Jordan (1870:  VIII). For Jordan, the Galois theory did not only concern algebraic numbers, which 
are solutions to algebraic equations, but any kind of irrational numbers, including transcendental ones. See 
Brechenmacher (2011).

73 The statement that the roots of Abelian equations with integer coefficients can be expressed as rational 
functions of the roots of unity of cyclotomic equations, that is, what is nowadays called the Kronecker– Weber 
theorem, was explicitly considered by Kronecker as aiming to separate the domains of algebra and of the 
theory of numbers in the investigation of the “essence” of the quantities associated to algebraic equations.
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distinguished from the general notions specific to arithmetic. Methods such as groups of 
substitutions, he argued, were relative to the approach one would follow in his research 
and had therefore no inherent meaning. Confusing such methods for notions would only 
lead to formal and falsely general developments. Moreover, Kronecker criticized the 
way Jordan had dealt with the general and the special by “reducing” a general problem 
to a chain of simpler ones. For Kronecker, Jordan had applied this approach in his 
reduction of linear substitutions to their canonical forms in a way that amounted to the 
determination of the roots of general algebraic equations. Kronecker thus condemned 
the “false generality” and the “formal” nature of Jordan’s explicit formula of canonical 
reduction because of its non- effectivity. On the contrary, Kronecker appealed directly to 
Gauss’ legacy for his claim that the theory of forms belonged to arithmetic and should 
consequently focus on the characterization of equivalence classes by establishing arith-
metical invariants using effective procedures such as GCD computations. Kronecker 
also presented his work as a natural outgrowth of life long concern for the arithmetical 
basis of algebraic methods. He especially stressed the notion of “domain of rationality” 
which limited the field of legitimate quantities to those that may be expressed effectively 
as rational functions of a given list of quantities. In this framework, expressions such as 
Jordan’s canonical forms could not be expressed in general as opposed to the invariants 
Kronecker had introduced by rational operations based on GCD computations. A few 
years later, in 1882, this ideal of effectivity was at the core of the notion of “rationality” 
that laid the ground to Kronecker’s famous arithmetic theory of algebraic magnitudes. 
For Kronecker, irrational numbers defined by algebraic equations posed “one the most 
interesting problems” in number theory, whose true “arithmetical nature” Kronecker 
strived to reveal.74 He explicitly contrasted his arithmetical approach to the use of the 
algebraic notion of Galois. Kronecker also criticized Galois with a criticism very close to 
the one he had addressed to Jordan in 1874: for Kronecker, while Abel had stayed within 
the boundaries of a given rational domain by considering “concrete” rational functions 
of the roots of a given special equation, Galois had “escaped freely” by “abstracting” 
from the “problem of special equations” the notion of group whose importance” was 
only theoretical.”

The collective dimensions of Jordan’s and Kronecker’s values for generality were quite 
complex. Even though, on the eve of World War I, nationalistic discourses would oppose 
the “French style of thinking”— as exemplified by the theory of order in the legacy of 
Jordan and Galois— to the German algebra,75 it is not possible to analyze the 1874 quarrel 
as a direct echo of the war of 1870 or in the frame of antagonism between France and 
Germany or Paris and Berlin. As a matter of fact, when the controversy reached its climax 
in the spring of 1874, Gaston Darboux published a paper on the “algebraic theory of 
forms” which aimed to put the legacy of Hermite to the fore and whose orientation was 
much closer to Kronecker’s than to Jordan’s.76

74 Kronecker (1874c: 383).
75 Brechenmacher (2011).
76 On Hermite’s theory of forms and on Hermite’s program for characterizing irrational quantities, see 

Goldstein (2007).
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The fact that Jordan’s and Kronecker’s values for generality cannot be inscribed in any 
obvious social, institutional, or national category does not mean that these values were 
purely individual. We have seen that both mathematicians could be situated within what 
used to be a shared algebraic culture at a time when Algebra was not an autonomous 
discipline. This shared history took the form of a network of mainly periodical publica-
tions. For this reason, it put into play a way of addressing generality which was neither 
reflexively identified to a method nor to a theory. What we have called a “practice” took on 
an identity which could not be dissociated from the network of texts in which it circulated. 
But the controversy was not only the consequence of the two different conclusions. Jordan 
and Weierstrass had given to this shared history. It actually opposed two more local lines 
of development on the general theory of the irrationals defined by special equations. We 
shall conclude this paper in highlighting that the 1874 quarrel actually proceeded more 
from the divergence of these two lines of thought than from their meeting. In this sense, 
in parallel to the broad phenomenon of the universalization of new ideals of rigors which 
would pay attention to singularities and would separate homogeneity from genericity, vari-
ous other forms of treatment of the general emerged and circulated on more local scales.

In two influential papers he published between 1878 and 1880, Georg Frobenius 
structured the organization of the theory of forms for the next fifty years. In doing so, he 
proposed a synthesis between the notions put to the fore by Jordan and Kronecker. But 
at the deeper level of the procedures he favored, Frobenius and followed Kronecker in 
aiming to build a rational theory of forms based on the effective computation of invariants. 
In this context, Jordan’s canonical form lost its status of a theorem and appeared as a 
mere consequence of a more “general approach.”77

Despite the influence of Frobenius’ theory, Jordan’s approach kept circulating for 
decades on a model close to the one we have seen in the case of the network of the secular 
equation. While Frobenius’ theory characterized forms by the computation of polynomial 
invariants, the representation Jordan had given to his reduction allowed the steps in the 
transformation of a given form into its simplest expression to be “seen” dynamically.78 
By contrast to the static nature of invariant computations, the representation Jordan 
advocated for reducing general problems to chains of simpler problems induced some 
dynamic ways of thinking about “transformations,” “reductions,” or “decompositions.” 
This representation depicted how a general problem could be reduced into a chain of 
simpler problems. It would later be the basis of the 1930s method of matrix decompos-
ition, such as that shown in Fig. 16.2.

Between 1874 and 1930, the tension between canonical forms and invariants 
would play a major role in the complex history of the practices that eventually gave a 

77 Frobenius (1879: 483), translation T. Hawkins (1977: 153). For almost half a century, Jordan’s canonical 
form was only considered as a theorem in a specific network of texts involving especially American and French 
works on linear groups and Galois fields. See Brechenmacher (2011).

78 This representation especially allows the simultaneous decomposition into subgroups of the indices on 
which a substitution operated and of the substitution itself to be seen. From the viewpoint of linear algebra, 
this corresponds to a decomposition of a vector space under the action of an operator into a sum of stable 
subspaces. See Appendix 1 and Brechenmacher (2006a: 167– 87).
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universal dimension to the operatory procedures attached to the pictorial representation 
of matrices.79

In the 1930s, “Jordan’s canonical form theorem” was considered as a central result 
in most of the Treatises on the “theory of matrices.” But this “general” theorem would 
actually be connected with two kinds of canonical forms:80
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On the one hand, the Jordan canonical matrix A was considered as the “simplest” form 
for the maximal decomposition of a matrix. On the other hand, the “rational canonical 
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Figure 16.2 A representation of matrix decomposition.

79 Brechenmacher (2010).
80 The two matrices given in this example both relate to the minimal polynomial 
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form” B was obtained as the result of effective procedures. The 1930s “general” theorem 
would therefore articulate the two opposing points of view from 1874.81

appendix 1

More about Jordan’s canonical form and Weierstrass’ 
elementary divisors

From the point of view of post 1930s linear algebra, Jordan’s canonical form theorem is 
equivalent to the elementary divisors theorem, that is, Weierstrass theorem as reworked 
by Kronecker. One gives a canonical form to which all similar matrices can be reduced 
by similarity transformations. The other provides a set of polynomials which are invariant 
for similarity transformations and therefore characterize similarity classes.

Similarity of square matrices

Both theorems provide a characterization of classes of similarities of square matri-
ces with coefficients belonging to  (or, more generally, to any algebraically closed 
field): two square matrices A and B are similar if and only if there is an invertible matrix 
U such that

U AU B− =1 .

Similar matrices always have the same characteristic determinants A sI− , which is 
therefore an invariant for classes of similarity. Yet, the reciprocal property (i.e., two 
matrices with the same characteristic determinants are similar matrices) is true only if 
all the roots of the characteristic equation A sI− = 0 are distinct (which imply that the 
matrix A can be reduced to a diagonal matrix). Jordan’s canonical form and Weierstrass’ 
elementary divisor both provide a complete characterization of classes of similarity, 
whatever the multiplicity of roots. Both go beyond the characteristic equation. The 
first gives a canonical form to which all similar matrices can be reduced; the second 
provides a set of invariant polynomials. The example below shows how different types 
of canonical forms and elementary divisors can be associated to the same characteristic 
determinant:82

A sI s s s− = − − −( ) ( ) ( )1 2 3
2 3

.

81 See, for instance, Aitken and Turnbull (1932: 1).
82 See Gantmacher (1959) for more details.
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Jordan’s list of problems on bilinear forms

Similarity is not the only type of equivalence which can be considered for matrices, as 
is illustrated by the three problems of reduction to canonical forms Jordan gave in his 
December 1873 paper of on bilinear forms. From the viewpoint of modern algebra, 
for matrices are now associated to bilinear forms, the canonical form x1y1 + … + xmym 
concerns the equivalence relation on square matrices:

ARB U V GLn⇔ ∃ ∈, ( ) , UAV = B.

Jordan’s first problem concerns the similarity relation of symmetric matrices using 
orthogonal matrices:

ARB U O⇔ ∃ ∈ −( ) 1 , U AV = B.

The second problem relates to the congruence relation for square matrices:

ARB U GLn
t⇔ ∃ ∈ ( ) , UAV = B.

The third problem focuses on the equivalence of pairs of square matrices (A, B):

( ) ( ) ( )P Q R P Q U V GL UPV Pn, , ’ , , .′ ′ ′ ′⇔ ∃ ∈ = ; UQV = Q

In the case of non- singular pairs of matrices, the third problem is equivalent to that of 
the similarity of a single matrix and can therefore be solved by the use of Jordan’s canonical 
form theorem or of Weierstrass’ elementary divisors theorem. Indeed, considering a pair 
of matrices (P, Q) is equivalent to considering P − sQ, that is, a polynomial of matrices in 
a parameter s, or, equivalently, PQ−1 − sI (Q is invertible because it is non- singular), which 
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can be written A − sI with A = PQ−1. The problem of characterizing the equivalence class 
of the pair (P, Q) is eventually the same as that of characterizing the equivalence class of 
the pair (A, I), which boils down to characterizing the similarity classes of the matrix A 
by analyzing the characteristic equation  A sI− = 0.

Kronecker’s invariant factors

In modern parlance, the “invariant factors” Kronecker introduced in 1874 give a method 
for deciding of the equivalence of (non- singular) pairs of matrices on a principal ring 
(such as the ring of integers or of polynomials with integer coefficients) whereas Jordan’s 
canonical form and Weierstrass’ elementary divisors are only valid for algebraic closed 
fields such as the field of complex numbers.

Consider a pair of bilinear forms P − sQ and let S(s) be the characteristic determinant 
|P − sQ|. Let S1(s) be the greatest common divisor of all the first minors of S(s) (which 
are polynomials in s). Similarly, S2(s) is defined as the greatest common divisor of all 
the second minors of S(s) and so on. Then Si(s) divides Si- 1(s) and if Ei(s) denotes the 
polynomial Si- 1(s)/ Si(s) then Ei(s) divides Ei- 1(s). Thus, S(s) differs from the product of 
the Ei(s) by a constant.

Let now consider the situation in an algebraic closed field so that each polynomial 
expression can be split into linear factors. Let s1, s2, …, sk bet the distinct roots of 
S(s), then

E s s si i j
j

n
mij( ) ( ) ,= c −

=
∏

1

where ci is constant and the mij are positive integers or zero. Each factor e s Sij j
mij= −( )  

with mij > 0 is what Weierstrass had called an elementary divisor of S(s). In the case of 
an algebraic closed field, Kronecker’s invariants are therefore equivalent to Weierstrass’ 
elementary divisors.
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Practices of generalization 
in mathematical physics, in biology, 
and in evolutionary strategies

EVELYN FOX KELLER

On first impression, the value of generality seems self- evident, and an appreciation of this 
value is manifest across many if not all scientific cultures. But on closer inspection, the 
meaning of generality turns out not to be at all self- evident; indeed, it varies considerably 
across scientific cultures. Recognition of that variation brings with it a corresponding 
recognition of the variety of values, all going under the name of generality, that are 
appreciated in different scientific practices. In this paper, I explore the different meanings, 
and values, associated with the mathematical and the biological sciences, and I compare 
these meanings with the kinds of generality prized by the practices of biological evolution.

17.1  Introducing spherical cows

I do not know when the term “spherical cow” first appeared, but this much is clear: from 
the start, it was a joke. Or rather, it was the punch line of a joke. The joke is this: a farmer, 
in his desperation over the fall in milk prices and his consequent need to increase milk 
production, turns, as a last resort, to a theoretical physicist. A few weeks later, the physi-
cist phones the farmer, “I’ve got the answer. The solution turned out to be a bit more 
complicated than I thought and I’m presenting it at this afternoon’s theory seminar.” 
At the seminar the farmer finds a handful of people drinking tea and munching on 
cookies— none of whom looks like a farmer. As the talk begins the physicist approaches 
the blackboard and draws a big circle. “First, we assume a spherical cow.”1

1 http:// en.wikipedia.org/ wiki/ Spherical_ cow#_ note- 0
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Importantly, this is a joke told by physicists, ostensibly about themselves, but of 
which, in the end, the farmer turns out to be the butt. What makes it a joke is the 
manifest falsity of the assumption underlying one of the oldest and most basic strate-
gies used by physicists to solve complex problems. Cows are obviously not spherical, 
and the assumption of a spherical cow is therefore a lie; it introduces a model that is 
a fiction, that one will never find instantiated in the real world. For the farmer, such 
a starting point is not only absurd, but patently useless. What finally turns the joke 
against the farmer is the recognition shared among the listeners but not by the farmer 
of the extraordinary usefulness this strategy has had in the history of physics, despite 
its reliance on fiction.

But the same strategy has also seemed absurd to generations of experimental biologists, 
and the spherical cow might also be a joke told about them— rephrased, perhaps, as a joke 
about the spherical cell. Only now it is less funny, and not because of the shift from cow to 
cell.2 Biologists warrant more respect than do farmers; they can be expected to recognize 
the usefulness of the physicist’s strategy in physics. So why should they not appreciate its 
value for their own discipline? The fact is, they have not. Where the spherical cow may be 
a joke to physicists, to biologists, it is an abomination. I have argued elsewhere3 that this 
difference in perceptions reflects a difference in epistemological cultures that, in turn, 
reflects (at least in part) differences between the subjects. Here, I want to focus on what 
these differences can tell us about practices of generalization in mathematical physics, in 
biology, and even in strategies of biological evolution.

17.2  Generality in the physical sciences

To physicists, the spherical cow (or cell) is clearly an idealization, a simplification, an 
abstraction away from the specificities of real cows (or cells). It is a model rather than an 
instance, a representation of the object found in the real world that cannot itself be found 
in that world, created with the hope, or “chief aim,” as A. S. Eddington put it, “to obtain 
‘insight’— to see which of the numerous factors are particularly concerned in any effect 
and how they work together to give it.” Generality, here, is to be found in the dynamical 
process by which particular factors yield particular kinds of effects. Eddington went on 
to explain:

For this purpose a legitimate approximation is not just an unavoidable evil; it is a dis-
cernment that certain factors— certain complications of the problem— do not contribute 
appreciably to the result. We satisfy ourselves that they may be left aside; and the mecha-
nism stands out more clearly freed from these irrelevancies. This discernment is only a 
continuation of a task begun by the physicist before the mathematical premises of the 

2 Rather famously, however, Alan Turing did in fact assume a spherical cow in his mathematical model for 
morphogenesis (1952). And like Rashevsky (discussed below), he too was severely criticized by biologists for 
his neglect of the complexities of biological reality. Not only is no real cow a sphere, but so too, no real biologi-
cal cell is a homogeneous distribution of enzymes (as Turing had also assumed).

3 Fox Keller (2002).
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problem could even be stated; for in any natural problem the actual conditions are of 
extreme complexity and the first step is to select those which have an essential influence 
on the result— in short, to get hold of the right end of the stick.4

In a similar vein, D’Arcy W. Thompson— the man sometimes claimed as the father of 
mathematical biology— referred to this strategy as “the principle of negligence,” and he 
railed against his colleagues in biology for what he described as their

ingrained and deep- seated belief that even when we seem to discern a regular mathematical 
figure in an organism, … [it is] the details in which the figure differs from its mathematical 
prototype [that] are more important and more interesting than the features in which it 
agrees; and even that the peculiar aesthetic pleasure with which we regard a living thing is 
somehow bound up with the departure from mathematical regularity which it manifests 
as a peculiar attribute of life.

“This view,” he claimed, “involve[s]  a misapprehension: … We may be dismayed too 
easily by contingencies which are nothing short of irrelevant compared to the main issue; 
there is a principle of negligibility. Someone has said that if Tycho Brahé’s instruments 
had been ten times as exact there would have been no Kepler, no Newton, and no 
astronomy.”5 But what is it that undergirds Thompson’s principle of negligibility? Or, in 
Eddington’s terms, what implies that the representation of the cow as a sphere is a way 
to “get hold of the right end of the stick”? What guarantees that the spherical structure 
is “the main issue,” and that the details that have been neglected are less relevant? To be 
sure, the convention of starting with a sphere has a powerful pragmatic justification by 
virtue of the mathematical simplicity of the sphere. But what justifies the slide between 
simple and fundamental? What guarantees that the simplest representation captures “the 
main issue,” that the discarded complications have not made an appreciable contribution 
to the effect? For Thompson, and perhaps for Eddington as well, I suggest that the answer 
lies in a residual Platonism grounding reality in ideal forms. Indeed, one might say that, 
to the extent that we group together the “ideal,” the “simple,” and the “abstract,” and 
automatically equate this collective of properties with “fundamental,” we all betray our 
residual Platonism. Also, a more fully blown Platonism could also account for yet another 
way in which the conjunction between ideal, simple, and general works, and that is in the 
notion of model as prototypical or generic— in the sense, that is, of “a generic, idealized 
model of a person, object, or concept from which similar instances are derived, copied, 
patterned, or emulated.”6

4 Eddington (1926: 101– 2).
5 Thompson (1942: 1028– 89). One might think that an insistence on the importance of detail, and the 

deviation from mathematical regularity, would imply a rejection of generality altogether, but in fact, biologists 
often employ a “principle of negligibility” of their own. Here, it is not departure from mathematical regularity 
but departures from what are taken as biological norms that tend to be neglected. The notion of biological 
norm inheres in the use of model organisms to represent particular species of organisms, and even, on occa-
sion, organisms “in general.” In this practice, it is an actual organism rather than idealized representation of 
an organism that serves as a model— a model that, once standardized, replicated, and distributed, provides the 
basis for a practice of generalization in biology of a different kind.

6 http:// en.wikipedia.org/ wiki/ Archetype.

http://en.wikipedia.org/wiki/Archetype
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17.3  Generality in the life sciences

As I’ve already indicated, modern experimental biologists come from very different 
traditions. They have for the most part eschewed the conjunctions taken for granted in 
the physical sciences, and, accordingly, have developed rather explanatory styles, and 
different approaches to generality. To illustrate these differences, particularly as they bear 
on practices of generalization, I want to focus on a critical episode in the history of the 
relations between mathematical and experimental biology in the twentieth century— an 
episode I have presented before, but which I now want to place under closer scrutiny. It 
concerns Nicolas Rashevsky’s attempt in 1934 to present to practicing biologists some 
preliminary results of his efforts, as a theoretical physicist, to understand cell division 
as a consequence of the physical forces that would be acting on an idealized (spherical) 
cell were it a real cell. This effort was part of a much larger project, inspired by D’Arcy 
W. Thompson, to develop the “Physico- Mathematical Foundations of Biology” — that is, 
to “To bring mathematical biology to the same level [as mathematical physics].” The 
particular occasion was the second meeting of the Cold Spring Harbor (CSH) Symposia 
on Quantitative Biology, on the topic, “Aspects of Growth,” and I offer excerpts of the 
recorded text of this encounter as a text we might probe for a better understanding of 
the different understandings of generic, general, and generalization employed in the two 
communities.

Addressing an audience that included Charles Davenport, E. B. Wilson, and Eric 
Ponder, Rashevsky began by asking: “Do we need to assume some special independ-
ent mechanisms, which produce at a certain stage of the cellular life a division, or are 
those mechanisms merely the consequences of more general phenomena, which we 
know occur in all cells?”7 He thought not. Cell division, he argued, can be explained 
as a direct consequence of the forces arising from nothing more than cell metabolism, 
and he illustrated this claim by analyzing the mechanics of a spherical model of a cell 
undergoing metabolic growth. The discomfort among the biologists was palpable. As 
Davenport explained:

I think the biologist might find that whereas the explanation of the division of the 
spherical cell is very satisfactory, yet it doesn’t help as a general solution because a 
spherical cell isn’t the commonest form of cell. The biologist knows all the possible 
conditions of the cell form before division…. In the special cases of egg cells and 
cleavage spheres, this analysis may prove very valuable. But after all, these are only 
special cases.8

In attempting to explain his view of things, Rashevsky not only defends his modeling 
strategy (the spherical cell), but links that defense to a strong claim for the applicability of 
mathematical physics to biology; his counter- response could hardly have been reassuring. 

7 Rashevsky (1934: 188).
8 Discussion following Rashevsky’s paper, Rashevsky (1934: 197– 8).
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It restated the traditional faith of the mathematician, though in a way that would only 
have fueled Davenport’s discontent:

It would mean a misunderstanding of the spirit and methods of mathematical sciences 
should we attempt to investigate more complex cases without a preliminary study of the 
simple ones. The generalization of the theory, to include non- spherical cells, is indeed 
needed, and this will be the subject of research after the simpler cases are thoroughly 
and exhaustively studied…. To my mind it is already quite a progress that a general 
physico- mathematical approach to the fundamental phenomena of cellular growth and 
division … has been shown to be possible. Judging by the development of other math-
ematical sciences, I would say that it will take at least twenty- five years of work by scores 
of mathematicians to bring mathematical biology to a stage of development comparable 
to that of mathematical physics.9

In the final discussion, Eric Ponder, Director of the CSH Laboratories, summed up the 
mood of the biologists as follows:

One point upon which there seems to be pretty general agreement is that there is little 
relation between the amount of which has been done on the mathematics of growth and 
the clarification of the subject which has resulted. As [James] Gray said some six years 
ago: “It is intrinsically improbable that the behavior of a growing system should conform 
to that of a simple chemical system, and the conception of growth as a simple chemical 
process should not be accepted in the absence of rigid and direct proof.” Both Dr. Wilson 
and Dr. Davenport seem to be of the same opinion, and I question if the conclusion 
ought not to be put even more strongly. Work on the mathematics of growth as opposed 
to the statistical description and comparison of growth, seems to me to have developed 
along … unprofitable lines…. [I] t is futile to conjure up in the imagination a system of 
differential equations for the purpose of accounting for facts which are not only very 
complex, but largely unknown…. It is said that if one asks the right question of Nature, 
she will always give you an answer, but if your question is not sufficiently specific, you 
can scarcely expect her to waste her time on you…. [W]hat we require at the present time 
is more measurement and less theory.10

17.4  A failure of communication

Perhaps the first thing to be noted from this exchange is the difference in meanings the 
interlocutors give to the terms generic, general, and generalization, and to the relation 
between them. To Davenport, the spherical cell doesn’t help as a general solution because 
it is a particular kind of cell— furthermore, a kind that is not commonly encountered in 
the world of real cells; it is only a special case. The implicit meaning of general here is that 

9 Rashevsky (1934: 198). Note that Rashevsky uses the word case in this text to refer to kinds of models, 
rather than to kinds of cells. In the world of models, as in the world of mathematics more generally, the sphere 
(or circle) can be regarded as a particular case.

10 Ibid., p. 201.
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of common, usual, widespread, and frequently encountered— corresponding to what the 
OED gives as its definition 1.b.: “Pertaining in common to various persons or things;” by 
this reading, general (i.e., generally applicable) solutions cannot, by definition, be obtained 
from the study of special cases.

For Rashevsky, however, the spherical cell is not an example of a cell but a model of 
a cell (or perhaps, one should say, an example of a model of a cell). As such, it might 
be considered as a special case in the class of models, but it does not refer to a special 
case in the class of cells. In relation to models, a spherical cell, while specific or special 
in the world of biological cells, may in fact be quite general in the sense of being a model 
commonly employed— indeed, it might be said to be generic in the sense that the OED 
provides as its first definition of that term: “Belonging to a genus or class; applied to a 
large group or class of objects; general (opposed to specific or special); … representing a 
class or genus of objects, whether formed (as is usually supposed) by blending images of 
several particular members of that class or by preventing an image from becoming fully 
determinate” (OED, A. adj. a.). The relevant point here is that the value of such a model 
(or image) has nothing to do with whether or not it is found in the real world as such. 
It admits of “a general physico- mathematical approach” in the sense referred to above 
(i.e., an approach that is commonly employed in mathematical physics), and it acquires 
this sense of generality by virtue of being simple enough to be tractable. More important 
however is that the scientific value of such a model is assured by the underlying (and 
unarticulated) assumption of Rashevsky’s tradition that it is precisely in the simplest, 
stripped down, version of the cell that one finds the fundamental mechanism defining 
the cell’s true essence. Of course, the real cells one sees under the microscope will not 
be expected to conform exactly to such an idealized form; indeed, it is by virtue of their 
departure from that ideal that the real cells, rather than the sphere, are what are to be 
regarded as special cases. Yet even in its stripped down form, the theory is expected to 
provide results that are roughly applicable to many special cases— that is, that are general 
(in the sense of the definition of general given by the OED as 8. a., namely, “Comprising, 
dealing with, or directed to the main elements, features, purposes, etc., with neglect of 
unimportant details or exceptions,” or, as Eddington put it, in the sense that the com-
plications of the problem that have been ignored do not contribute appreciably to the 
result). Better fitting applications of the theory to such special cases will however require 
elaboration (or extension) of the theory to include the complications or details that make 
these cases special (what Rashevsky calls its “generalization”).

17.5  Generality, universality, and laws

One often hears it said that the aims of modern (at least physical) science are to discover 
properties of nature that are, at least within a particular domain, of unrestricted general-
ity, and here we encounter yet another meaning of our main term. Such properties are 
products of the so- called “laws of nature”— laws that are, within the domain in which 
they apply, supposed to be exception- free. Whether or not there are in fact any such laws 
of nature is a subject of intense debate in the philosophy of science, but certainly, there 
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has long been a strong commitment in theoretical physics to the importance of such a 
pursuit. Not so, however, in biology. Indeed, the question of whether or not there are “laws 
of biology” in the same sense in which, for example, Newton’s laws are presumed to be 
laws of physics, whether or not there is anything that can be called lawful in biology that 
is specifically biological— that is, left over after all the implications of the laws of physics 
and chemistry have been fully pursued— is also a matter of long- standing discussion 
among philosophers of science.

The majority view among philosophers of biology today is that that biology does not 
have laws of its own, and for reasons that are closely related to biologists’ distrust of the 
habits of idealization in theoretical physics. But to these philosophers, it does not therefore 
follow either that biology is any less of a science, or that biologists do not seek generality. 
They simply reject the view that laws are the sine qua non of a proper science, as well as 
the conviction that such laws provide the meaning of what a “fundamental explanation” is. 
Which gets us to the question of the proper relation between the life and physical sciences.

D’Arcy Thompson’s hope for biology was that it would become a subset of the physical 
sciences, its own questions “reduced” (or reframed) as special cases, or applications, of 
the more general laws of physics and chemistry. As he wrote:

Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it 
is in obedience to the laws of physics that their particles have been moved, molded, and 
conformed… Their problems of form are in the first instance mathematical problems, 
their problems of growth are essentially physical problems, and the morphologist is, ipso 
facto, a student of physical science.11

And indeed, this seems to be the hope of more than a few physical scientists today. But as 
most other scientists have learned, even in physics, there are many ways of being scientific 
besides that of searching for laws.

Biologists, for example, may not be committed to the search for laws in the sense that 
we speak of Newton’s laws, they may not pursue formulations of unrestricted generality, 
but they are deeply committed to the search for formulations that we might describe as 
being of “restricted” generality. Indeed, their science abounds in claims about general 
properties, and even in statements that are often referred to as “laws” (think, e.g., of 
“Mendel’s laws,” the central dogma, or even the “law” of natural selection). But there is 
no domain in which these “laws” are presumed to be exception- free. They are generali-
ties, but not unrestricted generalities. It is evident that generality is valued in biology, but 
exceptions are neither a cause for alarm, nor do they necessarily send researchers back to 
the drawing board in search of better— exception- free— laws. Rather, they are reminders 
of how complex biological reality is. And as the product of evolution by natural selection, 
of how contingent, reminding us once again that biology may fundamentally be a different 
kind of science from that of physics. Living beings are produced not simply by the laws 
of physics and chemistry, but by the cumulative effects of evolution, acting over time. 
Every organism we see today has been shaped and formed by a particular trajectory 

11 Thompson (1942: 16).
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through evolutionary space time; it is the product of eons of tinkering; of building on 
what had accumulated over the course of a particular evolutionary trajectory; of a history 
of transforming chance innovations into future requirements for survival. Because of 
evolution, life is both contingent and particular (in the sense, that is, of depending on the 
dynamics of very particular arrangements of its biochemical and physical constituents). 
Of course, the laws of physics and chemistry are crucial to the functioning of biological 
systems, but if, beyond such laws, so little of logical necessity seems to be left to biology, 
if biological generalizations can never be more than provisional it is because of the histori-
cal contingencies on which the emergence, and future elaboration, of “life itself” have 
depended. Indeed, history is the canonical trump card of biologists in these discussions. 
It not only accounts for the lack of interest of biologists in universal laws, but may also 
provide us with the key to understanding the importance of restricted (as distinct from 
unrestricted) and provisional generality.

17.6  What generality might mean  
in biological evolution

While the experience of biological evolution offers a cautionary warning against the 
expectation of universal laws, it also, and at the same time, offers biologists a model for 
a practice of generalization based on a meaning of generality that is both restricted and 
provisional. The property of generality to which I want to draw attention refers not to 
laws but to procedures: borrowing from Karine Chemla’s discussion of the mathematical 
practices of ancient China,12 I want to suggest that a procedure that can be employed to 
solve a more general class of problems is, from an evolutionary perspective, by definition, 
a superior procedure. In other words, I want to build on the analogical resemblance that 
I first suggested in 200713 between the value placed on generality in the mathematical 
practices of ancient China and its role in the dynamics of biological evolution.

Chemla has shown that while procedures are initially developed to solve a particular 
problem (albeit, one arising in several situations), the overriding aim in the development 
of new procedures to solve the same problem was to extend the range of situations or 
problems to which the new procedure could be applied. This search for ever greater gen-
erality was carried out iteratively, in a manner somewhat suggestive of modern computer 
programs: sub- procedures that had been demonstrated to be successful with respect to 
one class of problems were absorbed into more general procedures that could then be 
shown to be applicable with respect to a larger class of problems.

Much the same can be said for evolution. To the extent that one might describe the 
task of evolution as that of solving problems— in the sense, that is, of forging mechanisms 
that enable individual organisms to cope with an ever- larger range of challenges, its aim 
is similarly one of increasing generality, and the procedure correspondingly iterative. 

12 See, for example, Chemla (2003, 2005).
13 Fox Keller (2007).
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Mechanisms that succeed in coping with those situations encountered by an organism 
are selected for, and once established their components are used over and over again, 
differently combined, and often modified, with the net effect that, over time, the range 
of situations that can be effectively coped with is vastly extended. Here too is a process 
reaching toward every greater generality.14

However, a moment’s pause is warranted. I have argued for the critical importance 
of both generality and contingency in biological evolution, but these two terms are often 
invoked as opposing concepts. Is there in fact a conflict between the two? My answer 
to this question is no— or, more specifically, not if the term is understood in the sense 
in which I am using it here, that is, as restricted generality. For it is not generality itself 
that suggests a problem, but rather, the way in which it is commonly interpreted. More 
specifically, the problem lies in the dual implication, first, of universality (or unrestricted 
generality), and second, of necessity.15

In fact, the opposite of contingency is not generality at all; in the first instance, it is 
necessity that is contingency’s antonym. Thus, the contradiction that is so frequently 
perceived (or invoked) between general and contingent depends on establishing two 
accessory relations (or conjunctions) with one’s starting concept of general: In the first 
such conjunction, general is associated with natural law (i.e., as prevailing everywhere 
in nature), and in the second, lawful is associated with necessary (as, e.g., when we 
speak of the necessity with which natural laws must be obeyed). I claim that it is only 
with this dual set of conjunctions that the appearance of contradiction arises. Both the 
universality and the necessity of laws of nature are now hotly contested in the philosophy 
of science (especially in the philosophy of physics16), but they have behind them a long 
and influential history that makes them exceedingly hard to shake. Even so, if we can 
keep the distinction between restricted and unrestricted generality clearly in mind, we 
can readily recognize a longstanding proclivity in the philosophy of science for reading 
generality, first, as unrestricted generality, and second, as implying natural necessity (i.e., 
on reading laws of nature as binding). By contrast, the far less demanding notion of 
restricted generality entails no such contradiction with contingency for the simple reason 
that it does not lend itself to either of the precursor conjunctions with legal, physical, or 
logical necessity.

17.7  The spherical cow redux

Let us return to the spherical cow, and more specifically, to Rashevsky’s dispute with 
the cell biologists at Cold Spring Harbor. Four years later, in the preface to the first 

14 One might say that the value at work in evolution is ontological rather than epistemological, as it is in the 
mathematical practices of ancient China, but this is a human distinction, and it is entirely unclear what it might 
mean from an evolutionary perspective.

15 The distinction between universality and necessity was especially important to Popper who argued that 
only laws characterized by “natural or physical” necessity qualified as true laws of nature (see, e.g., Popper, 
1968a, 1968b).

16 See, for example, Cartwright (1980, 1983) and Lange (2000).

 



   477

 17.7 The spherical cow redux 477

edition of his book, Mathematical Biophysics, Rashevsky (clearly having this encounter 
in mind) wrote:

Objection has been raised against the use of the word “cell” to describe a highly oversim-
plified conceptual system, which, true enough, possesses some properties of a living cell 
but lacks a much larger number of other properties. To this our answer is as follows: In 
the early days of the kinetic theory of gases the whole theory was built on the concept of 
a molecule as an elastic billiard ball. The present development shows us a molecule as a 
system of tremendous complexity, having scarcely any analogy to an elastic rigid ball. Of 
course, even in the older days, the creators of the kinetic theory were perfectly well aware 
that the concept of a molecule as an elastic ball was far from the actual truth. Yet they 
used it up to a point with great success.17

Once again, Rashevsky links his defense of the choice to start with a highly idealized and 
over- simplified model with his conviction of the ubiquitous applicability of the methods 
of theoretical physics. Furthermore, he assumes that the reason for the success of the 
billiard ball model— a spherical cow par excellence— is that it captures the features of 
gas molecules that are of greatest importance, and perhaps he is right. But what does this 
assumption have to do with the search for generality, either of the restricted or unrestricted 
sort, and why does it seem not to apply in biology?

In a meditation on these questions, delivered at the Thousandth meeting of the 
Connecticut Academy of Arts and Sciences, Max Delbrück thought that, here too, the 
answers (especially to why there might be limits to the applicability of physics) should 
be sought in the facts of evolution. The physicist learning about the problems of biology, 
he wrote, may be “puzzled by the circumstance there are no ‘absolute phenomena’ in 
biology.” The problem, as he went on to explain, is that:

The animal or plant or micro- organism he is working with is but a link in an evolutionary 
chain of changing forms, none of which has any permanent validity…. The organism … 
is not a particular expression of an ideal organism, but one thread in the infinite web of 
all living forms. The physicist has been reared in a different atmosphere. The materials 
and the phenomena he works with are the same here and now as they were at all times 
and as they are on the most distant stars.18

Delbrück also thought that the dependence of living forms on evolution similarly accounts 
for biologists’ disinterest in both abstraction and idealization. He wrote:

On the whole, the successful theories of biology always have been and are still today 
simple and concrete. Presumably, this is not accidental, but is bound up with the fact that 
every biological phenomenon is essentially an historical one, one unique situation in the 
infinite total complex of life.

Such a situation from the outset diminishes the hope of understanding any one living 
thing by itself and the hope of discovering universal laws, the pride and ambition of 

17 Rashevsky (1938: ix– x).
18 Delbrück (1949: 174).
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physicists. The curiosity remains, though, to grasp more clearly how the same matter, 
which in physics and in chemistry displays orderly and reproducible and relatively simple 
properties, arranges itself in the most astounding fashions as soon as it is drawn into the 
orbit of the living organism. The closer one looks at these performances of matter in living 
organisms the more impressive the show becomes. The meanest living cell becomes a 
magic puzzle box full of elaborate and changing molecules, and far outstrips all chemical 
laboratories of man in the skill of organic synthesis performed with ease, expedition, and 
good judgment of balance. The complex accomplishment of any one living cell is part and 
parcel of the first- mentioned feature, that any one cell represents more an historical than 
a physical event. These complex things do not arise every day by spontaneous generation 
from the nonliving matter— if they did, they would really be reproducible and timeless 
phenomena, comparable to the crystallization of a solution, and would belong to the 
subject matter of physics proper. No, any living cell carries with it the experiences of a 
billion years of experimentation by its ancestors. You cannot expect to explain so wise an 
old bird in a few simple words.19

In the 60 years since Delbrück wrote these words, biological research has more than 
vindicated his vision of the living cell as “a magic puzzle box,” powered by a variety of 
elaborate and intricate molecular processes that continue to resist the search for universal 
laws, and, at the same time, to validate and indeed exacerbate distrust of the spherical cell 
as a conceptual starting point. Such a starting point has undoubtedly proved productive 
for physical scientists in the past, but whether or not it continues to be productive as 
physical scientists turn their attention to more and more complex systems remains to 
be seen. But thus far, it has not proven very useful in biology, and the more successful 
efforts of mathematical and physical scientists turning their attention to biology today 
have incorporated this lesson. Like Delbrück, these scientists have learned that evolution 
seems to have built living systems not as departures or elaborations upon idealized simple 
forms, but as cumulative accretions of particularity and specificity. The end result may 
exhibit generality, but as a historical outcome rather than as a starting point— as the 
consequence of the fact that when a particular structure or mechanism has proven useful, 
it is used over and over, elaborated and built upon by subsequent accretions, until it is 
firmly embedded in the structure of the cell. Think, for example, of DNA. For the vast 
majority of living cells, DNA is the primary carrier of heredity. As such, it has enormous 
generality. But, as we have learned, even this most fundamental and most widely used 
molecule need not be a universal feature of the living cell.

If there is a moral to this story, it is not only that generality has different meanings 
in different epistemological cultures, but also that the kind of generality pursued by 
different scientific cultures is shaped by their cultural history, as well as by the objects 
on which they focus. If biologists have pursued a different kind of generality than have 
theoretical physicists, it is in large part because their subjects of study, and hence the 
problems they face, are in themselves of a different kind. Today, as a new discipline that 
seeks to meld the experience of physics with the problems of biology comes into being, 
a new generation of mathematical scientists is learning the lesson that Max Delbrück 

19 Ibid., 174– 5.
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was so quick to learn when he turned his attention from physics to biology. At the same 
time, a new generation of biologists is learning both the power of mathematical models 
and the appeal of the traditional values of physics. Not surprisingly, the net result is 
simultaneously a breaking down of traditional cultural barriers and the emergence of a 
new epistemological culture. Perhaps this new culture will bring us yet further variations 
in our understanding of generality.
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A process of generalization: 
Kummer’s creation of ideal numbers

JACQUELINE BONIFACE

18.1  Introduction

An interesting example of generalization within the set of complex numbers is found in 
Kummer’s creation of ideal factors. By the creation of such ideal factors, Kummer’s goal 
was to generalize arithmetical properties of natural numbers by extending these properties 
to certain complex numbers. We will see that the idea of the creation of these ideal factors 
came from the desire to make complex numbers analogous to natural ones. One may 
thus consider that Kummer’s results are an important stage in the trend of the refounda-
tion of mathematics on an arithmetical basis. We will have to clarify Kummer’s place in 
this trend, in particular by situating Kummer’s investigations on complex numbers with 
respect to Gauss’s investigations, and by comparing Kummer’s theory of ideal factors 
with Dedekind’s ideals theory. We will show that Kummer’s method of generalization 
rests on the distinction he established between “permanent” and “accidental” properties 
of complex numbers, and that this distinction was premised on his conception of math-
ematics, which was essentially different from those of Gauss and Dedekind.

18.2  Arithmetic and complex numbers

In the course of the nineteenth century, arithmetic gained first place among mathematical 
disciplines to the detriment of geometry, which had been considered, since Euclid, as the 
model of mathematical rigor. Such a change has been attributed to the development of 
function theory in the eighteenth century and at the beginning of the nineteenth, as well 
as to the emergence of non- Euclidean geometries. Indeed, new functions, which were 
not representable geometrically, and new geometries deprived, each in a different way, 
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the Euclidean geometry of its status of model for the other mathematical disciplines, and 
geometrical proofs no longer seemed sufficient to secure the validity of a result. Therefore, 
mathematicians turned toward arithmetic, which had become the most secure discipline, 
“the queen of mathematics,” as Gauss said.

But what did “arithmetic” mean? Gauss had noted in his Disquisitiones Arithmeticae, 
published in 1801, that the term “arithmetic” meant the study, in particular, of integer 
numbers, sometimes of fractions, but never of irrationals or what were called “imaginaries,” 
that is, complex numbers.1 Irrationals were considered to be geometrical magnitudes and 
complex numbers were thought of as fictitious algebraic expressions or magnitudes— both 
belonging to analysis. Thus, neither of them had the status of numbers, and arithmetic 
was the science of the only magnitudes considered as numbers, that is, rational integers 
and, to a lesser extent, fractions. However, by the end of the nineteenth century, both 
irrationals and “imaginaries” had gained this status, and beside the traditional arithmetic 
a new science of numbers appeared. How did this change happen?

During the nineteenth century, there was a refoundation of mathematics on the basis 
of arithmetic, known later as the “arithmetization of mathematics,” which aimed to define 
the concepts of analysis solely by means of arithmetic. This arithmetization of mathematics 
was often considered to go together with an extension of the domain of rational num-
bers through successive creations of irrational and complex numbers. Thus, Dedekind 
explained in his essay Was sind und was sollen die Zahlen?, published in 1888, “how 
subsequently the step- by- step extension of the number- concept— the creation of zero, 
of the negative, rational, irrational, and complex numbers— is to be carried out always 
by a reduction to earlier concepts, and indeed without introducing conceptions outside 
of the discipline.”2 From the narrow conception of arithmetic, conceived as the study of 
rational integers, to the “arithmetized” mathematics and to a wider concept of number, 
there were many steps. One of the most important of these steps was the extension of the 
domain of arithmetic to “Gaussian integers.”

18.2.1  The extension of arithmetic to Gaussian integers

Gauss, in a well- known letter to Bessel written in 1811, stated as his “basic proposition” 
(Grundsatz) that: “within the realm of magnitudes, the imaginaries a + b√−1 = a + bi 
must enjoy the same rights as the real [magnitudes].”

1 We should note that Gauss’ conception of arithmetic as an autonomous discipline was not shared by all 
mathematicians at the beginning of the nineteenth century. Some of them, such as Legendre, considered arith-
metic as a part of analysis. See Goldstein and Schappacher (2007: 26– 7).

2 “In welcher Art später die Schrittweise Erweiterung des Zahlbegriffes, die Schöpfung der Null, der nega-
tiven, gebrochenen, irrationalen und komplexen Zahlen stets durch Zurückführung auf die früheren Begriffe 
herzustellen ist, und zwar ohne jede Einmischung fremdartiger Vorstellungen …” (Dedekind, 1930– 2, vol. 
3: 338)

Before Dedekind, Gauss had formulated the same idea in nearly the same words; he wrote: “Our general 
arithmetic, whose scope so greatly outstrips the geometry of the ancients, is entirely the creation of modern 
time. It started from the concept of absolute integers, and has gradually extended its territory; the fractions 
have been added to the integers, the irrationals to the rationals, the negatives to the positives, and the imaginar-
ies to the reals” (Gauss, 1831, in Ewald, 1996, vol. 1: 311).
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And he added:

The matter is not of practical usefulness, but analysis is for me an independent science, 
which by rejecting these fictitious magnitudes would lose enormously in beauty and 
roundedness, and at every instant would be forced to add quite cumbersome restrictions 
to truths that otherwise would be generally valid.3

The “beauty and roundedness” of analysis, which dealt with complex “magnitudes,”4 
were, according to Gauss, the reasons for accepting some “imaginaries” as having the 
same status as rational numbers. And the beauty and the roundedness of this science 
would be given by the conformity of its objects to general arithmetical “truths.” Gauss 
expressed clearly his ideas about extending the domain of arithmetic to complex numbers 
at the time of his investigations on biquadratic residues. He wrote in a communication to 
the Academy of Sciences in Göttingen in 1825:

[…] for the true foundation of the theory of biquadratic residues, one must widen the field 
of higher arithmetic, which had otherwise been extended only to the real integers, into 
the imaginary ones, and must grant to the latter exactly the same rights as the former. As 
soon as one has seen this once, that theory appears in an entirely new light, and its results 
acquire a most astonishing simplicity.5

To explain his conception of an “extended arithmetic” (erweiterten Arithmetik, p. 172), 
Gauss considered then what are now called “Gaussian integers,” that is the complex 
numbers of the form a + ib (with i2 = −1 and rational integers a and b). He showed, in 
particular, that these integer complex numbers admit, just like the rational integers, a 
decomposition into prime complex numbers. And he added that these prime numbers 
play a leading role in the enlarged field of arithmetic, just as prime numbers do in the 
higher arithmetic of rational numbers.

18.2.2  Kummer’s conception of complex numbers

Kummer’s investigations on complex numbers were another step toward the development 
of number theory. However, we will show that this development was not conceived of by 

3 “… in dem Reiche der Grössen die imaginären a + b√−1 = a + bi als gleiche Rechte mit den reellen genies-
send müsse. Es ist hier nicht von praktischem Nutzen die Rede, sondern die Analyse ist mir eine selbständige 
Wissenschaft, die durch Zurücksetzung jener fingierten Grössen ausserordentlich an Schönheit und Rundung 
verlieren und alle Augenblick Wahrheiten, die sonst allgemein gelten, höchst lästige Beschränkungen beizufü-
gen genöthigt sein würde.” Gauss to Bessel, December 1811, in Gauss and Bessel (1880: 156).

4 In 1811, Gauss named “magnitudes” reals and imaginaries; in 1825, he would name them “numbers.” 
See, for example, Gauss (1828).

5 “… für die wahre Begründung der Theorie der biquadratischen Reste das Feld der höhern Arithmetik, 
welches man sonst nur auf die reellen ganzen Zahlen ausdehnte, auch über die imaginären erstreckt werden, und 
diesen das völlig gleiche Bürgerrecht mit jenen eingeraümt werden muss. Sobald man dies einmal eingesehen 
hat, erscheint jene Theorie in einem ganz neuen Lichte, und ihre Resultate gewinnen eine höchst überraschende 
Einfachheit” (Gauss, 1828, in Gauss, 1863/ 1876, vol. 2: 171). This lecture to the Academy of Sciences was 
published in 1828 in the Göttingische gelehrte Anzeigen and was followed by another one on the same subject 
matter, which was given in 1831 and published in 1832. The latter is translated into English in Ewald (1996, 
vol. 1: 306– 13).
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Kummer as it had been for Gauss. But let us first make clear what arithmetic and complex 
numbers mean for Kummer.

According to Kummer, the theory of complex numbers6 is part of a branch of higher 
arithmetic, as he said in his memoir of 1851:

The theory of complex numbers is fundamentally the same as the theory of these forms 
[i.e., of the homogeneous forms, which are decomposable in linear factors], and in this 
respect, it is part of one of the most beautiful branches of higher arithmetic.7

The image of a branch evokes the development of number theory from a common 
trunk— the classical arithmetic— by ramification. It is quite different from that of a 
gradually extending territory, as used by Gauss. In a development by ramification, each 
branch keeps an autonomy relative to the trunk and to the other branches. By contrast, 
in development by extension, the annexed territories and the initial one have to become 
a single homogeneous territory. We will see later the significance of these different views.

Although Kummer noticed the similarity between the theory of the complex numbers 
he introduced and the theory of decomposable forms,8 he preferred to consider the former 
as the theory of the decomposition of numbers into irrational factors,9 in the following 
sense. As we have seen above, a complex number was for Kummer “an entire function 
with integer coefficients of irrational roots of one or many algebraic equations, whose 
coefficients are also integer numbers.” This definition is quite different from that of Gauss. 
For the latter, a complex number is an expression of the form a + ib, with i2 = −1 and a 
and b real numbers, that is, a complex number is obtained from real ones, by adding an 
imaginary component. For Kummer, a complex number is obtained from the rational 
ones by adding irrational components of a specific kind. In other words, for Kummer, 
the basic domain is that of rationals, whereas for Gauss it is that of reals.10 We will see 

6 A “complex number” was for Kummer “an entire [i.e., polynomial] function with integer coefficients of 
irrational roots of one or several algebraic equations, whose coefficients are also integer numbers” (Kummer, 
1851: 377, trans. J.B.). See below for the difference between Kummer and Gauss on this point.

7 “La théorie des nombres complexes revient, au fond, à la théorie des formes, et, à cet égard, elle fait partie 
d’une des plus belles branches de l’Arithmétique supérieure” (Kummer, 1851: 377, in Kummer, 1975: 363).

8 Regarding this analogy between complex numbers and decomposable homogeneous forms, Kummer 
referred to Kronecker’s investigations. “Ich kann … auch auf eine Arbeit von Herrn Kronecker verweisen, 
welche näschtens erscheinen wird, in welcher die Theorie der allgemeinsten complexen Zahlen, in ihrer 
Verbindung mit der Theorie der zerlegbaren Formen aller Grade, vollständig und in grossartiger Einfachheit 
entwickelt wird.” Translation J.B.: “I may also refer to a work by Herr Kronecker which will appear soon, in 
which the theory of the most general complex numbers, in its connection with the theory of decomposable 
forms of all degrees, is developed completely and in a great simplicity” (Kummer, 1975, vol.1: 737).

9 See Kummer (1851: 378, in Kummer, 1975: 364) : “D’un autre côté, la théorie des nombres complexes 
peut être considérée comme la théorie de la décomposition des nombres en facteurs irrationnels, et c’est sous 
ce point de vue qu’elle a un grand intérêt, aussi bien en elle- même que pour les applications nombreuses et 
importantes qu’on en a faites dans plusieurs questions relatives à l’Arithmétique et à l’Algèbre supérieures.” 
Translation J.B.: “On another side, the theory of complex numbers can be considered as the theory of the 
decomposition of numbers into irrational factors, and it is from this angle that it is of great interest, as well in 
itself as for the many important applications that have been done in several questions concerning higher arith-
metic and higher algebra.”

10 In Kronecker’s work, one will also find the same derivation of complex numbers from rational ones as in 
Kummer’s.
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that Dedekind followed Gauss’s view and Kronecker followed Kummer’s. Later we will 
try to explain these differences.

After giving his definition of complex numbers, Kummer added a remark which would 
guide his later investigations. He noted that the product of all complex numbers obtained 
by replacing the roots in them by conjugated roots “will always be delivered from all 
irrationality,”11 that is, this product is a rational integer. Thus, it is as factors of rational 
integers that Kummer considered complex numbers; consequently, decomposition into 
prime factors would be the point of his investigations.

18.2.3  The fundamental law of arithmetic

In order to clarify Kummer’s investigations, we should first review some arithmetical 
notions and explain the failure of the fundamental law of arithmetic for certain complex 
numbers. This fundamental law asserts that all rational integers admit a decomposition 
into irreducible factors and that this decomposition is unique. Thus 6 decomposes into 
2 and 3 (since 6 = 2 × 3), and this decomposition is unique (except for the order of 
factors). The integers 2 and 3 are irreducible, because one cannot decompose them into 
rational integers, and they are also prime numbers, because of the uniqueness of the 
decomposition. The fundamental law still holds for Gauss’s integers, but fails for some 
other complex numbers. For example, when we consider the complex numbers of the 
form a + b√−5 (i.e., the numbers of the ring Z[√−5]), 6 admits two different decomposi-
tions into irreducible factors : 6 = 2 × 3 and 6 = (1 + √−5)(1 − √−5). In other words, for 
these complex numbers (i.e., in the ring Z[√−5]), 2, 3, 1 − √−5, 1 + √−5, are irreducible 
factors, but not prime factors; the ring Z[√−5] is said to be not factorial (the fundamental 
law does not hold for all the numbers of this ring).

18.3  Kummer’s ideal factors

Kummer studied complex integers that were a little more general than the Gaussian 
ones: expressions of the form a0 + a1r + a2r2+ … + anrn, with r a root of the unit, and ai 
rational integers, called “cyclotomic integer numbers” today. For Kummer, as for Gauss, 
classical arithmetic was the model for building this new theory, and Kummer’s aim was to 
prove that these complex integers had the same properties as rational ones. But, Kummer, 
in contrast to Gauss, did not conceive these complex integers as extending the domain 
of rational ones. For Kummer, arithmetic was a well delimited domain, and complex 
numbers belonged to another one. His purpose was not to extend the domain of rational 
numbers (unlike Gauss and most of mathematicians of the second half of the century), but 
to bring to light the analogy between complex numbers and rational ones. More precisely 
Kummer wanted to show that the fundamental arithmetical property, which states that 
every rational integer can be decomposed in a unique way into a product of irreducible 
factors also held for the complex numbers he was studying.

11 “sera toujours délivré de toute irrationalité” (Kummer, 1851: 377, in Kummer, 1975: 363).
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18.3.1  Kummer’s context for creating ideal factors

A lot of mathematicians of the nineteenth century, among them the French mathemati-
cians Gabriel Lamé and Augustin Cauchy, thought that the fundamental law of arithmetic 
was still valid for complex numbers composed of integer numbers and roots of unity. 
This law had been the basis of Lamé’s and Cauchy’s researches into a general proof 
of Fermat’s conjecture, namely, the impossibility of solving the equation x y zn n n+ = ,  
for an integer n greater than 2, and three integers x, y, and z not equal to zero. These 
researches had been the subject of a competition within the Paris Academy of Sciences 
which had occupied both mathematicians for several months in 1847. The editor of the 
Journal de Mathématiques pures et appliquées, Liouville, who participated in the debates of 
the Academy, brought an end to the competition by publishing, in the Comptes rendus of 
the Academy, a letter by Kummer which asserted that, for some complex numbers, the 
factorization into irreducible factors was not unique. This assertion had been proved in a 
paper written three years earlier, and a copy of this paper was published with the letter.12

18.3.2  Kummer’s generalization of the fundamental law 
of arithmetic by the creation of ideal numbers

Kummer’s results made it irrefutable that some complex numbers13 did not have the 
fundamental property of rational integers. However, like most of his contemporaries, 
Kummer considered his results unsatisfying, even if irrefutable. Indeed, for all of them, the 
development of complex number theory had to be carried out according to the model of 
rational integer number theory. Thus, Kummer considered the failure of the fundamental 
property as an anomaly, and consequently, all of Kummer’s investigations for a number 
of years became devoted to removing this anomaly and were concentrated on giving this 
property to complex numbers composed of integer numbers and roots of unity. This 
problem appears clearly in the letter Kummer wrote to Liouville:

With regard to the elementary proposition, for these complex numbers, that a composed 
complex number can be decomposed into prime factors but in only one way, […] I can assure 
you that this proposition does not hold in general, as long as we deal with complex numbers 
that are in the form:

a a r a r a rn
n

0 1 2 1
1+ + + ⋅ ⋅ ⋅ + −

− .

However, the proposition can be saved by introducing a new kind of complex numbers 
that I have called an ideal complex number.14

12 The paper was published under the title “De numeris complexis, qui radicibus unitatis et numeris integris 
realibus constant,” in the Journal de mathématiques pures et appliquées, XII, in 1847. See Kummer (1847a).

13 Kummer dealt with complex numbers composed of integer numbers and roots of unity.
14 “Quant à la proposition élémentaire pour ces nombres complexes, qu’un nombre complexe composé ne peut 

être décomposé en facteurs premiers que d’une seule manière, … je puis vous assurer qu’elle n’a pas lieu généralement 
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In his paper written in 1844 and published by Liouville, Kummer introduced his 
work as a continuation of Gauss’s theory of complex numbers, and above all of Jacobi’s 
research into the decomposition of prime numbers of the form mλ + 1 into cyclotomic 
integer factors. He noted that Jacobi had looked at the cases of factors comprising fifth, 
eighth, and twelfth roots of unity. Kummer, for his part, undertook to prove that every 
prime number of the form mλ + 1, where λ is an odd prime number, can be decomposed 
into λ − 1 prime factors belonging to what we call today the ring Z[α], where α is a λth 
complex root of unity. With this aim in mind, he used the notion of the norm of a complex 
number f(α) of the cyclotomic ring, which he took from Lejeune– Dirichlet— as above, 
f is “an entire function with integer coefficients of irrational roots,” here a root of the 
equation xλ = 1:

Nf f f f f( ) ( ) ( ) ( ) ( ).α α α α αλ= ⋅ ⋅ ⋅ −2 3 1

For reasons of symmetry, the norm of such a complex number is a rational integer. 
Thus, every complex number composed of integer coefficients and roots of unity can 
be considered as a complex factor of a rational integer number, its norm. Conversely, 
if one can show that a rational integer number is the norm of a complex number, one 
can immediately obtain a decomposition of the rational integer number into complex 
factors.

Kummer also showed that for λ = 5, 7, 11, 13, 17, and 19, every prime number of 
the form mλ + 1 and smaller than a thousand is the norm of a complex number of the 
ring Z[α], and thus can be decomposed into λ − 1 prime cyclotomic integer factors for 
the given value of λ. However, for λ = 23, Kummer observed that only three of the eight 
prime numbers of the form mλ + 1 and smaller than a thousand have this property. And 
he also showed that the five other prime numbers are not the norm of any cyclotomic 
integer, and thus that they cannot be decomposed into 22 conjugated factors.15

Kummer showed that this impossibility of a decomposition of prime numbers of the 
form mλ + 1 into λ − 1 complex factors had as a consequence that their decomposition 
into irreducible factors is not unique. In other words, the possibility of a decomposition 
for a given λ of all prime numbers of the form mλ + 1 into λ − 1 prime complex factors 
is a necessary condition of the factoriality of the ring.

tant qu’il s’agit des nombres complexes de la forme a a r a r a rn
n

0 1 2
2

1
1+ + + + −

−. . .   , mais qu’on peut la sauver 
en introduisant un nouveau genre de nombres complexes que j’ai appelé nombre complexe idéal.” Kummer to 
M. Liouville (Kummer, 1847b: 136, in Kummer, 1975: 298).

15 His proof made use of the Gaussian theory of quadratic forms, which allowed him to establish the fact 

that, for λ = 23, the norm of a cyclotomic integer can be written in the form a b2 223
4

+
,  where a and b are 

rational integers, and that five of the prime numbers of the form mλ + 1 cannot be written in this quadratic 
form and thus cannot be decomposed into a product of λ − 1 complex factors. For example, one cannot find 
rational integers a and b such that :

4 47 188 232 2× = = +a b .
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Kummer’s idea, which he would develop in two later papers,16 was to artificially gen-
eralize, for all values of λ, the decomposition of prime numbers of the form mλ + 1 into 
λ − 1 prime factors by creating ideal factors in the case where this decomposition does 
not exist. For λ = 23, for example, he had to obtain 22 ideal factors of 47. As he wrote:

If p is a prime number of the form mλ + 1, then it can, in many cases, be represented 
as a product of λ − 1 complex factors p = f f f( ) ( )... ( )α α αλ2 1− . Where, however, a 
decomposition into existing complex factors is not possible, one has to introduce ideal 
prime factors in order to obtain it.17

To clarify Kummer’s idea, we can take again the example of the ring Z[√−5]. We 
saw that, in this ring, 6 admits two different decompositions into irreducible factors: 
6 = 2 × 3 = (1 + √−5)(1 − √−5). In order to restore the uniqueness of the decomposition, 
one can imagine that the irreducible factors 2, 3, 1 + √−5, and 1 − √−5 contain themselves 
ideal factors, and that one can write them as products of these ideal factors. The case 
of the number 2 is rather particular, because it behaves as if it was a square number.18 
Thus, we can write it in the form 2 = α2. The other rational integers can be written in 
the form of a product of two different ideal factors, for example, 3 = βγ, 1 + √−5 = αβ, 
1 − √−5 = αγ. Thus, we have 6 = α2βγ and the decomposition of 6 into the ideal factors 
α, β, and γ is unique.19

In order to determine the ideal factors which are contained in his complex numbers, 
Kummer used congruence calculations. This entails an analysis of the situation in the 
case where p can be decomposed into existing prime factors. Without going too deeply 
into the technical details,20 we can say that the importance of this congruence condition 
is that it can be applied to ideal factors. Kummer used it as a definition, not of the ideal 
factors —  he remarked that it would not be sufficient for such a definition —  but of the 
divisibility of a cyclotomic complex number by an ideal factor of p.

16 The first of the two later papers on the ideal factors was published in German in 1847, in the Journal für 
die reine und angewandte Mathematik, under the title “Zur Theorie der complexen Zahlen” (Kummer, 1847a). 
The other paper was published in French in 1851 under the title “Mémoire sur la théorie des nombres com-
plexes composés de racines de l’unité et de nombres entiers,” in the Journal de mathématiques pures et appliquées 
(Kummer, 1851).

17 “Ist p eine Primzahl von der Form mλ + 1, so lässt sie sich in vielen Fällen als Product von folgenden 
λ − 1 complexen Factoren darstellen: p f f f= −( ) ( ) ( )α α αλ2 1 . . . ; wo aber eine Zerlegung in wirkliche com-
plexe Primfactoren nicht möglich ist: dann sollen die idealen Primfactoren eintreten, um dieselbe zu leisten” 
(Kummer, 1847a, in Kummer, 1975: 204).

18 Indeed, if we consider w = x + y√−5 and w′ = x′ + y′√−5, we will have w2 ≡ N(w) (mod 2) and w N w′ ′≡ ( )2  
(mod 2). It follows that w w N w N w2 2′ ′≡ ( ) ( )  (mod 2). Now, in order to divide the product w2w′2 and thus 
also the product of the two rational integers N(w) and N(w′), the number 2 has to divide one at least of the 
two norms, and thus also one of the two square numbers w2 , w′2. If, in addition, we choose for x and y two 
odd integer numbers, we obtain a number x + y√−5 which is not divisible by 2 and whose square is divisible 
by 2. By analogy with the rational integers, we can consider that the number 2 behaves as if it was a square 
number.

19 This example is given by Dedekind in Dedekind (1877: 278– 81).
20 For a development of that point and a modern interpretation of Kummer’s method, see the Appendix 1.
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18.4  Kummer’s use of analogy

We have seen that Kummer’s aim, by creating ideal factors of complex numbers, was 
to eliminate from the theory of complex numbers anomalies with regard to rational 
integers. And the use of analogy gave him both a motivation and a justification for his 
creation; it testifies to Kummer’s conception of complex number theory as being separate 
from arithmetic. Indeed, if Kummer had conceived the domain of complex numbers as 
extending that of rational integers, he would not have used analogies, which require two 
different domains. Gauss, for example, unlike Kummer, did not speak of analogy between 
rationals and complex numbers, since he conceived rationals, and even reals, as particular 
cases of complex numbers.21

In fact, Kummer made use of several analogies, primarily with arithmetic, but also 
with other mathematical domains, as well as with chemistry. Each of these analogies had 
a particular role, as will be shown below.

18.4.1  The analogy with arithmetic

Arithmetic, as we saw, was the model of Kummer’s theory. The following text clearly 
shows that Kummer’s principal reason for creating ideal factors was indeed to preserve 
an analogy between complex numbers and rational ones. The text reveals that the analogy 
with arithmetic was more important for Kummer than the complex numbers themselves, 
since Kummer seemed to find it preferable to change these numbers rather than to lose 
the analogy with rational numbers.

It is largely to be deplored that this property of real numbers [i.e., the rational integers] of 
being decomposable into prime factors, always in the same way for a given number, does 
not belong to complex numbers. If it were the case, all of the theory, which can only be 
elaborated with great difficulty, could easily be brought to its conclusion. For this reason, 
the complex numbers we consider seem imperfect, and this may generate doubt whether 
one should prefer to these numbers other complex numbers that could be found, and 
should not these other numbers be looked for, which would preserve the analogy [my 
emphasis] with real integer numbers for this fundamental property.22

It is interesting to remark that Kummer called “real integer numbers” what we call 
today rationals (or even rational integers). We saw that, unlike Kummer, Gauss distin-
guished already between rationals and reals, and that he contrasted complex numbers 
(in his terms, imaginaries) with reals, whereas Kummer contrasted them with rationals. 

21 See, for example, Gauss (1831, § 7, in Ewald, 1969: 309): “So the complex quantities [a + ib] are not 
opposed to the real, but contain them as a special case where b = 0.”

22 “Maxime dolendum videtur, quod haec numerorum realium virtus, ut in factores primos dissolvi possint, 
qui pro eodem numero semper iidem sint, non eadem est numerorum complexorum, quae si esset, tota haec 
doctrina, quae magnis adhuc difficultatibus laborat, facile absolvi et ad finem perduci posset. Eam ipsam ob 
causam numeri complexi, quos hic tractamus, imperfecti esse videntur, et dubium inde oriri posset, utrum 
hi numeri complexis ceteris qui fingi possint praeferendi, an alii quaerendi essent, qui in hac re fundamentali 
analogiam cum numeris integris realibus servarent” (Kummer, 1847a: 202, in Kummer, 1975: 182).
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This remark underlines the fact that, for Kummer, the basis of number theory was the 
arithmetic of rational integer numbers. Rational integer numbers were for him the only 
true (or existing) numbers, and we will see later that he viewed these numbers as natural 
objects. For Gauss, there are no “true” numbers; a number is “just a product of our 
mind.”23 With these words, Gauss will appear as the pioneer of a major conceptual trend 
in mathematics at the end of the nineteenth century,24 whereas Kummer, as we will see, 
marked the beginning of another less dominant trend in this period.

Thus, for Kummer, as for Gauss, the arithmetic of rational numbers was the basis of 
number theory, but for the former this basic discipline was a model to imitate— and that 
by means of analogy— whereas for the latter it had been a domain to be extended.

18.4.2  The analogy with geometry

Kummer also looked into algebra and geometry, which used methods analogous to his 
own, as shown in the following text.

Algebra, arithmetic and geometry offer a lot of analogies [my underlining] to our theory. 
One decomposes, for example, rational and entire functions of only one variable into 
linear factors, even if these isolated factors only exist in some particular cases; it is to this 
aim that imaginary quantities have been created. In geometry, one speaks of a line going 
through the points of intersection of two circles, even if the points of intersection do not 
exist…. Lastly, the idea of considering ideal factors of complex numbers is, in fact, the 
same as the idea which has created complex numbers themselves. Indeed, one knows 
that, by observing that, in the search for the laws of reciprocity between biquadratic 
residues, the prime numbers of the form 4n+1 behaved like composed numbers, M. Gauss 
decomposed them into imaginary factors of the form a b+ −1, and that he consequently 
established the foundations of the general theory of complex numbers.25

It clearly appears that the analogies with algebra, geometry, and again arithmetic, allowed 
Kummer to justify his creation of ideal factors. However, one notices that the analogy with 
geometry plays a different role than that with the other disciplines. Indeed, ideal factors 
had been created in algebra and arithmetic in the same context of the decomposition 
into prime factors as in Kummer’s theory. In each of these cases, it was the same idea 
which was aimed at by the mathematicians: the decomposition into prime factors. On the 

23 “… die Zahl bloss unseres Geistes Product ist …” (Gauss, 1880: 497).
24 For more details about this point, see Boniface (2007, in Goldstein et al., 2007: 321– 30).
25 “L’Algèbre, l’Arithmétique et la Géométrie offrent des analogies nombreuses à notre théorie. On décom-

pose, par exemple, les fonctions rationnelles et entières d’une seule variable en facteurs linéaires, quoique ces 
facteurs isolés n’existent qu’en des cas particuliers ; c’est pour ce but qu’on a créé les quantités imaginaires. En 
Géométrie, on parle d’une droite passant par les points d’intersection de deux cercles, quand même les points 
d’intersection n’existent pas. […] Enfin, l’idée de considérer des facteurs idéaux des nombres complexes est, 
au fond, la même que celle qui a procréé les nombres complexes eux- mêmes. En effet, on sait que M. Gauss, 
en observant que, dans la recherche des lois de réciprocité entre les résidus biquadratiques, les nombres pre-
miers de la forme 4n + 1 se comportaient comme nombres composés, les a décomposés en facteurs imagi-
naires de la forme a b+ −1, et qu’il a jeté par là les fondements de la théorie générale des nombres complexes” 
(Kummer, 1851: 430, in Kummer, 1975: 416).
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contrary, the geometrical example of ideal elements no longer had any relation with the 
fundamental property of arithmetic. It illustrates more clearly than the other examples 
the status of ideal entities, according to Kummer. These entities were seen by him, like 
ideal geometrical points, as ideal26 entities, as opposed to real ones, introduced in order to 
simplify the theory. We will be in a position later to judge the importance of the analogy 
with geometry with regard to Kummer’s conception of mathematical objects.

18.4.3  The analogy with chemistry

Kummer concluded the paragraph quoted above with a remark which underlines “the 
analogy of the theory of the composition of ideal complex numbers with the fundamental 
principles of chemistry.” He wrote:

The composition of complex numbers can be seen as analogous [my underlining] to chemi-
cal combination; the prime factors correspond to elements, or rather they are equivalent to 
these elements. Ideal complex numbers can be compared to hypothetical radicals which 
do not exist by themselves, but only in combinations; the fluorine, in particular, as an ele-
ment which we cannot represent in isolation, can be compared to an ideal prime factor.27

This analogy with chemistry, again justifying Kummer’s ideal factors, showed, even more 
clearly than the geometrical example, the status Kummer gave to mathematical objects. 
Indeed, Kummer conceived mathematics as a natural science and mathematical objects 
as natural ones. Numbers have to be seen, he said, as chemical compounds and ideal 
factors as chemical elements. This last consideration also explains Kummer’s use of the 
properties of complex numbers, as we will see in the next section. Thus, one can say that 
Kummer used geometry and chemistry as ontological (or intuitive) models— they allowed 
him to express the ontological status of mathematical objects— whereas arithmetic and 
algebra are rather theoretical models— they allowed him to discover hidden properties 
of these objects.

18.5  Permanent properties/ accidental properties 
of complex numbers

Kummer’s conception of numbers as natural objects led him to turn his attention to their 
properties, which he divided into permanent properties and accidental ones. According 
to him, the properties of complex numbers which did not correspond to those of rational 
integers were to be considered as accidental properties, or as irregularities, and, hence, 

26 We will clarify below the sense of this term for Kummer.
27 “La composition des nombres complexes peut être envisagée comme l’analogue de la combinaison chim-

ique; les facteurs premiers correspondent aux éléments, ou plutôt aux équivalents de ces éléments. Les nom-
bres complexes idéaux sont comparables aux radicaux hypothétiques qui n’existent pas par eux- mêmes, mais 
seulement dans les combinaisons; le fluor, en particulier, comme élément qu’on ne sait pas représenter isolé-
ment, peut être comparé à un facteur premier idéal” (Kummer, 1851: 433, in Kummer, 1975: 447).
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as imperfections which hid permanent properties. Thus, mathematicians should focus 
on the permanent properties and eliminate the accidental ones. Such was the approach 
followed by Kummer in creating ideal numbers. Furthermore, the analogy with chemistry 
allowed him to justify his introduction of ideal factors by remarking that these factors “are 
making visible, so to speak, the internal constitution of numbers, so that their essential 
properties would be brought to light.”28

On this point again, Kummer did not follow Gauss. Indeed, Gauss had considered, in 
opposition to Kummer, that relations between objects are more important than the objects 
themselves and, consequently, he did not give particular attention to the properties of 
mathematical objects. It would seem more relevant to compare Kummer with geometers 
working on projective geometry, who had analogous views on the properties of geometri-
cal objects.29 Thus, Kummer illustrated his distinction between permanent properties and 
accidental ones by having recourse to the analogy stated within geometry. He called the 
property of tangents drawn from an arbitrary point of the line going through the (extant 
or ideal) points of intersection of two circles to both circles to be equal to each other a 
“permanent property,” and he stated that this property is analogous to a “permanent” 
property for complex numbers to be decomposed into (extant or ideal) prime factors. 
Then, he called the property of this line of going through extant points of intersection of 
the two circles an “accidental property,” and he stated that this property is analogous to 
the “accidental” property of a complex number to have an extant prime factor.30

Thus, Kummer’s interpretation of arithmetical phenomena in terms of properties of 
numbers brings him closer to some geometers than to an arithmetician (or algebraist) 
like Gauss. Gauss’s focus on the relations between objects rather than on the objects 
themselves showed a new way of conceiving mathematics, which was to develop at the 
end of the nineteenth century. The new trend initiated by Gauss, which attached less 
importance to the nature of mathematical objects, would lead mathematicians to speak 
about laws of a domain rather than properties of objects. Dedekind’s commentary on 
Kummer’s theory testifies to this trend:

This geometer [Dedekind wrote about Kummer] succeeded in reducing all apparent 
irregularities to rigorous laws. By considering numbers which were non decomposable and 
yet devoid of the character of genuine prime numbers, as products of ideal prime factors 
appearing and revealing their effects only when combined together, and not isolated, 
he obtained the surprising result that the laws of divisibility in the domains he studied 
coincided now completely with the ones which govern the domain of rational integer 
numbers.31

28 “… les facteurs idéaux rendent visible, pour ainsi dire, la constitution intérieure des nombres, en sorte 
que leurs propriétés essentielles soient mises dans leur jour, …” (Kummer, 1851, in Kummer, 1975: 430).

29 See Karine Chemla, “The value of generality in Michel Chasles’s historiography of geometry,” in 
Chapter 2.

30 Kummer (1851: 430, in Kummer 1975: 416).
31 “Ce géomètre est parvenu à ramener toutes les irrégularités apparentes à des lois rigoureuses, et en con-

sidérant les nombres indécomposables, mais dépourvus du caractère de véritables nombres premiers, comme 
des produits de facteurs premiers idéaux, qui n’apparaissent et ne manifestent leur effet que combinés ensem-
ble, et non pas isolés, il a obtenu ce résultat surprenant, que les lois de la divisibilité dans les domaines étudiés 
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Dedekind’s text showed clearly that it was no longer a question of properties of the 
objects, but of laws in particular domains. Thus, the decomposition into prime factors, 
seen by Kummer as a property of numbers, was alternatively seen by Dedekind only 
as a law of arithmetic. Both Kummer and Dedekind considered as irregularities those 
complex numbers that were not decomposable in a single way into a product of irreducible 
factors. For Kummer, therefore, these irregularities were inherent in numbers themselves, 
whereas for Dedekind they were inherent in the particular domain. The consequence of 
this, as we will show, was that Kummer’s creations were numbers, whereas Dedekind’s 
were sets of numbers or concepts.

18.6  Ideal numbers after Kummer: Dedekind, 
Kronecker, and Hilbert

Kummer’s theory of complex numbers was generalized by Dedekind and Kronecker in 
two different ways. Dedekind chose a more conceptual way, whereas Kronecker followed 
Kummer more closely. However, both Kronecker and Dedekind tried to avoid the use of 
ideal factors. Continuing from Dedekind’s and Kronecker’s works but unlike them, Hilbert 
was also interested in Kummer’s theory, in particular, in his creation of ideal numbers, 
which he took as an example of his own method of “ideal elements.”

18.6.1  Dedekind’s ideals theory

Although Dedekind did not share Kummer’s conception of mathematics as a natural 
science, the theory of ideal factors allowed him to establish his own creations. It was also 
the opinion of J. Cavaillès, who, in his 1938 “Remarques sur la formation de la théorie 
abstraite des ensembles,” saw in Kummer’s theory the model of Dedekind’s creations.

The model —  and doubtless the first idea —  of similar creations lies in Kummer’s ide-
als, whose introduction “conducted with enough rigor, has to be considered as entirely 
legitimate.”32

Dedekind himself explained how Kummer’s theory of ideal factors had been the “germ 
of the ideals theory”33 and he chose the term “ideal” to pay tribute to his instigator. 
However, Dedekind thought that Kummer’s theory was not completely satisfying. Indeed, 

par lui coïncident maintenant complètement avec celles qui régissent le domaine des nombres entiers ration-
nels” (Dedekind, 1877, in Dedekind 1930– 2, vol. 3: 267).

32 “Le modèle —  et sans doute l’idée première —  de semblables créations se trouve dans les idéaux de 
KUMMER dont l’introduction, ‘conduite avec assez de rigueur, doit être considérée comme absolument légi-
time’ ” (Cavaillès, 1962: 38). The Dedekind quote is from a letter to Weber, dated 24 January 1888 (Dedekind, 
1888: 490).

33 This is the title of section 2 of Dedekind’s theory of algebraic numbers, in which Dedekind explained 
Kummer’s theory of ideal factors. See Dedekind (1930– 2: 224).
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Kummer’s theory could not easily be generalized, and in particular, Kummer’s method 
of calculation did not fit in with Dedekind’s conception of mathematics, as he explained:

Such a theory, based on computation, would not offer the highest degree of perfection. It 
is preferable, as in modern function theory, to derive the proofs, no longer from compu-
tation, but immediately from characteristic fundamental concepts, and to build the theory 
in such a way that it will be able to predict the results of the computation.34

Moreover, Kummer’s creation of ideal numbers lacked, according to Dedekind, a com-
monly shared definition of these numbers— Dedekind criticized Kummer for defining 
only divisibility by ideal numbers, not ideal numbers themselves.35 Only such a definition, 
which could generate all the ideal numbers of a given domain, could testify to a true cre-
ation, that is, could allow one to consider these fictitious entities as objects of the theory 
by integrating them in the considered realm.36 Thus, it appears clear that it was existing 
objects, and not ideal or fictitious entities, that Dedekind aimed for.

Like Kummer, Dedekind first considered the divisibility of a number in the domain he was 
studying, in this case, the ring Z[√−5]. A complex number x + y√−5 of this domain will be 
said to be divisible by the ideal factor α37 if and only if its square, and consequently its norm, 
is divisible by α2, that is, by 2, if we take up again the example developed in Section 18.2.2. It 
follows that x + y√−5 will be divisible by α if and only if x ≡ y (mod 2). But Dedekind wanted 
to go further and give a characterization of all the numbers in the domain in question which 
are divisible by α. With this in view, he noted as a consequence of the previous congruence 
that x = y + 2z, where z is any rational integer. All the numbers of the ring which are divisible 
by α will be of the form (y + 2z) + y√−5, that is, 2z + (1 + √−5)y. Dedekind’s absolutely 

34 “… une telle théorie, fondée sur le calcul, n’offrirait pas encore, ce me semble, le plus haut degré de 
perfection ; il est préférable, comme dans la théorie moderne des fonctions, de chercher à tirer les résultats, 
non plus du calcul, mais immédiatement des concepts fondamentaux caractéristiques, et d’édifier la théorie de 
manière qu’elle soit, au contraire, en état de prédire les résultats du calcul …” (Dedekind, 1877, in Dedekind, 
1930– 2: 296).

35 See Dedekind (1877, in Dedekind, 1930– 2:  268):  “Kummer n’a pas défini les nombres idéaux eux- 
mêmes, mais seulement la divisibilité par ces nombres. … D’autre part, une définition exacte et qui soit com-
mune à tous les nombres idéaux qu’il s’agit d’introduire dans un domaine déterminé O, et en même temps 
une définition générale de leur multiplication paraissent d’autant plus nécessaires, que ces nombres idéaux 
n’existent nullement dans le domaine numérique considéré O. Pour satisfaire à ces exigences, il sera nécessaire 
et suffisant d’établir une fois pour toutes le caractère commun de toutes les propriétés A, B, C, …, qui toujo-
urs et elles seules, servent à l’introduction de nombres idéaux déterminés, et ensuite d’indiquer généralement 
comment de deux de ces propriétés A, B, auxquelles correspondent deux nombres idéaux déterminés, on 
pourra déduire la propriété C qui doit correspondre au produit de ces deux nombres idéaux.” (“Kummer did 
not define ideal numbers themselves, but only divisibility by such numbers. […] On the other hand, an exact 
definition which would be common to all ideal numbers that are introduced in a given numerical domain O 
and, at the same time, a general definition of their multiplication, would seem to be all the more necessary in 
view of the fact that these ideal numbers do not exist within the given numerical domain O. To satisfy these 
requirements, it will be necessary and sufficient to establish once and for all the characteristics common to all 
the properties A, B, C, …, which always and only serve to introduce specific ideal numbers, and then to indi-
cate generally how, from two such properties A, B, to which there correspond two specific ideal numbers, one 
can deduce the property C which must correspond to the product of these ideal numbers.”)

36 See Dedekind (1877, in Dedekind, 1930– 2: 268).
37 See the example given in Section 18.2.2.
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new idea was to consider the set of all the numbers of the domain which are divisible by a 
determined ideal number, and he called such a set (or system) an ideal. He also showed that 
every ideal number corresponds to an ideal, and that conversely, every ideal corresponds 
to an ideal number.

18.6.2  Kronecker’s theory of divisors

Concurrent to Dedekind’s theory of ideals, Kronecker elaborated a theory of divisors. 
Both theories aimed to replace and to generalize Kummer’s ideal factors. But instead of 
creating new abstract entities, the ideals, and a new calculus with these ideals, Kronecker 
built algebraic expressions composed of algebraic integers of a given “domain of rational-
ity”38 and indeterminates. His idea was to interpret Kummer’s ideal number as the greatest 
common divisor (GCD) of a finite number of algebraic integers, that is, of numbers of 
the form xn + a1xn−1 + a2xn−2 + ⋅ ⋅ ⋅ + an, and to find for this GCD a concrete algebraic 
expression. Now, this GCD does not belong to the domain in question. Kronecker was 
therefore forced to extend this domain, in order to obtain (by an adequate definition of 
the divisibility in the new domain) the existence of the GCD of any finite number of 
algebraic magnitudes of the new domain. In this new domain, the GCD of any set of 
algebraic integers x, x′, x″, …, that is, the Kummer ideal number which is contained in 
them, is expressed by Kronecker as divisor [x + u′x′ + u″x″ …] (or module [x + u′x′ + 
u″x″ …]), where u′, u″, . . ., are indeterminates.39 Thus, the generalization of Kummer’s 
ideal numbers, which had been obtained by Dedekind by the use of sets, was obtained 
by Kronecker in a less abstract way by means of indeterminates.

18.6.3  Hilbert’s method of ideal elements

Later, in the 1920s, Kummer’s creation of ideal factors was further extended by Hilbert 
into the “method of ideal elements,” which consisted of the possibility of adding new 
formal objects within any determined theory. The extended theory obtained was then 
uniquely justified by the proof of its consistency. Hilbert praised this method for solving 
mathematical problems and he qualified it as “a method of genius” since it often saved 
mathematicians, he said, from some considerable difficulties. He himself applied this 
method to logical theory in order to justify transfinite assertions.40

Kummer can thus be considered as a precursor of the algebraists of the turn of the 
nineteenth century. However, his creation of ideal factors differed from Dedekind’s crea-
tions of ideals and even more from Hilbert’s method of ideal elements. Indeed, Kummer’s 
ideal factors were only implicit components of existing numbers and neither new concepts 
(such as Dedekind’s ideals), nor formal objects (such as Hilbert’s ideal elements). They 

38 Kronecker used the term “domain of rationality” to designate an extension (algebraic or transcendent) 
of the domain of the rational numbers. He refused to use the term “field” (Körper) introduced by Dedekind 
and still used today, in order to avoid introducing a new designation to only mean the gathering of magnitudes.

39 Kronecker (1881, in Kronecker, 1895– 1930, vol. 2).
40 Hilbert (1926).
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differed also from Kronecker’s divisors, which are concrete algebraic expressions, even 
if Kronecker’s constructive method was closer to Kummer’s own work than the more 
conceptual and formal methods of Dedekind and Hilbert.

18.7  Conclusion

We have seen that Kummer’s theory of ideal numbers aimed at a generalization of the 
properties of integer numbers to complex numbers, more precisely as a generalization of 
the arithmetical fundamental property to cyclotomic numbers. Kummer’s method was 
to create ideal factors, which were not, strictly speaking, numbers, but only components 
of numbers and which revealed their effects only when combined together. We have 
also seen that analogies with other theories, especially with the arithmetical theory of 
integer numbers, guided and justified Kummer’s method. Finally, Kummer’s conception 
of numbers as natural objects led him to consider arithmetical laws as properties of 
these objects. Arithmetical laws were also seen as permanent properties of all numbers. 
Conversely, all those properties which infringed these laws were considered irregularities 
and, hence, accidental properties. Consequently, Kummer’s only recourse was to cancel 
out these irregularities and to bring to light the implicit permanent properties.

Kummer’s theory offers in effect an example of generalization obtained through the 
notion of “ideality,” but this notion was still connected to a conception of mathematics 
in line with the natural sciences. “Ideal” in Kummer’s sense did not mean fictitious, as it 
would later become, but rather implicit, that is, not yet realized. Ideal factors, thus, were 
not fictions or pure inventions of a mathematician, but real and implicit components of 
existing numbers, which any mathematician who was working in this area would neces-
sarily have to discover.

appendix 1

In this appendix, we will try to clarify Kummer’s use of congruence calculations for determining 
ideal factors.

Let us recall Kummer’s formulation in which f designates an entire function with integer coef-
ficients of roots of unity:

If p is a prime number of the form mλ + 1, then it can, in many cases, be represented as a 
product of λ − 1 complex factors p =  f a f a f a( ) ( ) ( )2 1… −λ . Where, however, a decompos-
ition into existing complex factors is not possible, one has to introduce ideal prime factors 
in order to obtain it.

Relying on the article published in 1847, Kummer’s method can be illustrated in the simplest case 
where p is of the form mλ + 1 and can be decomposed into a product of λ − 1 complex factors. In 
this case, if f(α) is an existing factor of p, it has the property that, if one substitutes a determined 
root of the congruence ξλ ≡ 1 (mod p) for the equation αλ = 1, it follows that f(ξ) ≡ 0 (mod p).
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As an example, let us consider λ = 5; p = 11 is of the form 2λ + 1, and if α is a primitive 
fifth root of unity, 11 can be written as the product of four conjugated factors of this number: 
11 2 2 2 22 3 4= + + + +( )( )( )( )α α α α .

In the congruence calculation, 9 is the determined root of the congruence ξλ ≡ 1 (mod p) [95 ≡ 
1 (mod 11)] such that f ( )ξ ≡ 0 (mod p) [2 + 9 ≡ 0 (mod 11)].

In the cases where p could not be decomposed into a product of λ − 1 complex factors, Kummer 
used the previous process in order to determine the ideal factors. Indeed, the congruence equation 
ξλ ≡ 1 (mod p) always contains λ − 1 distinct solutions. Kummer’s idea was to connect an ideal 
factor to every solution of that congruence. Kummer first noted that, when a complex number φ(α) 
contains (i.e., is divisible by) a prime ideal factor f(α), we have also the congruence ϕ ξ( ) ≡ 0 (mod 
p). Conversely, if we have ϕ ξ( ) ≡ 0 (mod p), and if p is decomposable into λ − 1 prime factors, 
then ϕ α( ) contains the prime ideal factor f(α). Kummer generalized this property to ideal factors 
and used it to determine them. When an irreducible factor is not a prime factor, it contains an ideal 
factor connected to a solution of the congruence equation ξλ ≡ 1 (mod p). Thus, this ideal factor 
will be determined by this congruence relation: a complex number φ(α) will be said to be divisible 
by an ideal factor defined by ξ, if we have the congruence relation ϕ ξ( ) ≡ 0 (mod p). One can see 
that it is the divisibility by the ideal factor which is defined, not the ideal factor itself.41

When p = λ, Kummer recalled that p could always be decomposed into λ − 1 prime factors: 
p = = − − − −λ α α αλ( )( ) ( ). . .1 1 12 1  . Thus, in this case, p is always decomposable into prime 
factors.

When p is not of the form mλ + 1 and distinct from λ, the definition of its prime factors is more 
difficult and Kummer’s proofs are less convincing. We will not deal with this case here.
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